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Abstract

This work is a continuation of the author’s papers [3] and [4]. The purpose of this paper
is to investigate the construction of all graphs which have exact three vertices with the same
degree. Since the degree sequences of such graphs are determined completely in [4] , our
work is how to realize the graphs with such degree sequences. The results in this paper are
stated almost without rigorous proof, because these are obtained by paraphrase from the
statements concerning degree sequences in [4].
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1 Preliminary

In this paper we use freely the terminology and notation concerning graphs in G.Chartrand
and L.Lesniak [1]. For any positive integer n and non-negative integer m with m < n, we use
the following notation:

[n]:={1,2,3,---,n}, [m,n]:={m,m+1,---,n}.

Let G be a graph. V(G), E(G) and n(G) are the set of vertices, the set of edges of G and
the order of G respectively. The degree sequence d(G) of G is the non-increasing n(G)-sequence
of degree of vertices of G, and the maximum degree and the minimum degree of G are denoted
by A(G) and §(G) respectively. The symbols K,, and N,, are the complete graph and the empty
graph of order n respectively, and K, , is the complete bipartite graph.

For any graph G we define the four kinds of operations p, ¢, z and ¢ as follows:

p(G) = the join of G and Ny,

q(G) = the graph which is obtained from the disjoint union of p(p(G)) and K, adding the
new edge (u,v), where u the vertex of p(p(G)) with the highest degree and v one vertex of
K,

z(G) = the disjoint union of G and Ny,
¢(G) = the complement of G.
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Evidently these operations are invertible, namely, for any graphs G and H, p(G) = p(H) if and
only if G = H, and the analogy holds for the operations g, z and c. For any set F of graphs, we
put p(F) = {p(G); G € F} and ¢(F), 2(F) and ¢(F) are defined similarly.

For any graph G of order n with d(G) = {s1,82,.-.,8n—1,n} We have

(1.1)  d(p(G))={n,s1 + 1,82+ 1,...,80-1+ 1,8, + 1}

(1.2) d¢g(G)={n+2,n+ 1,81 +2,80+2,...,80-1+ 2,8, +2,2,1}
(1.3)  d(2(G)) = {s1,82,---5n-1, Sn, 0}

(14) d(e(G)={n—-1-s8,n—1=584_1,...,m—1—383,n—1—s1}.

The operations p, g, z, ¢ for any graphs and the above relations play essential role in the subse-
quent sections.

Let G be a graph, and a, b, c,d be four different vertices of G such that (a,b),(c,d) € E(G)
and (a,c),(b,d) ¢ E(G). In this case s = {(a,b),(c,d)} is called a switching of G, and the
switching operation for G is to make the graph s(G) = G — (a,b) — (¢,d) + (a,c) + (b,d). Obvi-
ously G and s(G) have the same degree sequence. The next theorem stated in [2] teach us how
to get all graphs with the same degree sequence.

Switching Theorem Let G be a graph. Then any graph H with d(H) = d(G) is obtained
by a finite sequences of switching operations for G.

2 Classification and I',, for n = 3,4,5,6

Let us denote by T the class of graphs which have exact three vertices with the same degree
and mutually different degree for the other vertices, and for any integer n > 3 denote by I',, the
set of all graphs of order n in I'. The degree sequence {sy,sz,--,s,} of any graph G in I'; is
given in the following form: for some & € [n — 2]

(21) m—12>8>82>...> Sp_1 > Sk = Sk41 = Skg2 > Sk43 > *++ > Sp 2 0,
where s; = A(G) and s, = 6(G).

For any fixed integers s; and s, with n — 1 > 83 > s, > 0, I'y(s1, 5,) be the set of graphs
G in T, with (A(G),8(G)) = (s1,8,). For the sake of brevity any sequence {s1,2,+-,8n} Of
non-negative integers with the property (2.1) is denoted by s,(s1, $n; sk). If $1—s, = n—3, then
the sequence s,(s1,sn;k) for any integer k € [s,, s1] is uniquely determined by s;,s, and k. In
this case, I'; (81, Sn; k) is the set of graphs G with the same degree sequence d(G) = s,(51, Sn; k).
The next theorem is an immediate consequence of the classification of degree sequences with
(2.1) noted in Lemma 1.1 in [4].

Theorem 2.1 For any integer n > 3,1, is partitioned into the following five subclasses:
I =Ta(n-1,2)uT,(n-1,1)Ul,(n—2,1)UT,(n —2,0)UT,(n —3,0). O

In order to clarify inductively the structure of I',, we begin on the graph lists of I', for
n = 3,4,5,6. Theorems 2.2-2.5 follow from Lemmas 1.2-1.5 in [4] and the Graph cards given
at pp.19-24 in [5].

Theorem 2.2 T3 consists of two graphs as follows:
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(1) T's(2,2) = {K3}
(2) T3(0,0) = {N3} = {c(K3)}
(3) T'3(2,1) = I'3(1,1) = I'3(1,0) = empty. O

Theorem 2.3 T4 consists of two graphs as follows:

(1) Ty4(3,1) = {K13} = {p(N3)}
(2) T4(2,0) = {2(K3)}
(3) T4(3,2) =T4(2,1) = ['4(1,0) = empty. o

Theorem 2.4 T's consists of siz graphs as follows:

(1) T's(4,2) = empty
(2) T's(4,1) = {p(z(K3))}, (graph no.45 in the Graph cards)
(3) T's(3,1) = U3_,I's(3,1; k), where

1) I's(3,1;1) = {G}, where G is the graph no.30 in the Graph cards

2) Ts5(3,1;2) = {H,c(H)}, where H is the graph no.36 in the Graph cards

3) Ts(3,1;3) = c(I's(3,1;1))
(4) T's(3,0) = {z(K13)}
(5) Ts(2,0) = empty. 0

Theorem 2.5 TI'g consists of twelve graphs as follows:

(1) Te(5,2) = p(T's(3,1))
(2) Te(5,1) = p(T's(3,0))
(3) Te(4,1) = U3_,Ts(4,1;k), where
1) T'e(4,1;1) = {G}, where G is the graph no.93 in the Graph cards.
2) Te(4,1;2) = {G;;5 = 1,2,3,4},where Gj(j = 1,2,3,4) is the graph no.118, 119, 120,
121 in the Graph cards respectively.
3) I‘6(47 1;3) = C(F6(4a 1;2))
4) F6(47 1;4) = C(F6(47 L 1))
(4) Te(4,0) = 2(I's(4,1))
(5) Ts(3,0) = 2(I's(3,1)). =

3 Inductive construction of I',

In this section we shall consider the inductive construction of I, from I',, with m < n. The
folloing Lemmas 3.1- 3.4 are consequences of the results stated in the section 3 of [4]. At first
from (1.4) we get

Lemma 3.1 For any integer n > 3,1, is closed under the operation c. More precisely we
have
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(1) ¢(Tn(n —1,2)) = T'n(n — 3,0)
(2) ¢(Tp(n—1,1)) = Tp(n — 2,0)
(3) e(Ta(n - 2,1) = Tn(n - 2,1)
(4) e(Tp(n—2,1;k)) =Tp(n —2,1;n — 1 — k), where k € [n —2]. O

The four classes in T',, except I'y(n — 2, 1) are constructed from the subclasses of I',_; by
the operations p and z. The next is concluded from (1.1) and (1.3).

Lemma 3.2 For any integer n > 4, we have
(1) Ta(n = 1,2) = p(Tas(n - 3,1))
(2) Ta(n - 1,1) = p(Tn-1(n = 3,0)) U p(T'n_1(n — 4,0))
(3) Tn(n—2,0) = 2(Tp-1(n — 2,1)) U 2(Tp1(n — 2,2))
(4) Tp(n - 3,0) = 2(Tp-1(n — 3,1)). O

Let us consider the subclass I';,(n — 2,1). The next.lemma is an immediate consequence
from Theorem 2.11 in [4].

Lemma 3.3 For any positive integer m, we have:
(1) Tgm—1(4m — 3,1) and Ty4pn(4dm — 2,1) are empty
(2) Tymy1(dm — 1,1) and Typ42(4m, 1) are partitioned into the following subclasses:

1) Tamp1(4m — 1,1) = U™ Tym1(dm — 1,1;k)
2) F4m+2(4m, 1) = U22+1F4m+2(4m, 1; k‘) O

m

Let G bein I'_4(n — 6,1;k — 2). Then d(¢(G)) = sp(n — 2,1;k) from (1.2). Hence by the
operation ¢ for I';,_4(n — 6,1) we get some subclasses of I'y(n — 2,1).

Lemma 3.4 Let m be any integer with m > 1. Then forn =4m + 1 and n = 4m + 2 we
have

¢(Tnh-4(n —6,1)) C Tr(n —2,1)
More precisely we have
(1) ¢(T4m-3(4m —5,1;k — 2)) C Tam41(4m — 1,1;k) for any k € [m + 1,3m — 1]
(2) ¢(T4m—-2(4m —4,1;k — 2)) C Tuym42(4m, 1;k) for any k € [m + 1,3m)]. O

A graph in I',(n—2,1; k) is called a representative of I',(n—2, 1; k), a representative system
R(Ty(n — 2,1)) of I'p(n — 2,1) is the collection of each representative of I',(n — 2,1;k) for all
k € [n —2]. Let n = 4m + 1. By virtue of Lemma 3.4 we can get inductively a representative
of I'n(n — 2,1;k) for any k € [m + 1,3m — 1]. Since I'y(n — 2,1;3m) = ¢(Tn(n — 2,1;m)), it
remains to give a representative of I'y(n — 2,1;m). The next Lemma is due to the l-procedure
stated in [2, p.119].

Lemma 3.5 For any positive integer m, the following graph Gypmy1(m)[resp.Gamy2(m)]
is a representative of [ymy1(4m — 1,1; m)[resp.Lamy2(4m, 1;m)]:
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(1) G = Gam41(m)
V(G) = [4m + 1],
E(G) = E1 U E; consists of 4m? edges (j,k) given in the form:
Ey ={(j,k);j €[m}ke[j+1,4m+1-j]} and
Ey ={(4,k);j € [m+ 1,2m],k € [j + 1,4m — j]U {2m + 1 + j}}.
(2) G = Gam2(m)
V(G) = [4m+2),
E(G) = E, U E; consists of 4m? + 2m edges (j,k) given in the form:
Ei={(,k);je[m)kej+1,4m+2—j]} and
E, ={(j,k);je[m+1,2m)k€[j+1,4m+1—j]U {2m + 2 + j}}. m]

From the above lemmas and the switching theorem, I',, is inductively constructed from I'y,
with m < n.

Theorem 3.6 For any integer n > 3, we have:

(1) Ta(n = 1,2) = pTaca(n - 3,1))

(2) Ta(n = 1,1) = pTa-1(n — 3,0)) Up(Ta_s(n — 4,0))

(3) I'n(n — 2,1) ts empty for n = 0,3 (mod 4)

(4) forn =4m+ 1 and n = 4m + 2,m > 1, a representative system R(T'n(n — 2,1)) is given

by
R(Tn(n —2,1)) = ¢q(R(Tp-a(n —6,1)) U{Gr(m),c(Gp(m)},
where Gn(m) is the graph given in Lemma 3.5

(5) forn =4m+1and n=4m+2,m > 1,Ty(n — 2,1) is the set of all graphs obtained by the
finite sequences of switching operations for any graphs in R(Tp(n — 2,1))

(6) Tpn(n—2,0) = 2(Tp_1(n — 2,1)) U 2(Tp—1(n — 2,2))
(7) Tp(n —3,0) = 2(F'p—1(n — 3,1)). O

By virtue of Theorem 3.6 we get a characterization of the class I' by the operations p, q,c
and switchings.

Theorem 3.7 The class T is the smallest class of graphs among any classes A of graphs
with the properties (1)-(6) :
(1) A does not contain any graphs G with n(G) < 3
(2) A is closed under the operation c
(3) p(G) € A for any graph G € A with A(G) < n(G) — 2

(4) ¢(G) and s(G) belong to A for any graph G € A with A(G) = n(G) —2 and §(G) = 1, and
for any switching s of G

(5) the graphs Gp(m) for n = 4m + 1,4m + 2,m > 2, given in Lemma 3.5, belong to A
(6) Ks5,T5(3,1;1),5(3,1;2),T6(4,1;1) and T's(4,1;2) are contained in A. a
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4 Estimation of cardinal number of T,

In this section we shall give a lower estimation of the cardinal number T}, of I',. For any
integer n > 3, let a,,by,cn,d, and e, be the cardinal number of I'y(n—1,2),T'p(n—1,1),Tp(n—
2,1),Tn(n — 2,0) and T'n(n — 3,0) respectively. From Theorems 2.2-2.5 and 3.6 we have:

¢n, = 0 for any n = 0,3 (mod 4), ¢s = 4 and ¢ = 10,
Up = €n = Cp-1,
bp = dpn =bn-1+ cn—2 and by = bs = bg = 1.
From the above relations 7}, is expressed only in terms of ¢ as follows:

n—1

Tnzcn+22ck+2.
k=3

More precisely we have

Theorem 4.1 For any integer m > 3, we have:
(0) T5=T4y=2,Ts =6,Tg = 20,T7 = Tg = 30
(1) To = cg + 30,T10 = €10 + 2¢9 + 30
(2) Tam-1 = Tam = 2375 (Cak41 + Caky2) + 30
(3) Tam+1 = Cams1 + 2 sy (Cakt1 + Cart2) + 30
(4) Tam+y2 = Camt2 + 2€ams1 + 22 josy (a1 + Cart2) + 30. o

For any positive integer m, let g,,(k) and h,,(k) be the cardinal number of [y 41(4m +
1,1;k) and T4pm42(4m, 1; k) respectively. Then from Theorems 2.4-2.5 we have

91(1) = 91(3) = L,91(2) = 2,

hi(1) = ha(4) = 1,h1(2) = h1(3) = 4.

Let G = Ggmy1(4m — 1,1;m) be the graph given in Lemma 3.5. Then we see that the
graphs obtained by the following switching operations s;x and $m4;jk for G are mutually non-
isomorphic:

sjk = {(4m + 1,2m),(4,k)}, where j € [m],k € [2m + 1,3m + 1]U 3m + 3,4m + 1 — j],

Smjk = {(4m+1,2m),(m+ j,k)}, where j € [m — 1],k € [2m+ 1,3m — jJu{3m+j+ 1}.
The number of the above switchings is equal to 2m? — 1. So from the switching theorem we
have g,,(m) > 2m?. Similarly for a representative G of Tymy1(4m — 1,1;k) or Typmy2(4m, 1;k),

counting the number of the switching operations for G which induce mutually non-isomorphic
graphs, we get a lower estimations for g,,(k) and hn, (k) as follows.

Theorem 4.2 For any integer m > 2, we have:

2m? for k=m
gm(k) = gm(dm — k) > { 8m? —6m for ke[m+1,2m—1]
8m? —6m+1 for k=2m,
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2m? for k=m

Consequently we have
Cama1 = T3, gm(k) > 16m3 — 16m? + 6m + 1,

Camt2 = S oemt (k) > 16m3 — 2m. W
Combining with Theorems 4.1 and 4.2 we get a lower estimation of T,.

Theorem 4.3 For any integer m > 3, we have

(0) To > 107 and Tyo > 198

(1) Tam—1 = Tam > S 01(32m> — 16m? + 4m + 1) + 30

(2) Tum+1 > 16m® — 16m? + 6m + 271 (32m3 — 16m? + 4m + 1) + 31

(3) Tym42 > 48m> — 32m? 4 10m + 27 (32m3 — 16m? + 4m + 1) + 32. m

Our final goal is to express exactly T, by means of n, but this is unsolved.
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