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Abstract

This work is a continuation of the author's papers [3] and [4】. The purpose of this paper

is to investigate the construction of all graphs which have exact three vertices with the same

degree. Since the degree sequences of such graphs are determined completely in [4] , our

work is how to realize the graphs with such degree sequences. The results in this paper are

stated almost without rigorous proof, because these are obtained by paraphrase from the

statements concerning degree sequences in [4】.
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●

1　Preliminary

In this paper we use freely the terminology and notation concerning graphs in G.Chartrand
●

and L.Lesniak [1J. For any positive integer n and non-negative integer m with m < n, we use

the following notation:
●

[n]:-{1,2,3,�"�"�",n}, [ra,n]:-{m,?n+1,�"�"�",n}.

Let G be agraph. V(G),E(G) and n(G) are the set of vertices, the set of edges ofG and

the order of G respectively. The degree sequence d(G) of G is the non-increasing n(｣?)-sequence

of degree of vertices of G, and the maximum degree and the minimum degree of G are denoted

by A(G) and 6(G) respectively. The symbols Kn and Nn are the complete graph and the empty

graph of order n respectively, and Km n is the complete bipartite graph.

For any graph G we define the four kinds of operations p,q. z and c as follows:

p(G) - thejoin ofG andN¥

q[G) - the graph which is obtained from the disjoint union ofp(p(G)) and K2 adding the

new edge (u,v), where u the vertex ofp(p(G)) with the highest degree and v one vertex of

∬2,

z(G) - the disjoint union ofG and JVi,

c(G) - the complement ofG.
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Evidently these operations are invertible, namely, for any graphs G and H, p(G)竺p(H) if and

only ifG竺H, and the analogy holds for the operations g, z and c. For any set T of graphs, we

put p(JF) - {p(G)]G J T) and g(^), z{F) and c{T) are defined similarly.

For any graph G of order n with d(G) = {si,s2,...,Sn-i,sn} we have

(1.1)　d(p(G))-{n,sl+1,ォ2+1,...,* -!+l,sn+1}

(1.2) d(q(G))={n+2,n+Mi+2,s2+2,...,an-i+2,sn+2,2,1}

(1.3) d(z(G))= {si,82,...,sn-i,sniO}

(1.4)　d(c(G))-{n-1-5n,n-1-sn_i,...,n-1-s2,n-1-5i}.

The operations p,q, z,c for any graphs and the above relations play essential role in the subse-

quent sections.

Let G be a graph, and a,6,c,cf be four different vertices ofG such that (a,6),(c,d) ∈ E(G)

and (a,c),(6,d)卓E(G). In this case s - {(a,6),(c,d)} is called a switching of G, and the

switching operation for G is to make the graph s(G) - G - (a,6) - (c,d) +(a,c)+ (6,d). Obvi-

ously G and s(G) have the same degree sequence. The next theorem stated in [2] teach us how

to get all graphs with the same degree sequence.

Switching Theorem Let G be a graph. Then any graph H with d(H) - d(G) is obtained

by a finite sequences of switching operations for G.

Classification and Fn for n - 3,4,5,6

Let us denote by F the class of graphs which have exact three vertices with the same degree

and mutually different degree for the other vertices, and for any integer n ≧ 3 denote by Tn the

set of all graphs of order n in F. The degree sequence {ォsi,S2,�"�"�",sn} of any graph G in Tn is

given in the following form: for some k ∈ [n - 2]

(2.1) n-1≧si>$2>�"�"�">sk-1>sk=^A:+l-^A:+2>sk+3>->Sn≧0,

where sx - A(G) and sn - 6(G).

For any fixed integers s¥ and sn with n- 1 ≧ si > sri ≧ 0, rn(si,sn) be the set of graphs

G in Fn with (A(G),#(G)) - (ォsi,sn). For the sake of brevity any sequence {ォsi,S2>***->sn} -f

non-negative integers with the property (2.1) is denoted by sn(si,sn;sk). lisi -sn - n-3, then

the sequence sn(si,sn;k) for any integer k ｣ [<sn,<si] is uniquely determined by si,sn and k. In

this case, Tn(si,sn;k) is the set of graphs G with the same degree sequence d(G) - sn(s¥,sn¥k).

The next theorem is an immediate consequence of the classi五cation of degree sequences with

(2.1) noted in Lemma 1.1 in 【4】.

Theorem 2.1 For any integer n ≧ 3,Fn is partitioned into the following five subclasses:

Tn=Tn(n-1,2)UTn(n-1,1)UTn(n-2,1)uTn(n-2,0)UTn(n-3,0).　　　　D

In order to clarify inductively the structure of Fn, we begin on the graph lists of Tn for
●

n - 3,4,5,6. Theorems 2.2-2.5 follow from Lemmas 1.2-1.5 in [4] and the Graph cards given

at pp.19-24 in 【5】.

Theorem 2.2　F3 consists of two graphs as follows:
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(i) r3(2,2)= {∬3)

(2) r3(0,0) = {N3} = {c(K3)}

(3) r3(2,1) = r3(l,1) = r3(l,O) = empty.

Theorem 2.3　T4 consists of two graphs as follows:

(1) T4(3,l) - {Kl>3} = {p(N3)}

(2) T4(2,0) = {z(K3)}

(3) r4(3,2) = r4(2,l) = r4(l,0) - empty.

Theorem 2.4　Ts consists of six graphs as follows:

(1)T5(4,2) - empty

(2) T5(4,l) - {p(z(K3))}> (graph no.45 in the Graph cards)

(3) rs(3,l) = U?=ir5(3,l;*), where

l) Fs(3,1;1) - {G}, where G is the graph no.30 in the Graph cards

2) r5(3,l;2) - {H,c(H)}, where H is the graph no.36 in the Graph cards

3) r5 3,l;3)-c(r5(3,l;l))

(4) rs(3,o) - {z(iirl.)}

(5) r5(2,0) = empty.

[コ

Theorem2.5T&consistsoftwelvegraphsasfollows:

(i)r6(5,2)=p(r5(3,i)

(2)r6(5,i)-p(rs(3,o)

(3)T6(4,l)=U3k=1T6(4,l;k),where

l)^(4,1;1)-{C},whereGisthegraphno.93intheGraphcards.

2)r6(4,l;2)-{Gj'J-l,2,3,4},u;ftereGj(j-1,2,3,4)isthegraphno.118,119,120,

121intheGraphcardsrespectively.

3r6(4,l;3)-cr6(4,l;2

4)r6(4,l;4)-c(r6(4,l;l))

4　r64,o)=zr54,i

5　r6(3,o)= *(r6(3,i)).

3　Inductive construction of Tn

In this section we shall consider the inductive construction ofFn from Fm with m < n. The

folloing Lemmas 3.1- 3.4 are consequences of the results stated in the section 3 of [4】. At first

from (1.4) we get

Lemma 3.1 For any integer n ≧ 3,Fn is closed under the operation c. More precisely we

have



Koukichi Sakai

(1) c(rn(n- l,2)) = rn(n-3,0)

(2) c(rn(n- l,l)) =rn(n-2,0)

3　c(rn(n-2,l　=rn(n-2,l

(4) c(rn(n-2,1;k))-Tn(n-2,1;n- 1-fc), u;/iere jfce [n-2J.

The four classes in Tn except Tn(n - 2, 1) are constructed from the subclasses of Tn-i by

the operations p and z. The next is concluded from (1.1) and (1.3).

Lemma 3.2　For any integern > 4; we have

1 Tn(n-l,2)=Krォーi(n-3,l))

(2) rB(n- l,l) =p(rB_i(n-3,0))uKrサ_An-4,0))

(3) TJn-2,0) - z(rn_i(サー2,l))uz(Tn_i(n-2,2))

(4) rB(n-3,0) =ォ(rn_1(n-3,l)).

Let us consider the subclaS TJn - 2,1). The next,lemma is an immediate consequence
from Theorem 2.ll in

Lemma 3.3　For any positive integer m, we have:

(1) r4m-i(4ra-3,1) and r4m(4m- 2,1) are empty

(2) F4m.fi(4ra - 1, 1) and r4m+2(4ra, 1) are partitioned into the following subclasses:

1) r4m+i(4m- 1,1) - U|�"mr4m+i(4m- 1,1;k)

2) r4m+2(4m,l) = u^+T4m+2(4m,l;fc).

Let G bein Tn-4(n-6,1;k-2). Then d(q(G)) = sn(n-2,1;Ar) from (1.2). Hence by the

operation q for Tn-ア(n - 6,1) we get some subclasses of Tn(n - 2, 1).

Lemma 3.4　Letm beanyintegerwithm> 1. Thenforn-Am+1 andn-Am+2 we

have

?(rn_4(n-6,l)) ⊂ rn(n-2,l)

More precisely we have

(1) g(r4m-3(4m-5,1;k-2))Cr4m+i(4m-1,1;k)forany k｣ [m+1,3m-1]

(2) g(r4m-2(4m-4,l;fc-2)) ⊂ r4m+2(4m,1;k)for anyk ∈ 【m+ 1,3m].

A graph in Tn(n-2, l; fc) is called a representative of Tn(n-2, 1; A:), a representative system

R(Tn(n - 2,1)) of Tn(n - 2,1) is the collection of each representative of Tn(n - 2,1;k) for all

k ∈ ln - 2】 Let n - Am+ 1. By virtue ofLemma 3.4 we can get inductively a representative

of Tn(n-2,1;k) for any k ∈ 【m-fl,3m- 1】 Since rn(n-2,1;3m) - c(TJn-2,l;m)),it

remains to give a representative of Tn(n - 2,l;m). The next Lemma is due to the I-procedu柁

stated in 【2, p.119】.

Lemma 3.5　For any positive integer m, the following graph G4m+i(m)[resp.G4m+2(�">)]

is a representative of r4m+i(4ra - 1, 1; m)[resp.T4m+2(^rn^ 1; m)]:
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(1) G=G4m+1(m)

V(G) = 【4ra+ 1】,

= ｣i U E2 consists of Am2 edges (j,k) given in the form:

Ei-{(j,k);j∈【ml,k∈【j+l,4m+1-j]}　and

E2-{(j,k);j∈【m+1,2m],k∈[j+l,4m-j]∪{2m+l+j}}.

(2) G - G4m+2(m)

V(G) = 【Am+2】,

E(G) - Ei U E2 consists of 4mr +2m edges (j>k) given in the form:

Ei-{(j,k)鳥∈【m],k∈【j+1,4m+2-j]}　and

E2-{(j,k);j｣[m+1,2m],*牀[j+1,4m+1-j]U{2m+2+j}}.

From the above lemmas and the switching theorem, Fn is inductively constructed from F^

with m<n.

Theorem 3.6　For any integer n > 3, we have:

(1) rn(n- l,2) =p(rn-i(n-3,l))

(2) TJn- 1,1) -p(rサーi(n-3,0))Up{Tn^(n-4,0))

(3) Tn(n-2,1) is emptyforn-0,3 (mod4)

(4) for n - 4m+ 1 andn - Am+2,ra > 1, a representative system R(Tn(n- 2,1)) is given

by

R(Tn(n - 2,1)) - q(R(Tn.4(n - 6,1))U {Gn(m),c(Gn(m)},

where Gn(m) is the graph given in Lemma 3.5

(5) forn -Am+1 andn - Am+2,m > 1,Tn(n-2,1) is thesetofallgraphs obtainedby the

J伽ite sequences of switching operations for any graphs in R(Tn(n - 2, 1))

(6) TJn-2,0) =z(Tn-1(n-2,1))∪2(rn_i(n-2,2))

7　rn(n-3,0)-z(rB_!(n-3,l)).

By virtue of Theorem 3.6 we get a characterization of the class T by the operations p, g, c

and switchings.

Theorem 3.7　The class T is the smallest class of graphs among any classes A of graphs

with the properties (l)-(6) :

(1) A does not contain any gmphs G with n(G) < 3

(2) A is closed under the operation c

(3) p(G) ∈AforanygraphG∈ A with △(G) ≦ n(G)-2

(4) q[G) ands(G) belong toAfor anygraphG ∈ A with△(G) -n(G)-2 andS(G) - 1, and

for any switching s ofG

(5) the graphs Gn(m)forn -Am+1,Am+2,m ≧ 2, given in Lemma 3,5, belong toA

(6) A"3,T5(3,1;1),r5(3,1;2),T6(4,1;1) and T6(4,1;2) are contained in A.
□
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4　Estimation of cardinal number of Fn

In this section we shall give a lower estimation of the cardinal number Tn of Fn. For any

integer n ≧ 3, let an,bnjcn,dn and en be the cardinal number of Tn(n- l,2),rn(n-1, l),rn(n-

2,l),rn(n - 2,0) and Tn(n - 3,0) respectively. From Theorems 2.2-2.5 and 3.6 we have:

cn-Oforanyn=0,3(mod4),C5=4andc6- 10,

<%=en =cn-i,

bn-dn-6n-i+cn_2and64-65-b6-1.

From the above relations Tn is expressed only in terms of c& as follows:

n-1

Tn=cn+2∑cit+2.
k=3

More precisely we have

Theorem 4.1 For any integerm ≧ 3, we have:

(0) T3-T4-2,T5=6,T6=20,7V-T8=30

(1) r9=c9+30,TIO-clO+2c9+30

(2) T4m-i - T4m - 2∑r=~2 (c4k+i + c4k+2)+ 30

(3) T4m+i - c4m+i + 2∑｣="2 (C4fc+1 + C4fc+2) + 30

(4) T4m+2 - c4m+2 + 2c4m+i + 2∑fcTj> (c4*+i + c4fc+2) + 30. ⊂]

For any positive integer m, let gm(k) and hm(k) be the cardinal number of r4m+i(4ra +

1, 1; A;) and F4m+2(4m, l; fc) respectively. Then from Theorems 2.4-2.5 we have

oi(l)=oi(3 =l,oi(2)=2,

Ml)=M4)=l,M2)-M3)-4.

Let G = G4m+i(4ra - 1,1;m) be the graph given in Lemma 3.5. Then we see that the

graphs obtained by the following switching operations sj^ and sm+jfk for G are mutually non-
●

isomorphic:

sj,k - {(4m+ l,2m),(j,fc)}, wherej ∈ 【ra],fc ∈ 【2ra+ 1,3m+11U【3m+3,4m+ 1-j],

sm+j,k - {(4m+1,2m),(m+j,A:)}, wherej ∈ 【m-1】,k ∈ 【2m+l,3m-i]∪{3m+j+l}.

The number of the above switchings is equal to 2m2 - 1. So from the switching theorem we

have gm(�">) ≧ 2m2. Similarly for a representative G of r4m+i(4ra - 1, 1;k) or r4m+2(4ra, 1; k),

counting the number of the switching operations for G which induce mutually non-isomorphic

graphs, we get a lower estimations for gm(k) and hm{k) as follows.

Theorem 4.2　For any integerm ≧ 2, we have:

9m(k) -gm{^rn-k) ≧

2m2　　　　for k-m

8m2-6ra for kG[m+1,2m-1]

8m2-6m+1 for k=2m,
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hm(k)-hmUm+1-k)≧
〈
2ml for k-m

8m2-2ra-1 for kG[m+1,2raJ.

Consequently we have

c4m+1 - ∑3k望m9m(k) ≧ 16m3 - 16m2 +6m+ 1,

C4m+2 = ∑3k霊hm(k) > 16m3-2m.

Combining with Theorems 4.1 and 4.2 we get a lower estimation of Tn.

Theorem 4.3　For any integerm > 3, we have

o r9≧107and Tw≧198

(1) T4m_　rpAm ≧∑^T21(32m3-16m2+4m+1)+30

(2) T4m+i > 16m3- 16m2+6m+2∑r=t(32m3 - 16m2+4m+ 1)+31

(3) T,4m+2 ≧ 48m3 -32m2 + 10m+2∑T=2T(32m3 - 16m2 +4m+ 1)+32.

0ur final goal is to express exactly Tn by means of n, but this is unsolved.

⊂コ
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