On Graphs with Naxclique Partition（Appendix ： Corrections to previ ous author＇s paper）

著者	SAKAI Kouki chi
j our nal or publ i cat i on titl e	鹿児島大学理学部紀要＝Reports of the Faculty of Sci ence，Kagoshi ma Uni ver si ty
vol une	34
page range	$1-6$
URL	ht tp：／／hdl ．handl e．net $/ 10232 / 00006984$

On Graphs with Maxclique Partition

(Appendix : Corrections to previous author's paper)

Koukichi Sakai *

(Received August 28, 2001)

Abstract

As well known (e.g. [4]) every graph is isomorphic to the line graph of a hypergraph. In this note, for any graph G with maxclique partition, we shall characterize the hypergraph H whose line graph $L(H)$ is isomorphic to G. We also consider the complete r-partite graphs $(r \geq 3)$ with maxclique partition.

Key words: graph, hypergraph, line graph, maxclique partition, complete r-partite graph.

1 Graphs with maxclique partition

In this note the terminology and notion concerning graphs and hypergraphs follow Chartrand and Lesniak [2] and Duchet [3] respectively unless otherwise stated. We assume always that any graphs and hypergraphs are finite, simple and connected. Let G be a graph. For any subgraph G^{\prime} of G we denote by $V\left(G^{\prime}\right)$ and $E\left(G^{\prime}\right)$ the vertex set and the edge set of G^{\prime} respectively. For any subset W of $V(G),\langle W\rangle$ is the subgraph of G induced by W. Any complete subgraph of G is called a clique, and especially it is called a maxclique if it is not properly contained in another cliques. Let $M C(G)$ be the set of maxcliques of G. A subfamily F of $M C(G)$ is called a maxclique partition of G if the family $\{E(Q) ; Q \in F\}$ is a partition of $E(G)$. In this case we may assume that
(1.1) $|V(Q)| \geq 2$ for any $Q \in F$.

Moreover, by contraction of edges, we may assume that
(1.2) Any $Q \in F$ has at most one vertex which does not belong to another members in F. For brevity we say that G is an MCP-graph, denoted by the pair (G, F), if there exists a maxclique partition F of G with (1.1) and (1.2).

In what follows let (G, F) be an $M C P$-graph. Then we can define a hypergraph $\Psi(G, F):=(F, \mathbf{E})$ on F, which is called an $M P$-hypergraph of $M C P$-graph (G, F) for brevity. Here the hyperedge set $\mathbf{E}=\{\psi(v) ; v \in V(G)\}$, where $\psi(v)$ is the subset of F

[^0]defined by
(1.3) $\psi(v)=\{Q \in F ; v \in V(Q)\}$.

By virtue of (1.2) the map $\psi: V(G) \ni v \mapsto \psi(v) \in \mathbf{E}$ is bijective. So we note that the hyperedge set \mathbf{E} is identified with $V(G)$. For any $Q \in F$ we put
(1.4) $\quad H(Q):=\{\psi(v) ; Q \in \psi(v)\}$.

Then the next Lemma follows immediately from the fact that F is a maxclique partition of G with (1.1) and (1.2).

Lemma 1.1.

(1.5) For any distinct $u, v \in V(G),|\psi(u) \cap \psi(v)| \leq 1$ and $|\psi(u) \cap \psi(v)|=1$ if and only if u and v are adjacent,
(1.6) $\psi(u) \cap \psi(v)=\{Q\}$ if and only if $u v \in E(Q)$,
(1.7) For any $Q \in F$, any hyperedge $\psi(w)$ belongs to $H(Q)$ if $\psi(w) \cap \psi(v) \neq \emptyset$ for all $\psi(v) \in H(Q)$,
(1.8) $|H(Q)| \geq 2$ for any $Q \in F$.

The assertion (1.5) implies that the map ψ is an isomorphism from G to the line graph $\Psi(G):=L(\Psi(G, F))$ of the MP-hypergraph $\Psi(G, F)$. Each $H(Q), Q \in F$, induces a maxclique $<H(Q)>$ of $\Psi(G)$ by (1.7). Moreover the family $\Psi(F):=\{<H(Q)>; Q \in F\}$ is a maxclique partition of $\Psi(G)$ by (1.6). Therefore, under these notation, we get the following

Theorem 1.2. Let (G, F) be an MCP-graph.
(1) $\Psi(G)$ is an MCP-graph with the maxclique partition $\Psi(F)$,
(2) $\quad(\Psi(G), \Psi(F))$ is isomorphic to (G, F).

2 Characterization of $M P$-hypergraphs

In this section we shall characterize the hypergraph H whose line graph $L(H)$ becomes an $M C P$-graph. Let $H=(X, E)$ be a simple and connected hypergraph with finite vertex set X and hyperedge set E. For any $x \in X$ we set
(2.1) $H(x):=\{e \in E ; x \in e\}$.

A subfamily E^{\prime} of E is said to be intersecting if $e_{1} \cap e_{2} \neq \emptyset$ for any $e_{1}, e_{2} \in E^{\prime}$. An intersecting family E^{\prime} is said to be maximal if it is not properly contained in another intersecting family of E.

Definition 2.1. Any hypergraph $H=(X, E)$ is called an $M L$-hypergraph if it satisfies the following conditions:
(2.4) $\left|\epsilon_{1} \cap e_{2}\right| \leq 1$ for any distinct $e_{1}, e_{2} \in E$,

Each hyperedge e is nonempty,
$|H(x)| \geq 2$ for any $x \in X$, $H(x)$ is a maximal intersecting subfamily of E for any $x \in X$.

We note that the next condition (2.6) follows from the condition (2.4):
(2.6) $|H(x) \cap H(y)| \leq 1$ for any distinct $x, y \in X$.

Obviously the $M P$-hypergraph $\Psi(G, F)$ of any $M C P$-graph (G, F) is an $M L$-hypergraph by Lemma 1.1.

Lemma 2.2. The line graph $L(H)$ of any ML-hypergraph $H=(X, E)$ is an $M C P$ graph, and the family $H(X):=\{<H(x)>; x \in X\}$ is a maxclique partition of $L(H)$, where $<H(x)>$ is the subgraph of $L(H)$ induced by $H(x)$.

Proof. Since $H(x)$ is an intersecting family in $E,<H(x)>$ is a clique of $L(H)$, and is maximal by (2.5). Let $e_{1}, e_{2} \in E$ be adjacent in $L(H)$. Then by (2.4) there exists an unique $x_{0} \in X$ such that $e_{1} \cap e_{2}=\left\{x_{0}\right\}$. So the edge $e_{1} e_{2}$ in $L(H)$ is in the unique maxclique $<H\left(x_{0}\right)>$. Hence $H(X)$ is a maxclique partition of $L(H)$. For any $x \in X$, $H(x)$ contains at most one singleton and the order of $\langle H(x)\rangle$ is at least two by (2.3). Thus $H(X)$ satisfies (1.1) and (1.2). This completes the proof.

Combining Theorem 1.2 and Lemma 2.2 we have
Theorem 2.3. A hypergraph $H=(X, E)$ is an MP-hypergraph of any MCP-graph (G, F) if and only if it is an ML-hypergraph. In this case G is isomorphic to the line graph of H.

For any $M L$-hypergraph $H=(X, E)$ we consider the Helly condition:
(2.7) Any intersecting family of E is contained in $H(x)$ for some $x \in X$.

If H satisfies (2.7), it is seen easily that $M C(L(H))=H(X)$. Hence we have
Theorem 2.4. For any graph $G, M C(G)$ is a maxclique partition of G if and only if G is the line graph of any ML-hypergraph with the Helly condition (2.7).

3 ML-graphs

Any 2-uniform hypergraph is identified with a simple graph. So any 2 -uniform $M L$-hypergraph is called an $M L$-graph. For any graph G, the conditions (2.2) and (2.4) hold trivially. The condition (2.3) corresponds to the condition $\delta(G) \geq 2$, where $\delta(G)=\min \{d e g(v) ; v \in V(G)\}$. For any $v \in V(G)$, let $H(v)$ be the set of edges incident to v. Evidently $H(v)$ is a maximal intersecting family if $\operatorname{deg}(v)>2$. On the other hand let $\operatorname{deg}(v)=2$ and $N(v)=\{w, z\}$, where $N(v)$ is the neighborhood of v. Then $H(v)$ is maximal if and only if $w z \notin E(G)$, that is, $<\{v\} \cup N(v)>$ is the path P_{3}. Consequently we have

Theorem 3.1. Any graph G is an $M L$-graph if and only if it satisfies the following two conditions:

$$
\begin{equation*}
\delta(G) \geq 2 \tag{1}
\end{equation*}
$$

(2) For any $v \in V$ with $\operatorname{deg}(v)=2,<\{v\} \cup N(v)>$ is the path P_{3}.

If a graph G with $\delta(G) \geq 2$ contains no triangles, then it is an $M L$-graph satisfying the Helly condition (2.7). So from Theorem 2.4 we have

Theorem 3.2. Let G be any graph with $\delta(G) \geq 2$, and $L(G)$ be the line graph of G. If G is triangle-free, then $M C(L(G))$ is a maxclique partition of $L(G)$.

4 Complete r-partite graphs with maxclique partition

For any $r \geq 2$, let $G:=K\left(n_{1}, n_{2}, \cdots, n_{r}\right)$ be the complete r-partite graph with partite sets $V_{j},\left|V_{j}\right|=n_{j}(j=1,2, \cdots, r)$. For the case $r=2$, each edge of G is a maxclique and G has the maxclique partition $\{e ; e \in E(G)\}$.

Now assume that $r>2$ and G has a maxclique partition $F=\left\{Q_{j} ; j=1,2, \cdots, m\right\}$. We note that each Q_{j} is of order r. Let $s=\Sigma_{j=1}^{r} n_{j}$. For any $v \in V(G)$ we put (4.1) $E_{v}=\{Q \in F ; v \in V(Q)\}$.

Then for every partite set V_{j}, F is partitioned into the disjoint family $\left\{E_{v} ; v \in V_{j}\right\}$, and $\left|E_{v}\right|=\frac{s-n_{j}}{r-1}$ for any $v \in V_{j}$. So we have $n_{j}\left(s-n_{j}\right)=m(r-1)$ for any $j=1,2, \cdots, r$. From these relations we conclude that $n:=n_{1}=n_{2}=\cdots=n_{r}, m=n^{2}$, and $\left|E_{v}\right|=n$.

Lemma 4.1. If $K\left(n_{1}, n_{2}, \cdots, n_{r}\right)$ has a maxclique partition $F=\left\{Q_{j} ; j=1,2, \cdots, m\right\}$, then $n:=n_{1}=n_{2}=\cdots=n_{r}$ and $m=n^{2}$.

For any fixed positive integers n, r, let us denote by $K(n ; r)$ the complete r-partite graph such that each partite set $V_{j}, j=1,2, \cdots, r$, is an n-set. Evidently $K(1 ; r)=K_{r}$ and $K(n, 2)$ are $M C P$-graphs. So in what follows let $n>1$ and $r>2$. Suppose $K(n ; r)$ has a maxclique partition F. Let $\Psi(K(n ; r), F)=(F, \mathbf{E})$ be the $M P$-hypergraph of $(K(n ; r), F)$, where the hyperedge set $\mathbf{E}=\left\{E_{v} ; v \in V(K(n ; r))\right\}$. For any $Q \in F$ we put (4.2) $H(Q):=\left\{E_{v} ; v \in V(Q)\right\}$.

Then the above discussions are summarized as follows.

Lemma 4.2. $\Psi(K(n ; r), F)$ has the following properties:
(4.3) $|F|=n^{2}$,
(4.8) For any $Q \in F$ and $E_{v} \in \mathbf{E}$ with $Q \notin E_{v}$, there exists an unique $E_{w} \in H(Q)$ for which $E_{v} \cap E_{w}=\emptyset$.

Let Q, E_{v} be as in (4.8). Then there is an unique P_{j} containing E_{v}. By (4.6) there exists an unique $E_{w} \in P_{j}$ with $Q \in E_{w}$. Hence we have (4.8).

5 AF-hypergraphs

Let n, r be any fixed integers with $n>1$ and $r>2$. We shall characterize the MPhypergraph of $M C P$-graph $(K(n ; r), F)$.

Definition 5.1. Any ML-hypergraph $H=(X, E)$ is called an AF-hypergraph, denoted by $H(X, E ; n, r)$, if the following three conditions hold:

$$
\begin{align*}
& |e|=n \text { for any } e \in E, \tag{5.1}\\
& |H(x)|=r \text { for any } x \in X,
\end{align*}
$$

(5.3) For any $x \in X$ and $e \in E$ with $x \notin e$, there exists an unique $\epsilon_{0} \in H(x)$ such that $e \cap e_{0}=\emptyset$.

In (5.3), any hyperedges in $H(x)$ except ϵ_{0} must intersect the hyperedge ϵ. From this fact we have
(5.4) $r \leq n+1$.

By virtue of (5.3) we can define an equivalence relation \equiv in E as follows:
(5.5) For any $e_{1}, e_{2} \in E, e_{1} \equiv e_{2}$ if $e_{1}=e_{2}$ or $e_{1} \cap e_{2}=\emptyset$.

We denote by \hat{e} the equivalence class containing $e \in E$ and by \hat{E} the quotient set of E with respect to \equiv. Then under the these notation the following Lemma is seen easily from (5.1)-(5.3).

Lemma 5.2.

(5.6) For any $x \in X, H(x)$ is a representative system of \hat{E} and $|\hat{E}|=r$,
(5.7) For any $e \in E, \hat{e}$ induces a partition of X, i.e., $X=\cup\{f ; f \in \hat{e}\}$, and $|\hat{e}|=n$, (5.8) $\quad|X|=n^{2}$.

Let $\hat{E}=\left\{\hat{e}_{j} ; j=1,2, \cdots, r\right\}$. Then for any j, k with $1 \leq j<k \leq r, e \cap f \neq \emptyset$ for any $(e, f) \in \hat{e_{j}} \times \hat{e_{k}}$. Therefore the line graph of $H(X, E ; n, r)$ is isomorphic to the complete r-partite graph $K(n ; r)$, with partite n-sets $\hat{e}_{j}, j=1,2, \cdots, r$. On the other hand, as noted in Lemma 4.2, the $M P$-hypergraph of $(K(n ; r), F)$ is an $A F$-hypergraph. Hence we have

Theorem 5.3. Any hypergraph H is an MP-hypergraph of $K(n ; r)$ if and only if it is an $A F$-hypergrap $H(X, E ; n, r)$.

FromTheorem 5.3 and Theorem 2.2 we have
Theorem 5.4. The complete r-partite graph $K(n ; r)$ has a maxclique partition if and only if there exists an AF-hypergraph $H(X, E ; n, r)$.

We note that any $A F$-hypergraph $H(X, E ; n, n+1)$ satisfies the condition: (5.9) $|H(x) \cap H(y)|=1$ for any distinct $x, y \in X$.

From (5.3) and (5.9), any $A F$-hypergraph $H(X, E ; n, n+1)$ is identified with the finite Affine plane of order n.

Theorem 5.5. $K(n ; n+1)$ has a maxclique partition for any $n=p^{m}$, where p is a prime and m is a positive integer.

Proof. This follows from Theorem 5.4 and the fact (e.g. [1]) that there exists the finite Affine plane $H(X, E ; n, n+1)$ of order n for $n=p^{m}$.

Remark 5.6. For any integer $n \geq 2$, let p be the least prime divisor of n. Then we can construct an $A F$-hypergraph $H(X, E ; n, p+1)$. Hence $K(n ; p+1)$ has a maxclique partition. Especially $K(n ; 3)$ has has a maxclique partition for any n, and so has $K(n ; 4)$ for any odd n.

References

[1] L.M.Batten: Combinatorics of finite geometries, Cambridge University Press, 1997.
[2] L. Chartrand and L. Lesniak: Graphs \mathfrak{G} Digraphs, Chapman \& Hall, 1996.
[3] P.Duchet: Hypergraphs, Handbook of Combinatorics Vol. 1, (R.L.Graham, M.Grotschel, \& L. Lovász, eds.) Elsevier, Amsterdam, (1995), 381-432.
[4] T.A. McKee and F.R.McMorris: Topics in intersection graph theory, SIAM Monographs on Discrete Mathematics and Applications, 1999.
[5] N.J.Pullman, H.Shank and W.D.Wallis: Clique coverings of graphs V; Maximal-clique partitions, Bull. Austral. Math. Soc., 25 (1982), 337-356.

Appendix

There are some errors in the author's paper :
On set representations and intersection numbers of some graphs, Rep. Fac. Sci. Kagoshima Univ., 33(2000), 39-46.
We correct these errors as follows.
(1) In Lemma 3.2(3) and Theorem 3.3 the equal $=$ must be replaced by \leq. So Theorem 3.3 gives an upper estimation of the intersection number of the complete r partite graph. However this estimation is not so good. For example $i\left(K\left(m_{1}, m_{2}, m_{3}\right)\right)$ $=m_{1} m_{2}<m_{1}\left(m_{2}+m_{3}-1\right)$.
(2) In Lemma 4.4 the family of maxcliques $\left\{Q_{j} ; j \in[n-1]\right\}$ is not $M C\left(G_{n}\right)$ but a minimal maxclique edge cover of G_{n}, where n is even.
(3) By the above correction, in Theorem $4.5 i\left(G_{n}\right)=\theta_{m}\left(G_{n}\right)$ holds only for odd n.

[^0]: * Department of Mathematics and Computer Science, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan.

