On Graphs with Maxclique Partition (Appendix : Corrections to previous author's paper)

著者	SAKAI Koukichi
journal or	鹿児島大学理学部紀要=Reports of the Faculty of
publication title	Science, Kagoshima University
volume	34
page range	1-6
URL	http://hdl.handle.net/10232/00006984

On Graphs with Maxclique Partition

(Appendix : Corrections to previous author's paper)

Koukichi SAKAI *

(Received August 28, 2001)

Abstract

As well known (e.g. [4]) every graph is isomorphic to the line graph of a hypergraph. In this note, for any graph G with maxclique partition, we shall characterize the hypergraph H whose line graph L(H) is isomorphic to G. We also consider the complete r-partite graphs $(r \geq 3)$ with maxclique partition.

Key words: graph, hypergraph, line graph, maxclique partition, complete *r*-partite graph.

1 Graphs with maxclique partition

In this note the terminology and notion concerning graphs and hypergraphs follow Chartrand and Lesniak [2] and Duchet [3] respectively unless otherwise stated. We assume always that any graphs and hypergraphs are finite, simple and connected. Let G be a graph. For any subgraph G' of G we denote by V(G') and E(G') the vertex set and the edge set of G' respectively. For any subset W of V(G), $\langle W \rangle$ is the subgraph of Ginduced by W. Any complete subgraph of G is called a *clique*, and especially it is called a *maxclique* if it is not properly contained in another cliques. Let MC(G) be the set of maxcliques of G. A subfamily F of MC(G) is called a *maxclique partition* of G if the family $\{E(Q); Q \in F\}$ is a partition of E(G). In this case we may assume that $(1.1) |V(Q)| \geq 2$ for any $Q \in F$.

Moreover, by contraction of edges, we may assume that

(1.2) Any $Q \in F$ has at most one vertex which does not belong to another members in F. For brevity we say that G is an MCP-graph, denoted by the pair (G, F), if there exists a maxclique partition F of G with (1.1) and (1.2).

In what follows let (G, F) be an MCP-graph. Then we can define a hypergraph $\Psi(G, F) := (F, \mathbf{E})$ on F, which is called an MP-hypergraph of MCP-graph (G, F) for brevity. Here the hyperedge set $\mathbf{E} = \{\psi(v); v \in V(G)\}$, where $\psi(v)$ is the subset of F

^{*} Department of Mathematics and Computer Science, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan.

defined by

(1.3) $\psi(v) = \{Q \in F; v \in V(Q)\}.$

By virtue of (1.2) the map $\psi : V(G) \ni v \mapsto \psi(v) \in \mathbf{E}$ is bijective. So we note that the hyperedge set \mathbf{E} is identified with V(G). For any $Q \in F$ we put

(1.4) $H(Q) := \{\psi(v); Q \in \psi(v)\}.$

Then the next Lemma follows immediately from the fact that F is a maxclique partition of G with (1.1) and (1.2).

Lemma 1.1.

- (1.5) For any distinct $u, v \in V(G)$, $|\psi(u) \cap \psi(v)| \le 1$ and $|\psi(u) \cap \psi(v)| = 1$ if and only if u and v are adjacent,
- (1.6) $\psi(u) \cap \psi(v) = \{Q\} \text{ if and only if } uv \in E(Q),$
- (1.7) For any $Q \in F$, any hyperedge $\psi(w)$ belongs to H(Q) if $\psi(w) \cap \psi(v) \neq \emptyset$ for all $\psi(v) \in H(Q)$,
- $(1.8) \quad |H(Q)| \ge 2 \text{ for any } Q \in F.$

The assertion (1.5) implies that the map ψ is an isomorphism from G to the line graph $\Psi(G) := L(\Psi(G, F))$ of the *MP*-hypergraph $\Psi(G, F)$. Each $H(Q), Q \in F$, induces a maxclique $\langle H(Q) \rangle$ of $\Psi(G)$ by (1.7). Moreover the family $\Psi(F) := \{\langle H(Q) \rangle; Q \in F\}$ is a maxclique partition of $\Psi(G)$ by (1.6). Therefore, under these notation, we get the following

Theorem 1.2. Let (G, F) be an MCP-graph.

- (1) $\Psi(G)$ is an MCP-graph with the maxclique partition $\Psi(F)$,
- (2) $(\Psi(G), \Psi(F))$ is isomorphic to (G, F).

2 Characterization of *MP*-hypergraphs

In this section we shall characterize the hypergraph H whose line graph L(H) becomes an MCP-graph. Let H = (X, E) be a simple and connected hypergraph with finite vertex set X and hyperedge set E. For any $x \in X$ we set $(2.1) \quad H(x) := \{e \in E; x \in e\}.$

A subfamily E' of E is said to be *intersecting* if $e_1 \cap e_2 \neq \emptyset$ for any $e_1, e_2 \in E'$. An intersecting family E' is said to be *maximal* if it is not properly contained in another intersecting family of E.

Definition 2.1. Any hypergraph H = (X, E) is called an ML-hypergraph if it satisfies the following conditions:

- (2.2) Each hyperedge e is nonempty,
- $(2.3) \quad |H(x)| \ge 2 \text{ for any } x \in X,$
- (2.4) $|e_1 \cap e_2| \leq 1$ for any distinct $e_1, e_2 \in E$,
- (2.5) H(x) is a maximal intersecting subfamily of E for any $x \in X$.

We note that the next condition (2.6) follows from the condition (2.4): (2.6) $|H(x) \cap H(y)| \leq 1$ for any distinct $x, y \in X$. Obviously the *MP*-hypergraph $\Psi(G, F)$ of any *MCP*-graph (G, F) is an *ML*-hypergraph by Lemma 1.1.

Lemma 2.2. The line graph L(H) of any ML-hypergraph H = (X, E) is an MCP-graph, and the family $H(X) := \{ \langle H(x) \rangle; x \in X \}$ is a maxclique partition of L(H), where $\langle H(x) \rangle$ is the subgraph of L(H) induced by H(x).

Proof. Since H(x) is an intersecting family in E, $\langle H(x) \rangle$ is a clique of L(H), and is maximal by (2.5). Let $e_1, e_2 \in E$ be adjacent in L(H). Then by (2.4) there exists an unique $x_0 \in X$ such that $e_1 \cap e_2 = \{x_0\}$. So the edge e_1e_2 in L(H) is in the unique maxclique $\langle H(x_0) \rangle$. Hence H(X) is a maxclique partition of L(H). For any $x \in X$, H(x) contains at most one singleton and the order of $\langle H(x) \rangle$ is at least two by (2.3). Thus H(X) satisfies (1.1) and (1.2). This completes the proof.

Combining Theorem 1.2 and Lemma 2.2 we have

Theorem 2.3. A hypergraph H = (X, E) is an MP-hypergraph of any MCP-graph (G, F) if and only if it is an ML-hypergraph. In this case G is isomorphic to the line graph of H.

For any *ML*-hypergraph H = (X, E) we consider the Helly condition: (2.7) Any intersecting family of E is contained in H(x) for some $x \in X$. If H satisfies (2.7), it is seen easily that MC(L(H)) = H(X). Hence we have

Theorem 2.4. For any graph G, MC(G) is a maxclique partition of G if and only if G is the line graph of any ML-hypergraph with the Helly condition (2.7).

3 *ML*-graphs

Any 2-uniform hypergraph is identified with a simple graph. So any 2-uniform ML-hypergraph is called an ML-graph. For any graph G, the conditions (2.2) and (2.4) hold trivially. The condition (2.3) corresponds to the condition $\delta(G) \geq 2$, where $\delta(G) = \min\{deg(v); v \in V(G)\}$. For any $v \in V(G)$, let H(v) be the set of edges incident to v. Evidently H(v) is a maximal intersecting family if deg(v) > 2. On the other hand let deg(v) = 2 and $N(v) = \{w, z\}$, where N(v) is the neighborhood of v. Then H(v) is maximal if and only if $wz \notin E(G)$, that is, $\langle v \} \cup N(v) \rangle$ is the path P_3 . Consequently we have

Theorem 3.1. Any graph G is an ML-graph if and only if it satisfies the following two conditions:

- (1) $\delta(G) \ge 2$,
- (2) For any $v \in V$ with deg(v) = 2, $\langle v \rangle \cup N(v) \rangle$ is the path P_3 .

If a graph G with $\delta(G) \ge 2$ contains no triangles, then it is an *ML*-graph satisfying the Helly condition (2.7). So from Theorem 2.4 we have

Theorem 3.2. Let G be any graph with $\delta(G) \geq 2$, and L(G) be the line graph of G. If G is triangle-free, then MC(L(G)) is a maxclique partition of L(G). \Box

4 Complete *r*-partite graphs with maxclique partition

For any $r \ge 2$, let $G := K(n_1, n_2, \dots, n_r)$ be the complete r-partite graph with partite sets $V_j, |V_j| = n_j (j = 1, 2, \dots, r)$. For the case r = 2, each edge of G is a maxclique and G has the maxclique partition $\{e; e \in E(G)\}$.

Now assume that r > 2 and G has a maxclique partition $F = \{Q_j; j = 1, 2, \dots, m\}$. We note that each Q_j is of order r. Let $s = \sum_{j=1}^r n_j$. For any $v \in V(G)$ we put (4.1) $E_v = \{Q \in F; v \in V(Q)\}.$

Then for every partite set V_j , F is partitioned into the disjoint family $\{E_v; v \in V_j\}$, and $|E_v| = \frac{s-n_j}{r-1}$ for any $v \in V_j$. So we have $n_j(s-n_j) = m(r-1)$ for any $j = 1, 2, \dots, r$. From these relations we conclude that $n := n_1 = n_2 = \dots = n_r, m = n^2$, and $|E_v| = n$.

Lemma 4.1. If $K(n_1, n_2, \dots, n_r)$ has a maxclique partition $F = \{Q_j; j = 1, 2, \dots, m\}$, then $n := n_1 = n_2 = \dots = n_r$ and $m = n^2$.

For any fixed positive integers n, r, let us denote by K(n; r) the complete r-partite graph such that each partite set $V_j, j = 1, 2, \dots, r$, is an n-set. Evidently $K(1; r) = K_r$ and K(n, 2) are *MCP*-graphs. So in what follows let n > 1 and r > 2. Suppose K(n; r)has a maxclique partition F. Let $\Psi(K(n; r), F) = (F, \mathbf{E})$ be the *MP*-hypergraph of (K(n; r), F), where the hyperedge set $\mathbf{E} = \{E_v; v \in V(K(n; r))\}$. For any $Q \in F$ we put $(4.2) \quad H(Q) := \{E_v; v \in V(Q)\}.$

Then the above discussions are summarized as follows.

Lemma 4.2. $\Psi(K(n;r),F)$ has the following properties:

- $(4.4) \quad |H(Q)| = r \text{ for any } Q \in F,$
- $(4.5) \quad |E_v| = n \text{ for any } v \in V(K(n;r)),$
- (4.6) For any particle set $V_i, P_i := \{E_v; v \in V_i\}$ is a partition of F and $|P_i| = n$,
- (4.7) For any distinct partite sets $V_j, V_k, |E_v \cap E_w| = 1$ for any $(v, w) \in V_j \times V_k$,
- (4.8) For any $Q \in F$ and $E_v \in \mathbf{E}$ with $Q \notin E_v$, there exists an unique $E_w \in H(Q)$ for which $E_v \cap E_w = \emptyset$.

Let Q, E_v be as in (4.8). Then there is an unique P_j containing E_v . By (4.6) there exists an unique $E_w \in P_j$ with $Q \in E_w$. Hence we have (4.8).

5 AF-hypergraphs

Let n, r be any fixed integers with n > 1 and r > 2. We shall characterize the *MP*-hypergraph of *MCP*-graph (K(n;r), F).

 $^{(4.3) \}quad |F| = n^2,$

Definition 5.1. Any ML-hypergraph H = (X, E) is called an AF-hypergraph, denoted by H(X, E; n, r), if the following three conditions hold:

 $(5.1) \quad |e| = n \text{ for any } e \in E,$

- $(5.2) \quad |H(x)| = r \text{ for any } x \in X,$
- (5.3) For any $x \in X$ and $e \in E$ with $x \notin e$, there exists an unique $e_0 \in H(x)$ such that $e \cap e_0 = \emptyset$.

In (5.3), any hyperedges in H(x) except e_0 must intersect the hyperedge e. From this fact we have

 $(5.4) \quad r \le n+1.$

By virtue of (5.3) we can define an equivalence relation \equiv in E as follows: (5.5) For any $e_1, e_2 \in E, e_1 \equiv e_2$ if $e_1 = e_2$ or $e_1 \cap e_2 = \emptyset$.

We denote by \hat{e} the equivalence class containing $e \in E$ and by \bar{E} the quotient set of E with respect to \equiv . Then under the these notation the following Lemma is seen easily from (5.1)-(5.3).

Lemma 5.2.

- (5.6) For any $x \in X$, H(x) is a representative system of \hat{E} and $|\hat{E}| = r$,
- (5.7) For any $e \in E$, \hat{e} induces a partition of X, i.e., $X = \bigcup \{f; f \in \hat{e}\}$, and $|\hat{e}| = n$,

(5.8) $|X| = n^2$.

Let $\hat{E} = \{\hat{e}_j; j = 1, 2, \dots, r\}$. Then for any j, k with $1 \leq j < k \leq r, e \cap f \neq \emptyset$ for any $(e, f) \in \hat{e}_j \times \hat{e}_k$. Therefore the line graph of H(X, E; n, r) is isomorphic to the complete r-partite graph K(n; r), with partite n-sets $\hat{e}_j, j = 1, 2, \dots, r$. On the other hand, as noted in Lemma 4.2, the *MP*-hypergraph of (K(n; r), F) is an *AF*-hypergraph. Hence we have

Theorem 5.3. Any hypergraph H is an MP-hypergraph of K(n;r) if and only if it is an AF-hypergrap H(X, E; n, r).

FromTheorem 5.3 and Theorem 2.2 we have

Theorem 5.4. The complete r-partite graph K(n;r) has a maxclique partition if and only if there exists an AF-hypergraph H(X, E; n, r).

We note that any AF-hypergraph H(X, E; n, n + 1) satisfies the condition: (5.9) $|H(x) \cap H(y)| = 1$ for any distinct $x, y \in X$. From (5.3) and (5.9), any AF-hypergraph H(X, E; n, n + 1) is identified with the finite Affine plane of order n.

Theorem 5.5. K(n; n + 1) has a maxclique partition for any $n = p^m$, where p is a prime and m is a positive integer.

Proof. This follows from Theorem 5.4 and the fact (*e.g.* [1]) that there exists the finite Affine plane H(X, E; n, n + 1) of order n for $n = p^m$.

Remark 5.6. For any integer $n \ge 2$, let p be the least prime divisor of n. Then we can construct an AF-hypergraph H(X, E; n, p+1). Hence K(n; p+1) has a maxclique partition. Especially K(n; 3) has has a maxclique partition for any n, and so has K(n; 4) for any odd n.

References

- [1] L.M.Batten: Combinatorics of finite geometries, Cambridge University Press, 1997.
- [2] L. Chartrand and L. Lesniak: Graphs & Digraphs, Chapman & Hall, 1996.
- [3] P.Duchet: Hypergraphs, Handbook of Combinatorics Vol. 1, (R.L.Graham, M.Grotschel, & L. Lovász, eds.) Elsevier, Amsterdam, (1995), 381-432.
- [4] T.A. McKee and F.R.McMorris: *Topics in intersection graph theory*, SIAM Monographs on Discrete Mathematics and Applications, 1999.
- [5] N.J.Pullman, H.Shank and W.D.Wallis: Clique coverings of graphs V; Maximal-clique partitions, Bull. Austral. Math. Soc., 25 (1982), 337-356.

Appendix

There are some errors in the author's paper : On set representations and intersection numbers of some graphs, Rep. Fac. Sci. Kagoshima Univ., **33**(2000), 39-46. We correct these errors as follows.

- (1) In Lemma 3.2(3) and Theorem 3.3 the equal = must be replaced by \leq . So Theorem 3.3 gives an upper estimation of the intersection number of the complete *r*-partite graph. However this estimation is not so good. For example $i(K(m_1, m_2, m_3)) = m_1m_2 < m_1(m_2 + m_3 1)$.
- (2) In Lemma 4.4 the family of maxcliques $\{Q_j; j \in [n-1]\}$ is not $MC(G_n)$ but a minimal maxclique edge cover of G_n , where n is even.
- (3) By the above correction, in Theorem 4.5 $i(G_n) = \theta_m(G_n)$ holds only for odd n.