Shape of the Apol I oni an Packing in the Eucl i dean Pl ane

著者	I SOKAWA Yuki nao，SAKAI Kouki chi
j ournal or publ i cat i on titl e	鹿児島大学理学部紀要＝Reports of the Faculty of Sci ence，Kagoshi ma Uni ver si ty
vol une	31
page range	$9-17$
URL	ht $\mathrm{p}: / /$ hdl ．handl e．net $/ 10232 / 00006976$

Shape of the Apollonian Packing in the Euclidean Plane

Yukinao Isokawa* and Koukichi SAKAI ${ }^{\dagger}$

(Received August 31, 1998)

Abstract

We study shapes of curvilinear triangles of the Apollonian packing in the Euclidean plane. For this purpose we introduce an appropriate dynamical system. By simulating this dynamical system numerically, we find that a fractal attractor appears and that this attractor has almost the same shape as that of the original packing. We give a mathematical justification for this finding with recourse to some properties of Möbius transformations.

Key words: Apollonian packing, Fractal attractor, Möbius transformation.

1 Introduction

Let us consider three circles which contact each other and a curvilinear triangle whose sides are made of these circles. Inside the curvilinear triangle, we inscribe an open disk which touches all of these circles. Then we have three new curvilinear triangles. Repeating this procedure indefinitely, we obtain the well-known Apollonian packing of disks (Figure 1). The Apollonian packing has a long history of investigation and nowadays many aspects of it have been revealed (see, e.g. [1], [2], [3], and [4]).

In this paper we propose a new type of problem about the Apollonian packing and solve it. We are concerned with "shape" of the packing, neglecting "size" of it. To state more clearly, we are concerned with shapes of curvilinear triangles which are made in the process of the disk packing. Our study is motivated by investigations on sequences of the pedal triangles of a triangle. It is known that these sequences enjoy the ergodic

[^0]property (cf. [5], [6]). Namely, beginning from "almost" any triangle, its pedal triangles may have "almost" all shapes. Returning to the Apollonian packing, we ask what shapes the curvilinear triangles may have?

In order to study this problem, we first carry out a numerical simulation, which displays an emergence of a fractal structure as an attractor of a dynamical system induced by the Apollonian packing. To our surprise, the displayed attractor has "almost" the same shape as that of the original packing. To explain a meaning of this phenomenon briefly, curvilinear triangles of the Apollonian packing may have only exceptional shapes, and the probability that a curvilinear triangle with such an exceptional shape is formed at random is precisely equal to the measure of the residual set in the Apollonian packing, i.e., equal to zero. Our purpose in this paper is to give a precise formulation for the above loose statement and prove it.

2 Formulation of our problem

Let T be a curvilinear triangle of which three sides have curvatures (i.e., inverses of radii) α, β and γ. As we concentrate our attention on its shape, not on its size, we introduce a triple of three non-negative real numbers (x, y, z) where

$$
x=\frac{\alpha}{\alpha+\beta+\gamma}, y=\frac{\beta}{\alpha+\beta+\gamma}, \text { and } z=\frac{\alpha}{\alpha+\beta+\gamma} .
$$

Let M be an equilateral triangle. Then, as $x+y+z=1$, a triple (x, y, z) can be regarded as barycentric coordinate of a point in M. Thus the shape of a curvilinear triangle T can be represented by a point in M.

Now we pack an open disk D into T so that it may contact all of three sides of T. Then we get three new curvilinear triangles T_{1}, T_{2} and T_{3}. As is well-known (cf. p. 15 of [7]), the curvature σ of D is given by

$$
\sigma=\alpha+\beta+\gamma+2 \sqrt{\alpha \beta+\beta \gamma+\gamma \alpha}
$$

Accordingly, the shapes of $T_{i}(i=1,2,3)$ are represented by coordinates $\left(x_{i}, y_{i}, z_{i}\right)(i=$ $1,2,3)$, where

$$
\left\{\begin{array}{l}
\left(x_{1}, y_{1}, z_{1}\right)=\left(\frac{\sigma}{\sigma+\beta+\gamma}, \frac{\beta}{\sigma+\beta+\gamma}, \frac{\gamma}{\sigma+\beta+\gamma}\right) \\
\left(x_{2}, y_{2}, z_{2}\right)=\left(\frac{\alpha}{\alpha+\sigma+\gamma}, \frac{\sigma}{\alpha+\sigma+\gamma}, \frac{\gamma}{\alpha+\sigma+\gamma}\right) \\
\left(x_{3}, y_{3}, z_{3}\right)=\left(\frac{\alpha}{\alpha+\beta+\sigma}, \frac{\beta}{\alpha+\beta+\sigma}, \frac{\sigma}{\alpha+\beta+\sigma}\right)
\end{array}\right.
$$

At present we introduce three maps f_{1}, f_{2} and f_{3} from M to M by

$$
\left\{\begin{array}{l}
f_{1}(x, y, z)=\left(\frac{1+2 t}{1+y+2 t 2 t}, \frac{y}{1+y+z+2 t}, \frac{z}{1+y+z+2 t}\right) \tag{1}\\
f_{2}(x, y, z)=\left(\frac{x}{1+z+x+2 t}, \frac{1+2 t}{1+z+x+2 t}, \frac{z}{1+z+x+2 t}\right) \\
f_{3}(x, y, z)=\left(\frac{x}{1+x+y+2 t}, \frac{y}{1+x+y+2 t}, \frac{1+2 t}{1+x+y+2 t}\right)
\end{array}\right.
$$

where $t=\sqrt{x y+y z+z x}$. We can express the shapes $\left(x_{i}, y_{i}, z_{i}\right)$ of T_{i} as $\left(x_{i}, y_{i}, z_{i}\right)=$ $f_{i}(x, y, z)(i=1,2,3)$.

Returning to the Apollonian packing, as a result of infinite repetitions of the disk packing process, we get a family of curvilinear triangles. The shapes of these curvilinear triangles can be represented by iterated images of an initial point (x, y, z) by $f_{i}(i=1,2,3)$,

$$
f_{i_{n}} \cdots f_{i_{2}} f_{i_{1}}(x, y, z) .
$$

So we are faced with a dynamical system on M induced by three maps f_{1}, f_{2} and f_{3}.

Now we can state our problem precisely: what kind of attractor A does this dynamical system have?, that is, what is the shape of A ? Here a word "attractor" means, for a given (x, y, z), the set of all limit points of appropriate subsequences of iterated images $f_{i_{n}} \cdots f_{i_{2}} f_{i_{1}}(x, y, z)$ as n tends to the infinity.

At this point we perform a numerical simulation to display the attractor A (Figure 2). In this figure we can see a remarkable structure, which, roughly speaking, is the same as the original Apollonian packing. The attractor A seems to consist of a family of closed curves and their limit points although these closed curves are not circles (with only the incircle of M being an exception).

3 Main result

In this section we investigate the structure of the attractor A closely. For this purpose we introduce one more map, which will turn to be a key tool to study the problem. Suppose that the side of an equilateral triangle M has the unit length and the centroid of M lies at the origin of the Euclidean plane. Consider a curvilinear triangle \mathcal{T} which is defined by three circles $\mathcal{K}_{i}(i=1,2,3)$ with center at K_{i} and with equal radius $a=$ $(2+\sqrt{3}) / 2$ (Figure 3), where

$$
K_{1}=\left(0,-\frac{2 a}{\sqrt{3}}\right), K_{2}=\left(a, \frac{a}{\sqrt{3}}\right), \text { and } K_{3}=\left(-a, \frac{a}{\sqrt{3}}\right) .
$$

Note that a curvilinear triangle \mathcal{T} circumscribes M. Now we introduce a real-valued function ϕ of a variable R,

$$
\begin{equation*}
\rho=\phi(R)=a \cdot \frac{R}{1+\sqrt{1-3 R^{2}}} . \tag{2}
\end{equation*}
$$

And define a map Φ from M to \mathcal{T} by

$$
\begin{equation*}
(\xi, \eta)=\Phi(X, Y)=\left(\frac{X}{R} \rho, \frac{X}{R} \rho\right)=\left(\frac{X}{R} \phi(R), \frac{X}{R} \phi(R)\right) \tag{3}
\end{equation*}
$$

where both (X, Y) and (ξ, η) have to be understood as Cartesian coordinates and $R=$ $\sqrt{X^{2}+Y^{2}}$. Then we can easily verify the following lemma.

Lemma 1 The map Φ is a homeomorphism from M to \mathcal{T}.
Now we define three transformations $g_{i}(i=1,2,3)$ in \mathcal{T} by $g_{i}=\Phi \circ f_{i} \circ \Phi^{-1}$. The next lemma shows that g_{i} 's are geometrically much simpler than f_{i} 's. To state the lemma, we introduce three circles $\mathcal{L}_{i}(i=1,2,3)$ with center L_{i} and radius a, where

$$
L_{1}=(0, b), L_{2}=\left(-\frac{\sqrt{3}}{2} b,-\frac{1}{2} b\right), \text { and } L_{3}=\left(\frac{\sqrt{3}}{2} b,--\frac{1}{2} b\right)
$$

with $b=\frac{3+\sqrt{3}}{3} a$. Furthermore, we introduce three lines $l_{i}(i=1,2,3)$: a line l_{1} which passes through two points K_{2} and K_{3}, a line l_{2} which passes through points K_{3} and K_{1}, and a line l_{3} which passes through points K_{1} and K_{2}.

Lemma 2 Every $g_{i}(i=1,2,3)$ is a Möbius transformation which is the composition of an inversion with respect to circle \mathcal{L}_{i} and a reflection with respect to axis l_{i}, with the inversion being performed first and the reflection next.

Proof We prove the lemma only for g_{1}, for the assertion for g_{2} and g_{3} can be established in similar ways. Consider a point P in M with barycentric coordinate (x, y, z), and denote its Cartesian coordinate by (X, Y). Since the three vertices of an equilateral triangle M have Cartesian coordinates $\left(0, \frac{\sqrt{3}}{3}\right),\left(-\frac{1}{2},-\frac{\sqrt{3}}{6}\right)$ and $\left(\frac{1}{2},-\frac{\sqrt{3}}{6}\right)$, we have

$$
\left\{\begin{align*}
X & =\frac{1}{2}(z-y) \tag{4}\\
Y & =\frac{\sqrt{3}}{6}(2 x-y-z)
\end{align*}\right.
$$

To put $R=\sqrt{X^{2}+Y^{2}}$, it can be easily checked that

$$
x y+y z+z x=\frac{1}{3}-R^{2} .
$$

Now we consider an image P_{1} of P by the map f_{1}, and suppose that it has a barycentric coordinate (x_{1}, y_{1}, z_{1}) and a Cartesian coordinate (X_{1}, Y_{1}). Then, using (1) and (4), we can deduce

$$
\left\{\begin{array}{l}
X_{1}=\frac{3 X}{5-2 \sqrt{3} Y+2 \sqrt{3} \sqrt{1-3 R^{2}}} \tag{5}\\
Y_{1}=\frac{2 \sqrt{3}}{3} Y+2 \sqrt{1-3 R^{2}} \\
5-2 \sqrt{3} Y+2 \sqrt{3} \sqrt{1-3 R^{2}}
\end{array}\right.
$$

We put $R_{1}=\sqrt{X_{1}^{2}+Y_{1}^{2}}$ and $\rho_{1}=\phi\left(R_{1}\right)$. Then (5) yields

$$
\sqrt{1-3 R_{1}^{2}}=\frac{2 \sqrt{3}-6 Y+3 \sqrt{1-3 R^{2}}}{5-2 \sqrt{3} Y+2 \sqrt{3} \sqrt{1-3 R^{2}}}
$$

which in turn, being substituted into (2), gives

$$
\begin{equation*}
\frac{\rho_{1}}{R_{1}}=a \cdot \frac{5-2 \sqrt{3} Y+2 \sqrt{3} \sqrt{1-3 R^{2}}}{(5+2 \sqrt{3})-(6+2 \sqrt{3}) Y+(3+2 \sqrt{3}) \sqrt{1-3 R^{2}}} . \tag{6}
\end{equation*}
$$

Furthermore, from (2), we can deduce

$$
\begin{equation*}
R=\frac{2 a \rho}{a^{2}+3 \rho^{2}} \text { and } \sqrt{1-3 R^{2}}=\frac{a^{2}-3 \rho^{2}}{a^{2}+3 \rho^{2}} . \tag{7}
\end{equation*}
$$

Now let Q and Q_{1} be images of P and P_{1} by Φ respectively, and suppose that they have Cartesian coordinates (ξ, η) and (ξ_{1}, η_{1}) respectively. Then, combining (3), (5), (6), and (7), we obtain

$$
\begin{equation*}
\xi_{1}=\frac{\rho_{1}}{R_{1}} X_{1}=\frac{a^{2} \xi}{\xi^{2}+(\eta-b)^{2}} \tag{8}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\eta_{1}=\frac{\rho_{1}}{R_{1}} Y_{1}=\frac{2 a}{\sqrt{3}}-\left[\frac{a^{2}(\eta-b)}{\xi^{2}+(\eta-b)^{2}}+b\right] \tag{9}
\end{equation*}
$$

Therefore both the expression (8) and (9) establish the assertion of the lemma .
Let C be the incircle of M, and let us define a family of closed curves

$$
C_{i_{1} i_{2} \cdots i_{n}}=f_{i_{n}} \cdots f_{i_{2}} f_{i_{1}}(C)
$$

for $n=1,2, \ldots$ and $i_{1}, i_{2}, \cdots \in\{1,2,3\}$. A direct calculation shows that all $C_{i}(i=1,2,3)$ are ellipses, but for $n \geq 2$, closed curves $C_{i_{1} i_{2} \cdots i_{n}}$ are so complicated that they seem to be intractable. Thus, instead of $C_{i_{1} i_{2} \cdots i_{n}}$, we will consider their images by the map Φ, $\mathcal{C}_{i_{1} i_{2} \cdots i_{n}}=\Phi\left(C_{i_{1} i_{2} \cdots i_{n}}\right)$. Then it can be easily verified that $\mathcal{C}=\Phi(C)=C$. Moreover, by the definition of g_{i} 's, we have

$$
\begin{aligned}
\mathcal{C}_{i_{1} i_{2} \cdots i_{n}} & =\Phi \circ\left(f_{i_{n}} \cdots f_{i_{2}} f_{i_{1}}\right)(C) \\
& =\left(g_{i_{n}} \cdots g_{i_{2}} g_{i_{1}}\right) \circ \Phi(C) \\
& =\left(g_{i_{n}} \cdots g_{i_{2}} g_{i_{1}}\right) \circ \mathcal{C} .
\end{aligned}
$$

Consequently, since any Möbius transformation transforms circles into circles with some obvious exceptions, all closed curves $\mathcal{C}_{i_{1} i_{2} \cdots i_{n}}$ are really circles.

Now let us consider the closure of

$$
\bigcup_{n=0}^{\infty} \bigcup_{i_{1}, i_{2}, \cdots, i_{n} \in\{1,2,3\}} \mathcal{C}_{i_{1} i_{2} \cdots i_{n}}
$$

and denote it by \mathcal{A}. Here we adopt a convention that $\mathcal{C}_{i_{1} i_{2} \cdots i_{n}}$ indicates \mathcal{C} if the length of indices n equals zero. Following Chapter 18 of [1], we call \mathcal{A} an Apollonian gasket. Let $\mathcal{D}_{i_{1} i_{2} \cdots i_{n}}$ be the interior of circle $\mathcal{C}_{i_{1} i_{2} \cdots i_{n}}$ and define open curvilinear triangles

$$
\mathcal{T}_{i_{1} i_{2} \cdots i_{n}}=g_{i_{n}} \cdots g_{i_{2}} g_{i_{1}} \mathcal{T}^{o}
$$

where \mathcal{T}^{o} means the interior of \mathcal{T} and the above convention is again adopted. Now we can show the following fact.

Lemma 3

(a)

$$
\overline{\mathcal{T}_{i_{1} i_{2} \cdots i_{n}}}=\mathcal{D}_{i_{1} i_{2} \cdots i_{n}} \cup\left(\bigcup_{j=1}^{3} \overline{\mathcal{T}_{i_{1} i_{2} \cdots i_{n j} j}}\right)
$$

and all pairs among $\mathcal{D}_{i_{1} i_{2} \cdots i_{n}}$ and $\mathcal{T}_{i_{1} i_{2} \cdots i_{n} j}(j=1,2,3)$ are disjoint.
(b)

$$
\mathcal{A}=\mathcal{T} \backslash\left(\bigcup_{n=0}^{\infty} \bigcup_{i_{1}, i_{2}, \cdots, i_{n} \in\{1,2,3\}} \mathcal{D}_{i_{1} i_{2} \cdots i_{n}}\right)
$$

(c) Circles $\mathcal{C}_{i_{1} i_{2} \cdots i_{n}}$ contact with the circle \mathcal{C} if and only if no i_{k} for $k=1,2, \ldots, n-1$ coincides with i_{n}, that is, $i_{n} \cap\left\{i_{1}, i_{2}, \ldots, i_{n-1}\right\}=\emptyset$.

Proof Since the initial curvilinear triangle consists of the open disk \mathcal{D} and three curvilinear triangles $\mathcal{T}_{i}(i=1,2,3)$, iterated applications of g_{i} 's establish the assertion (a) immediately.

Now we put

$$
\mathcal{A}^{\prime}=\mathcal{T} \backslash\left(\bigcup_{n=0}^{\infty} \bigcup_{i_{1} i_{2} \cdots i_{n} \in\{1,2,3\}} \mathcal{D}_{i_{1}, i_{2}, \cdots, i_{n}}\right)
$$

Since it is obvious that all $\mathcal{C}_{i_{1} i_{2} \cdots i_{n}} \subset \mathcal{A}^{\prime}$ and \mathcal{A}^{\prime} is closed, we have $\mathcal{A} \subset \mathcal{A}^{\prime}$. To prove the converse, consider any point Q which belongs to \mathcal{A}^{\prime}. Since Q is not contained in any disk $\mathcal{D}_{i_{1} i_{2} \cdots i_{n}}$, with the aid of (a), we may choose a sequence $\left\{i_{n}: n=1,2, \ldots\right\}$ such that $Q \in \overline{\mathcal{T}_{i_{1} i_{2} \cdots i_{n}}}$. Since diameters of $\overline{\mathcal{T}_{i_{1} i_{2} \cdots i_{n}}}$ tend to zero as n tends to the infinity, we see that Q belongs to a limit set of

$$
\mathcal{C}_{i_{1}} \cup \mathcal{C}_{i_{1} i_{2}} \cup \mathcal{C}_{i_{1} i_{2} i_{3}} \cup \cdots .
$$

So that the assertion (b) is confirmed.
Finally we will prove (c) only for case that the last index i_{n} equals 1 . For that case it suffices to show that $\mathcal{C}_{i_{1} i_{2} \cdots i_{n}}$ contact with the circle \mathcal{K}_{1} if and only if all $i_{k}(k=1,2, \ldots, n)$ equals either 2 or 3 , because $\mathcal{C}=g_{1}\left(\mathcal{K}_{1}\right)$. We prove "if" part by the induction on n. Suppose the assertion is true for $n-1$, that is, suppose that every $\mathcal{C}_{i_{1} i_{2} \cdots i_{n-1}}$ with $i_{k}(k=1,2, \ldots, n-1)$ being equal to either 2 or 3 contact with \mathcal{K}_{1}. Then, since \mathcal{K}_{1} is invariant under both g_{2} and g_{3}, both $\mathcal{C}_{i_{1} i_{2} \cdots i_{n-1}}$ and $\mathcal{C}_{i_{1} i_{2} \cdots i_{n-1} 3}$ also contact with \mathcal{K}_{1}. Thus the "if" part is shown.

Now we will prove " only if" part of (c). To suppose the contrary, we may assume that there exists a circle $\mathcal{D}_{i_{1} i_{2} \cdots i_{n}}$ with some i_{k} being equal to 1 contacts with \mathcal{K}_{1}. Then, since $\mathcal{D}_{i_{1} i_{2} \cdots i_{k}} \subset \mathcal{T}_{1}$, we have

$$
\mathcal{D}_{i_{1} i_{2} \cdots i_{n}} \subset \mathcal{T}_{1 i_{k+1} \ldots i_{n}} \subset \bigcup_{j=1}^{3} \mathcal{T}_{1 j}
$$

Thus the circle $\mathcal{D}_{i_{1} i_{2} \cdots i_{n}}$ never contacts with \mathcal{K}_{1}, which completes the proof of the lemma.

Now we synthesize the previous lemmas to obtain the following theorem.
Theorem 1 The attractor A coincides with the image of the Apollonian gasket \mathcal{A} by the inverse Φ^{-1}, namely, $A=\Phi^{-1}(\mathcal{A})$.

Proof First we show $A \subset \Phi^{-1}(\mathcal{A})$. Assuming the contrary, we consider a sequence of points $\left\{P_{n}: n=1,2, \ldots\right\}$ such that every P_{n} is an iterated image of a point P_{0} by f_{i} 's and it converges to a point \tilde{P} outside $\Phi^{-1}(\mathcal{A})$. Transforming these points by Φ, we have a sequence of points $\left\{Q_{n}: n=1,2, \ldots\right\}$ such that every Q_{n} is an iterated image of a point Q_{0} by g_{i} 's and it converges to a point \tilde{Q} outside \mathcal{A}. Since the point \tilde{Q} lies outside \mathcal{A}, by the property (b) of Lemma 3, it lies in a certain open disk $\mathcal{D}_{i_{1} i_{2} \cdots i_{n}}$. Thus, for sufficiently large n, all Q_{n} lie in the same disk. On the other hand, these points belong to curvilinear triangles which are made by more than n iterated applications of g_{i} 's. This contradicts to the property (a) of Lemma 3. Thus we have $A \subset \Phi^{-1}(\mathcal{A})$.

Next we show $A \supset \Phi^{-1}(\mathcal{A})$. Since the attractor A is closed, it suffices to show that $A \supset C_{i_{1} i_{2} \cdots i_{n}}$ for all $C_{i_{1} i_{2} \cdots i_{n}}$. Moreover, since A is invariant under f_{i} 's, it is sufficient to prove that $A \supset C$, or equivalently, $\Phi(A) \supset \mathcal{C}$. Now the property (c) of Lemma 3 tells that the circle \mathcal{C} is surrounded by an infinitely many circles $\mathcal{C}_{i_{1} i_{2} \cdots i_{n}}$. Moreover it is obvious that diameters of these circles tend to zero as n tends to the infinity. So that any point on \mathcal{C} can be a limit point of these surrounding circles. Thus we have completed the proof of the theorem.

References

[1] B.B.Mandelbrot, The Fractal Geometry of Nature, Freeman, San Fransisco, 1982.
[2] A.Melzak, Infinite Packing of Disks, Canad.J.Math. 18 (1966), 838-852.
[3] D.W.Boyd, The Disk-Packing Constant, Aequationes Math. 7 (1971), 182-193.
[4] P.B.Thomas and Dhar,D., The Hausdorff dimension of the Apollonian packing, J.Phys.A:Math.Gen, 27 (1994), 2257-2268.
[5] J.G.Kingston and Synge,J.L., The sequence of pedal triangles, Amer.Math.Monthly, 95 (1988), 609-622.
[6] P.D.Lax, The ergodic Character of Sequences of Pedal Triangles, Amer.Math.Monthly, 97 (1990), 377-381.
[7] H.S.M.Coxeter, Introduction to Geometry, Wiley, New York, 1961.

Figure 1

Figure 2

Figure 3

[^0]: * Department of Mathematics Education, Faculty of Education, Kagoshima University, Kagoshima 890-0065, Japan.
 \dagger Department of Mathematics and Computer Science, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan.

