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Abstract

We study shapes of curvilinear triangles of the Apollonian packing in the Eu-
clidean plane. For this purpose we introduce an appropriate dynamical system.
By simulating this dynamical system numerically, we find that a fractal attractor
appears and that this attractor has almost the same shape as that of the original
packing. We give a mathematical justification for this finding with recourse to some
properties of Mobius transformations.

Key words: Apollonian packing, Fractal attractor, Mdbius transformation.

1 Introduction

Let us consider three circles which contact each other and a curvilinear triangle whose
sides are made of these circles. Inside the curvilinear triangle, we inscribe an open disk
which touches all of these circles. Then we have three new curvilinear triangles. Re-
peating this procedure indefinitely, we obtain the well-known Apollonian packing of disks
(Figure 1). The Apollonian packing has a long history of investigation and nowadays
many aspects of it have been revealed (see, e.g. [1], [2], [3], and [4]).

In this paper we propose a new type of problem about the Apollonian packing and
solve it. We are concerned with ”"shape” of the packing, neglecting ”size” of it. To state
more clearly, we are concerned with shapes of curvilinear triangles which are made in
the process of the disk packing. Our study is motivated by investigations on sequences
of the pedal triangles of a triangle. It is known that these sequences enjoy the ergodic
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property (cf. [5], [6]). Namely, beginning from ”almost” any triangle, its pedal triangles
may have ”almost” all shapes. Returning to the Apollonian packing, we ask what shapes
the curvilinear triangles may have 7

In order to study this problem, we first carry out a numerical simulation, which
displays an emergence of a fractal structure as an attractor of a dynamical system induced
by the Apollonian packing. To our surprise, the displayed attractor has ”almost” the same
shape as that of the original packing. To explain a meaning of this phenomenon briefly,
curvilinear triangles of the Apollonian packing may have only exceptional shapes, and
the probability that a curvilinear triangle with such an exceptional shape is formed at
random is precisely equal to the measure of the residual set in the Apollonian packing,
i.e., equal to zero. Our purpose in this paper is to give a precise formulation for the above
loose statement and prove it.

2 Formulation of our problem

Let T' be a curvilinear triangle of which three sides have curvatures (i.e., inverses
of radii) a, 8 and . As we concentrate our attention on its shape , not on its size, we
introduce a triple of three non-negative real numbers (z,y, z) where

Q B Jé; a

r = = ,and 2 = ———— .
atpr7Y " atfiq at Bt

Let M be an equilateral triangle. Then, as z+y+ 2z = 1, a triple (z,y, z) can be regarded
as barycentric coordinate of a point in M. Thus the shape of a curvilinear triangle T' can
be represented by a point in M.

Now we pack an open disk D into T" so that it may contact all of three sides of T.
Then we get three new curvilinear triangles 71,75 and T3. As is well-known (c¢f. p.15 of
[7]), the curvature ¢ of D is given by

c=a+p+v+2/af+ Pyt ya.

Accordingly, the shapes of T; (i = 1,2,3) are represented by coordinates (z;,y:, z:) (1 =
1,2,3), where

(zL,y621) = (a+g+’y’ a+g+7’ U—I-g+7) ’
(22,90, 22) = (G557 avom7 atery) >

(9337'y3> 23) = (a+g+o" (H_J[BH_O-) a+g+g’) :
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At present we introduce three maps fi, fo and f3 from M to M by

; , _ 142t y
fi(z,y,2) = (1+y+2+2t’ T+y+z+2t° 1+«y:z+2t) ’
_ 14-2t
(1) fz(.’L’,y, Z) - 1+z—+c—vx+2t7 1+4+z+2+2t° 1+zfx+2t) ?
_ Yy 142t
fa(z,y,2) = (1+zfy+2t’ I4z4y+2t° l+m+y+2t) ’

where t = /2y + yz+ zz. We can express the shapes (z;,y;,2;) of T; as (x4, yi,2) =
fi(xaywz) (7’ = 17273)

- Returning to the Apollonian packing, as a result of infinite repetitions of the disk
packing process, we get a family of curvilinear triangles. The shapes of these curvilinear
triangles can be represented by iterated images of an initial point (z,y, 2) by f; (: = 1,2, 3),

Jin o T fir (2,9, 2)

So we are faced with a dynamical system on M induced by three maps f1, fo and fs.

Now we can state our problem precisely: what kind of attractor A does this dynam-
ical system have 7, that is, what is the shape of A 7 Here a word ”attractor” means, for
a given (z,y, 2), the set of all limit points of appropriate subsequences of iterated images
fin o+ finfi,(z,y,2) as n tends to the infinity.

At this point we perform a numerical simulation to display the attractor A (Figure
2). In this figure we can see a remarkable structure, which, roughly speaking, is the same
as the original Apollonian packing. The attractor A seems to consist of a family of closed
curves and their limit points although these closed curves are not circles (with only the
incircle of M being an exception). |

3 Main result

In this section we investigate the structure of the attractor A closely. For this purpose
we introduce one more map, which will turn to be a key tool to study the problem.
Suppose that the side of an equilateral triangle M has the unit length and the centroid
of M lies at the origin of the Euclidean plane. Consider a curvilinear triangle 7 which
is defined by three circles IC; (1 = 1,2,3) with center at K; and with equal radius a =
(2 4+ /3)/2 (Figure 3), where

2a a a
K1 = (0,_ﬁ> ,K2 = (a, %> y and Kg = (—a, %> .
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Note that a curvilinear triangle 7 circumscribes M. Now we introduce a real-valued
function ¢ of a variable R,

R
(2) pzé(R): 1+m'
And define a map ® from M to 7 by
) @ =000Y) = (. 50) = (FHR), W)

where both (X,Y) and (£,7) have to be understood as Cartesian coordinates and R =
vV X? 4+ Y?2. Then we can easily verify the following lemma.

Lemma 1 The map ¢ is a homeomorphism from M to T.

Now we define three transformations g; (i = 1,2,3) in 7 by ¢g; = ® o fio ®~1. The
next lemma shows that g;’s are geometrically much simpler than f;’s. To state the lemma,
we introduce three circles £; (¢ = 1,2,3) with center L; and radius a, where

\/_3_ 1 \/§ 1
Ly =(0,b), Ly = <———2——b, —5b ), and Ly = (b= —5b]

with b = 3—%@& Furthermore, we introduce three lines I; (: = 1,2,3): a line [; which
passes through two points K, and K3, a line l; which passes through points K3 and Kj,
and a line l3 which passes through points K; and Kj.

Lemma 2 Fveryg; (1 = 1,2,3) is a Mobius transformation which is the composition
of an tnversion with respect to circle L; and a reflection with respect to axis l;, with the
tnverston being performed first and the reflection next.

Proof We prove the lemma only for g1, for the assertion for g, and g3 can be
established in similar ways. Consider a point P in M with barycentric coordinate (z,vy, 2),
and denote its Cartesian coordinate by (X,Y’). Since the three vertices of an equilateral
triangle M have Cartesian coordinates (0, —‘3@)7 (-3, — ¥3) and (3, —%), we have

X =3(z-y)
@ {Y =¥3 (2 —y—2).

6

&7

To put R = v/ X? 4 Y2, it can be easily checked that
1
Yy +yz+ 2z = g——RQ .

Now we consider an image P, of P by the map fi, and suppose that it has a barycen-
tric coordinate (z1,¥1,21) and a Cartesian coordinate (Xi,Y7). Then, using (1) and (4),
we can deduce

X — 3X
1 5—2v3Y +2v3V1-3R2

©) B
v, — 2Y3 1y 12y1-3R2
L 7 522V3Y+2V3V1-3R2
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We put Ry = /X2 + Y and p; = ¢(Ry). Then (5) yields
m_ 2v/3 —6Y +3v/1 — 3R2
Y5 —2v3Y +2V3V1 - 3R’

which in turn, being substituted into (2), gives

2 : 5 —2v3Y + 231 — 3R?

R, (54 2v3) — (6 +2v3)Y + (3 + 2v/3)v/1 —3R?

Furthermore, from (2), we can deduce

(6)

2

2ap a® —3p
7 R=—"% andvi—3Re=2"2F
) a? + 3p? o a? + 3p?

Now let @ and @; be images of P and P, by ® respectively, and suppose that they have
Cartesian coordinates (£,n) and (£1,71) respectively. Then, combining (3), (5), (6), and
(7), we obtain

2
P1 a’§

8 ==X = 0.
@ RN T ET
Similarly

p1 2a a®(n —b)
9 m=—Y1=—4=—|5—7>5+b] .
©) TR [§2+(77—b)2
Therefore both the expression (8) and (9) establish the assertion of the lemma . a

Let C be the incircle of M, and let us define a family of closed curves

C’i1’i2~~~in = fin v fizfil (C)

forn=1,2,...and 4y,1s, - -- € {1,2,3}. A direct calculation shows that all C; (i = 1, 2, 3)
are ellipses, but for n > 2, closed curves Cj,;,..4, are so complicated that they seem to
be intractable. Thus, instead of Cj4,...;,, We Will consider their images by the map @,
Ciyigi, = P(Ciyini,). Then it can be easily verified that C = ®(C) = C. Moreover, by
the definition of g;’s, we have

Civigwin = Qo (fin - finfi) (C)
= (gin te g'izg‘il) o (I)(C)
= (Gin- " 9i29) o C .

Consequently, since any Mobius transformation transforms circles into circles with some
obvious exceptions, all closed curves Cj,,...i, are really circles.
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Now let us consider the closure of

[ee]

U U C.m-z...in

n=0 'iliny"’v'ine{l:Q)S}
and denote it by A. Here we adopt a convention that C;,,,..;, indicates C if the length of
indices n equals zero. Following Chapter 18 of [1], we call A an Apollonian gasket. Let

Diyiy..i, be the interior of circle Cy ..., and define open curvilinear triangles

Tivigoin = Gin - 9290 T°

where 7° means the interior of 7 and the above convention is again adopted. Now we

can show the following fact.

Lemma 3

(a)
. 3
ﬂliz..~in - zlzz in (U 1149+ ’Lnj>

and all pairs among D;,i,...i,, and Tiy4y..q,5 (7 = 1,2,3) are disjoint.

(b)

n=0 iy ig,,in€{1,2,3}

A — T\ (G U D’i1i2"'in)

(c) Circles Ciyiy..i,, contact with the circle C if and only if no iy for k =1,2,...,n—1
coincides with iy, that is, i, N {i1,%2, ..., in_1} = 0.

Proof Since the initial curvilinear triangle consists of the open disk D and three
curvilinear triangles 7; (1 = 1,2, 3), iterated applications of g;’s establish the assertion (a)
immediately.

Now we put

=T\ (U U ’Dil,iz,...,in> .
n=04iyig-in€{1,2,3}

Since it is obvious that all Cj,..., C A’ and A’ is closed, we have A C A’. To prove
the converse, consider any point ¢ which belongs to A’. Since @ is not contained in any
disk D;y4,...,, With the aid of (a), we may choose a sequence {i, : n = ..} such that
Q € Tiy,.i,- Since diameters of 7;,,..4, tend to zero as n tends to the mﬁnlty, we see
that @ belongs to a limit set of

C'i; U Ci1'i2 U C'irizie, U
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So that the assertion (b) is confirmed.

Finally we will prove (c) only for case that the last index 7, equals 1. For that case it
suffices to show that C;,...;,, contact with the circle Ky if and only if all iy (k= 1,2,...,n)
equals either 2 or 3, because C = g; (K1). We prove ”if’ part by the induction on
n. Suppose the assertion is true for n — 1, that is, suppose that every C;,..;,_, With
ir (k=1,2,...,n —1) being equal to either 2 or 3 contact with ;. Then, since K is
invariant under both go and gs, both Cs,4y...i,_,2 and Cijsy...i,,_,3 also contact with KCy. Thus
the ”if” part is shown.

Now we will prove ”only if” part of (c). To suppose the contrary, we may assume that
there exists a circle D; j,..;, With some 7 being equal to 1 contacts with KCy. Then, since
Diyigei, C T, we have

3
DLI'LQLn - ,‘Z’]ik+1..,'in C U 7;_] .
J=1
Thus the circle D;, 4.4, never contacts with Xy, which completes the proof of the lemma.
O

Now we synthesize the previous lemmas to obtain the following theorem.

Theorem 1 The attractor A coincides with the image of the Apollonian gasket A
by the inverse @1 namely, A= 01 (A).

Proof First we show A C ®~1(A). Assuming the contrary, we consider a sequence
of points {P, : n =1,2,...} such that every P, is an iterated image of a point Py by fi’s
and it converges to a point P outside ®~1(A). Transforming these points by ®, we have a
sequence of points {@, : m = 1,2,...} such that every @, is an iterated image of a point
Qo by ¢i’s and it converges to a point @) outside A. Since the point @ lies outside A, by
the property (b) of Lemma 3, it lies in a certain open disk D;,4,...;,. Thus, for sufficiently
large n, all @, lie in the same disk. On the other hand, these points belong to curvilinear
triangles which are made by more than n iterated applications of g;’s. This contradicts
to the property (a) of Lemma 3. Thus we have A C ®~1(A).

Next we show A D ®~!(A). Since the attractor A is closed, it suffices to show that
AD Oiliz---i-n
prove that A D C, or equivalently, ®(A) D C. Now the property (c) of Lemma 3 tells that
the circle C is surrounded by an infinitely many circles C;4,..5,. Moreover it is obvious

for all Cj,4y...i,- Moreover, since A is invariant under f;’s, it is sufficient to

that diameters of these circles tend to zero as n tends to the infinity. So that any point
on C can be a limit point of these surrounding circles. Thus we have completed the proof
of the theorem. a
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