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Abstract

The aim of this note is to construct all the graphical sequences corresponding to graphs

which have exact three vertices with the same degree. This work is a continuation of the

鮎st authorフs paper 【21 in this Reports.
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1　Classi丘cation

In this note we use丘eely the terminology and notation concerning graphs in G.Chartrand

and L.Lesniak [I]. For any positive integer n and non-negative integer m with m < n, we use

the丘blowing notation‥

[n]:-{1,2,3,...,n} [ra,n]:-{ra,ra+l,...,n}.

A sequence s : si, S2,..., sn ofnon-negative integers is said to be graphical if there exists a simple

graph G of order n whose degree sequence is s.

The purpose of this note is to determine all the graphical sequences s : si,S2,...,sn with

the following property:

n-1≧S¥>S2>->sk-1>sk-Sk+l-5/^+2>5^+3>�"�"�">sTi ≧O

forsome k∈　n-2.

For the sake of brevity any sequence s : s¥, 52,..., sn ofnon-negative integers with the prop-

erty (*) is said to be (n,3)-admissible and any sequences with (*) are denoted by sn(si,sn; sjt).

For any fixed si and sn let Sn(si, sn) be the set of (n, 3)-admissible sequences given in the form

sn(si,Sn',Sk)'It is seen easily that the set of all (n,3)-admissible sequence is partitioned into

the five classes Sn{n- 1,2), Sn(n- 1,1), Sn(n- 2,1), Sn(n- 270) and Sn(n- 3,0). We note

that sn(n- ra,3 -ra;fc),k ∈ [3 -ra,n -raj, expresses a sequence for ra - 1,2,3. Further we

denote by G5(n, 3) and GSn(si, sn) the set of all graphical (n, 3)-admissible sequences and the
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set of all graphical sequences in Sn(si, sn) respectively. Then we have

Lemma 1.1 GS(n,3) is partitioned into theかe classes as follows :
GSn(n-1,2)UGSn(n-1,1)UGSn(n-2,1)UGSn(n-2,0)UGSn(n-3,0).

Computing directly, we get the following Lemmas 1.2 - 1.5.

Lemma 1.2　GS(3,3) - {(2,2,2),(0,0,0)}. Moreprecisely we have

GS3(2,2) - {(2,2,2)

GS3(2,1 -GS3Q,1 -GS3(1,0　- empty

G53(0,0) - {(0,0,0)}.

Lemma 1.3　GS(4,3) - {(3,171,1)フ(2,2,2,0)}. More precisely we have

GS4(37 2) - empty

G54(3,l -{(3,1,1,1 }

G54(27 1) - empty

G54(2,0) - {(2,2,2,0)}

GS4(l,0) - empty.

Lemma 1.4　G5(5,3) consists of the followingかe sequences :

GS5(4,2) - empty

G55(4,1 -{(4,3,3,3,1))

G55(3,1)-{(3,2,1,1,1),(3,2,2,2,1),(3,3,3,2,1)}

G55(3,0) - {(3,1,1,1,0)}

GS5(2,0) - empty.

Lemma 1.5　G5(6,3) consists of the following twelve sequences :

GS6(5,2)- {(57473,2,272),(5,4,373,3,2 ,(5,4,4,4,3,2))

G56(5,l) - {(5,4,2,2,2,1)}

G5′6(471 -{(4っ3,2,1,1,1 , 4,3,2,2,271), 4,3,373,271)フ(4,47473,2,1)

G56(4,0)- {(4,3,3,3,1,0)}

GS6(3,0) - {(3,2,1,1,1,0),(3,2,2,2,1,0),(3,3,3,2,1,0)}.

2　Construction of GS(n,3)

In this section we shall construct inductively all sequences in GS(n,3), n ≧ 4. The next

lemma, noted in l,Theorem 1.4], plays the essential role in our discussion.

Lemma 2.1 A sequence s : 51,S2,- sn ofnon-negative integerwiths¥ ≧ 82 ≧ - ≧ sn,

n ≧ 2, 51 ≧ 1, is graphical if and only if the following sequence h(s) with n-1 terms is graphical:

h(s) : 52- 1,53-1,-,St+1 - 1,st+2,St+3,�"�"�"?5n

where t-s¥.

Now for any sequence s : 5l,52,-,sn-i,n ≧ 2, 0f integers with n - 1 terms we define the

sequence p(s) with n terms by
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p(s):n-1,81+1,82+1,...,sn_i+1.

For any set F of sequences of integers, we set p(F) - {p(s)]s G F}. Some (n - 1,3)-admissible

sequences are mapped injectively to (n7 3)-admissible ones by the map p : S - p(s). More pre-

cisely we have

Lemma 2.2　Letn he anypositive integer withn ≧ 4. Then we have

(1) h(p(s))-sforany sG5n-i(n-3,l)USn-i(n-3,0)U5n-i(n-4,0).

(2) Sn(n-l,2)-p(5n-i(n-3,l))uK(n-l,2;n-1)}.
(3) SJn-1,1) -p(Sn-i(n-370)uSn_i(n-4,0))∪{sn(n- l,l;n-1)}.

Various criteria for sequences to be graphic are shown in G. Sierksma and H. Hoogeven [3J.

We use the next criterion noted in 【1,Theorem 1.5.

Lemma 2.3　A sequence s : sl.S2,-,sn(n ≧ 2) ofnon-negative integers with s¥ ≧ 82 ≧

S3 >... ≧ sn is graphical if and only if the following two conditions hold:

(P)　∑芸=1 Sk - even

andforeach integerk ∈ n-1 7

(Ek)　∑3=1SJ ≦&(&-!)+∑]=k+imin{k,sj}.

In what follows, for any sequence s as in Lemma 2.3 the leftfresp. right] hand side of (Ek)

is denoted by (ELk)[resp. (ERk)¥.

Lemma 2.4　Letn be any positive integer. Then we have

(1) s-sn(n- 1,2;n-1) is notgraphicalfor n≧4.

(2) Any sequences oftypesn(n- 1,1;n- 1) are not graphical for n ≧ 3.

Proof Forthe sequence sin (1), (EL3) - 3n-3 > 3n-4- (ER3). So sis not graphical

by Lemma 2.3. We note that 53(2,2;2) - (27272) is graphical. (2) is seen similarly.　　　□

From Lemmas 2.1-2.4, it follows that GSn(n - 1,2) and GSn(n - 1, 1) is constructed from

GS(n-1,3) bythe mapp.

Theorem 2.5　Letn be anypositive integer withn > 4. Then we have

(1)GSn(n-1,2)-p(GSn-i n-3,1 .

(2) GSn(n- 1,1) -p(GSn-i(n-3,0) uGSn-i(n-4,0)).

For any (n, 3)-admissible sequence s : si,S2,...,Sn, we define a (n,3)-admissible sequence

c(β)by:

c(s):n-l-snin-l-sn-i,-,n-1-52,n-1-si

Considering a graph and its complement graph, we see that β is graphical if and only if so is

c(s). For any set F of (n,3)-admissible sequences, we set c(F) - |c(s);s G F). Then the next

is seen easily

Theorem 2.6　Letn be anypositive integer withn ≧ 3. Then we have

(1) GSn(n-3,0) -c(GSn(n- 1,2)).

(2) GSJn-2,0) -c(GSn(n- 1,1)).
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Finally we determine explicitly any sequences in GSn(n - 2, 1).

Lemma 2.7 Letm be any positive integer. Every sequence in Sn{n- 2, 1) is not graphical

for n-Am-1 andn-4m.

Proof This follows from the fact that for n - 4m - 1 and n - 4ra, every sequence in

Sn(n - 2,1) does not satisfy the condition (P) in Lemma 2.3.　　　　　　　　　　　　　□

Lemma 2.8　Letm be any positive integer. Then we have

(1) S4m+i(4ra- 1,1;t) is not graphical for any t, 1 ≦ i <m｡

(2) S4m+2(4ra,1;t) is not graphical for any t, 1 ≦ t < m.

Proof For the sequence β in (1) we have

(EL2m) -6m2-m and (ER2m) - 6m2 -3m+2t

(ER2m)- (EL2m) -2(<-m) < 0.

Hence s is not graphical. We see (2) similarly.

Lemma 2.9　Letm be any positive integer. Then we have

(1) S4m+i(4ra - 1,1;m) is graphical

(2) S4m+2(4ra, l; ra) is graphical

Proof For the sequence β in (1) we have

(ERk) - (ELk) - <

k

2m-k

2(2ra-k)A?

ifl≦k≦m

if m<k≦2m

if2m<k≦3m

2{(k-2m-I)2+2m} if 3m<k<4m.

Hence we have (1). Similarly we see (2).

Lemma 2.10　Letm be any positive integer. Then we have

(1) S4m+i(4ra- 1,1;t) is graphicalforany t, m ≦ i ≦ 3m,

(2) 54m4-2(4'/n,1;t) is graphical for any t, m ≦ i ≦ 3m+ 1.

Proof We prove (1) by the induction on m. By Lemma 1.4 the assertion is true for the case

m- 1. Letm> 1,s(i) -54m+i(4m-1,1;t) and3m>t>m. LetusapplytwiceLemma2.1to

5-. Then wesee that h(h(s(t))) - S4m-3(4ra-5, 1;ト2), 1, 1. Obviously h(h(s[t))) is graphical

ifandonlyifsoiss4m-3(4ra-5,1;*-2). Since3(ra-1) ≧ i-2 ≧ m-1, 54m-3(4m-5,l;t-2)

is graphical by the inductive hypothesis, and hence so are h(h(s(t))) and s(t) by Lemma 2.1.

From Lemma 2.9, s(m) is graphical and so is s(3m) - c(s(ra)). Similarly we have (2).　　□

By virtue of Lemmas 2.7-2.10, GSn(n - 27 1) is characterized explicitly as follows.

Theorem 2.ll Letm be any positive integer. Then we have

(1) GS4m-i(4ra- 3,1) and GS4m(4ra- 2,1) are empty.

(2) G54m+i(4m- 1,1) - {s4m+i(4m-1,1;t); t ∈ m,3ra]}.

(3) GS4m+2(4ra,l) - {54m+2(4m,l;t); i ∈ [ra,3m+ 1】)･
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3EnumerationofGS(n,3)

Letnbeanypositiveintegerwithn≧3,andletan,bn,cn,dnjenandgnbethecardinal

numberofGSn(n-1,2),GSJn-1,1),GSJn-2,l),GSn(n-2,0),GSn(n-3,0)andG5(n,3)

respectively.ThenexttwolemmasareimmediateconsequencesfromTheorems2.5,2.6and2.ll.

Lemma3.1

I-*-/@"n-^n-C71-iandbn-dn-an-¥+6n-i/orany'positiveinteghern≧41

(2)a^-1;&3-C3-ds-0ande%-1.

Lemma3.2Foranypositiveintegerm,wehave

ftn+1 ~Cn -

if n-4ra-l,4ra

2ra+1 if n-4m+1

2m+2 if n-4m+2.

The next follows from Lemmas 3.1 and 3.2.

Lemma 3.3　For any positive integerm, we have

&4m-Hm+l-hm+2-2m　+m-2,

4m-l　-

2m2-m 2
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Since gn - 2(an + bn) + cn by Lemma 3.1, we conclude the next theorem from Lemmas 3.2

and3.3.

Theorem 3.4　Let m be any positive integer. The cardinal number gn of GS(n73) is

expressed in the following form:

9n=

4ra　+2m-4 if n-4m-1,4m

4ra　+4ra-3 if n-4m+1

4ra2+8m if n-4m+2.
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