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Abstract

The aim of this note is to construct all the graphical sequences corresponding to graphs
which have exact three vertices with the same degree. This work is a continuation of the
first author’s paper [2] in this Reports.
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1 Classification

In this note we use freely the terminology and notation concerning graphs in G.Chartrand
and L.Lesniak [1]. For any positive integer n and non-negative integer m with m < n, we use
the following notation:

[n]:={1,2,3,....,n} [m,n]:={mm+1,..,n}

A sequence s : s1, S9, ..., S, of non-negative integers is said to be graphical if there exists a simple
graph G of order n whose degree sequence is s.

The purpose of this note is to determine all the graphical sequences s : si, S9, ..., S, with
the following property:

*) n—12>58 >8> ..> 81> Sk = Sk41 = Sk42 > Sk43 > ... > 5 > 0
for some k € [n — 2].

For the sake of brevity any sequence s : $1, 53, ..., S, of non-negative integers with the prop-
erty (*) is said to be (n, 3)-admissible and any sequences with (x) are denoted by $,(s1, Sn; Sk)-
For any fixed s; and s, let S, (s1,s,) be the set of (n, 3)-admissible sequences given in the form
Sn(81,8n;Sk). It is seen easily that the set of all (n,3)-admissible sequence is partitioned into
the five classes S, (n —1,2), Su(n—1,1), Sp(n —2,1), Sp(n —2,0) and S,(n — 3,0). We note
that s,(n —m,3 —m; k), k € [3 —m,n —m], expresses a sequence for m = 1,2,3. Further we
denote by GS(n,3) and GS,(s1, sn) the set of all graphical (n, 3)-admissible sequences and the
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set of all graphical sequences in S, (s1,s,) respectively. Then we have

Lemma 1.1 GS(n,3) is partitioned into the five classes as follows :
GSp(n—1,2)UGS,(n—1,1)UGS,(n—2,1) UGS, (n — 2,0) UGS, (n — 3,0).

Computing directly, we get the following Lemmas 1.2 — 1.5.

Lemma 1.2 GS(3,3) ={(2,2,2),(0,0,0)}. More precisely we have
GS3(25 2) = {(27 2, 2)}

GS3(2,1) = GS3(1,1) = GS3(1,0) = empty

GS5(0,0) = {(0,0,0)}.

Lemma 1.3 GS(4,3) ={(3,1,1,1),(2,2,2,0)}. More precisely we have
GS4(3,2) = empty

GS4(3,1) ={(3,1,1,1)}

GS4(2,1) = empty

GS4(2,0) = {(2,2,2,0)}

GS4(1,0) = empty.

Lemma 1.4 GS(5,3) consists of the following five sequences :
GS5(4,2) = empty

GS5(4,1) ={(4,3,3,3,1)}

GS5(3,1) =1{(3,2,1,1,1),(3,2,2,2,1),(3,3,3,2,1)}

GS5(3,0) ={(3,1,1,1,0)}

GS5(2,0) = empty.

Lemma 1.5 GS(6,3) consists of the following twelve sequences :
GSs(5,2) ={(5,4,3,2,2,2),(5,4,3,3,3,2),(5,4,4,4,3,2) }

GSe(5,1) ={(5,4,2,2,2,1)}

GSs(4,1) ={(4,3,2,1,1,1),(4,3,2,2,2,1),(4,3,3,3,2,1),(4,4,4,3,2,1)}
GSg(4,0) ={(4,3,3,3,1,0)}

GSs(3,0) ={(3,2,1,1,1,0),(3,2,2,2,1,0),(3,3,3,2,1,0) }.

2 Construction of GS(n,3)

In this section we shall construct inductively all sequences in GS(n,3), n > 4. The next
lemma, noted in [1,Theorem 1.4], plays the essential role in our discussion.

Lemma 2.1 A sequence s : s1,82,...,Sn of non-negative integer with s1 > s9 > ... > 8y,
n > 2,51 > 1, is graphical if and only if the following sequence h(s) withn—1 terms is graphical:
h(s):s2—1,83—1,...,8141 — 1, 8142, St-3 -+, Sn
where t = s1.

Now for any sequence s : S1, 82, ..., Sn—1,7 > 2, of integers with n — 1 terms we define the
sequence p(s) with n terms by



Construction and Enumeration of Graphical Sequences Corresponding to Graphs Having Exact Three Vertices with the Same Degree 9

p(s):m—1,s1+1,s9+1,....;8,-1+1.

For any set F' of sequences of integers, we set p(F) = {p(s);s € F}. Some (n — 1, 3)-admissible

sequences are mapped injectively to (n, 3)-admissible ones by the map p : s — p(s). More pre-
cisely we have

Lemma 2.2 Letn be any positive integer with n > 4. Then we have

(1) h(p(s)) =s for any s € Sp—1(n—3,1)US,—1(n—3,0)US,_1(n—4,0).
(2) Sn(n -1, 2) = p(Sn—l(n -3, 1)) U {Sn(n -1,2n - 1)}

(3) Sn(n - 17 1) = p(Sn—l(n - 370) U Sn—l(n - 470)) U {Sn(n - 1a 1;” - 1)}

Various criteria for sequences to be graphic are shown in G. Sierksma and H. Hoogeven [3].
We use the next criterion noted in [1,Theorem 1.5].

Lemma 2.3 A sequence s : $1,89,...,S,(n > 2) of non-negative integers with s1 > so >

83 > ... > 8p 45 graphical if and only if the following two conditions hold:
(P) Y k=1 Sk = even
and for each integer k € [n — 1],

(By)  Shoisj <k(k—1)+ X0y min{k,s;}.

In what follows, for any sequence s as in Lemma 2.3 the left[resp. right] hand side of (E})
is denoted by (E Ly )[resp. (ERy)].

Lemma 2.4 Letn be any positive integer. Then we have

(1) s = s,(n—1,2;n — 1) is not graphical for n > 4.

(2) Any sequences of type sp,(n —1,1;n — 1) are not graphical for n > 3.

Proof For the sequence s in (1), (FL3) =3n—3 > 3n—4 = (ER3). So s is not graphical

by Lemma 2.3. We note that s3(2,2;2) = (2,2,2) is graphical. (2) is seen similarly. O

From Lemmas 2.1-2.4, it follows that GS,(n — 1,2) and GS,(n — 1,1) is constructed from
GS(n —1,3) by the map p.

Theorem 2.5 Let n be any positive integer with n > 4. Then we have
(1) Gsn(n -1, 2) = p(GSTL“l(n’ - 37 1))
(2) GSp(n—1,1) = p(GSp-1(n—3,0) UGS,,—1(n — 4,0)).

For any (n,3)-admissible sequence s
c(s) by :

cs):n—1—sp,n—1—sp_1,....n—=1—859,n—1— 8

: 81,89, ..., Sn, we define a (n, 3)-admissible sequence

Considering a graph and its complement graph, we see that s is graphical if and only if so is

c(s). For any set F' of (n,3)-admissible sequences, we set ¢(F') = {c(s); s € F'}. Then the next
is seen easily

Theorem 2.6 Letn be any positive integer with n > 3. Then we have
(1) GSp(n—3,0) = c(GSn(n — 1,2)).
(2) GSn(n —2,0) = ¢(GSn(n—1,1)).
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Finally we determine explicitly any sequences in GSS,,(n — 2,1).

Lemma 2.7 Let m be any positive integer. Every sequence in Sy(n— 2,1) is not graphical
for n=4m —1 andn = 4m.

Proof This follows from the fact that for n = 4m — 1 and n = 4m, every sequence in
Sp(n —2,1) does not satisfy the condition (P) in Lemma 2.3. |

Lemma 2.8 Let'm be any positive integer. Then we have
(1) sqmy1(dm —1,1;t) is not graphical for any t, 1 <t < m.
(2) Sam+2(4m,1;t) is not graphical for any t, 1 <t < m.
Proof For the sequence s in (1) we have
(ELop) = 6m? —m and (ERs,,) = 6m? — 3m + 2t.
(ER9y) — (ELgy,) =2(t—m) < 0.
Hence s is not graphical. We see (2) similarly. O

Lemma 2.9 Let m be any positive integer. Then we have
(1) Sgm+y1(dm —1,1;m) is graphical.

(2) s4m+2(4m,1;m) is graphical.

Proof For the sequence s in (1) we have

k if1<k<m
) 2m—k it m<k<2m
(ERy) — (ELy) = 2(2m — k)? if 2m <k <3m

2{(k—2m —1)%2+2m} if 3m <k < 4m.

Hence we have (1). Similarly we see (2). O

Lemma 2.10 Let m be any positive integer. Then we have

(1) Sqm+1(dm — 1,15¢) is graphical for any t, m <t < 3m.

(2) s4ma2(dm,1;t) is graphical for any t, m <t < 3m + 1.

Proof We prove (1) by the induction on m. By Lemma 1.4 the assertion is true for the case
m=1. Let m > 1, s(t) = s4m+1(dm—1,1;¢) and 3m > ¢t > m. Let us apply twice Lemma 2.1 to
s(t). Then we see that h(h(s(t))) = Sam-3(4m—>5,1;t—2),1,1. Obviously h(h(s(t))) is graphical
if and only if 80 iS S47,—3(4m —5,1;t—2). Since 3(m—1) > t—2>m—1, sgm—-3(dm—>5,1;t—2)
is graphical by the inductive hypothesis, and hence so are h(h(s(t))) and s(¢) by Lemma 2.1.
From Lemma 2.9, s(m) is graphical and so is s(3m) = c¢(s(m)). Similarly we have (2). o

By virtue of Lemmas 2.7-2.10, GS,(n — 2, 1) is characterized explicitly as follows.

Theorem 2.11 Let m be any positive integer. Then we have
(1) GSym—1(4m — 3,1) and GSym(dm — 2,1) are empty.

(2) GSym41(dm — 1,1) = {sam+1(dm — 1,1;t); t € [m, 3m]}.
(3) GSam42(4m, 1) = {S4m+2(4m,1;t); t € [m,3m + 1]}.
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3 Enumeration of GS(n,3)

Let n be any positive integer with n > 3, and let ap, by, cn,dn, e, and g, be the cardinal
number of GS,(n—1,2),GSp,(n—1,1),GS,(n—2,1),GS,(n—2,0),GS,(n—3,0) and GS(n,3)
respectively. The next two lemmas are immediate consequences from Theorems 2.5, 2.6 and 2.11.

Lemma 3.1
(1) an =€n =cp-1 and b, = d, = an_1 + bp_1 for any positive integher n > 4.
(2) ag3=1,b3=c3=d3 =0 and ez = 1.

Lemma 3.2 For any positive integer m, we have
0 if n=4m—1,4m

pt1 =cCp =14 2m+1 if n=4m+1
2m+2 if n=4m+2.

The next follows from Lemmas 3.1 and 3.2.

Lemma 3.3 For any positive integer m, we have
bam = bam+1 = bamyo = 2m? + m — 2,

b JemP-m-—2 if m>2
4m=1717 9 if m=1.

Since g, = 2(an + by) + cn by Lemma 3.1, we conclude the next theorem from Lemmas 3.2
and 3.3.

Theorem 3.4 Let m be any positive integer. The cardinal number g, of GS(n,3) is
expressed in the following form:

4m? +2m—4 if n=4m—1,4m

gn=2 4m>+4m -3 if n=4m+1
4m? + 8m if n=4m+2.
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