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Abstract

As well known (e.g. [4]) every graph is isomorphic to the line graph of a hyper-
graph. In this note, for any graph G with maxclique partition, we shall characterize
the hypergraph H whose line graph L(H ) is isomorphic to G. We also consider the
complete r-partite graphs(r > 3) with maxclique partition.

Key words: graph, hypergraph, line graph, maxclique partition, complete r-partite
graph.

1 Graphs with maxclique partition

In this note the terminology and notion concerning graphs and hypergraphs follow
Chartrand and Lesniak [2] and Duchet [3] respectively unless otherwise stated. We assume
always that any graphs and hypergraphs are finite, simple and connected. Let G be a
graph. For any subgraph G’ of G we denote by V(G’) and E(G') the vertex set and the
edge set of G’ respectively. For any subset W of V(G), < W > is the subgraph of G
induced by W. Any complete subgraph of G is called a clique, and especially it is called
a mazxclique if it is not properly contained in another cliques. Let M C(G) be the set of
maxcliques of GG. A subfamily F' of MC(G) is called a mazclique partition of G if the
family {E(Q); @ € F} is a partition of F(G). In this case we may assume that
(1.1) |[V(Q)| =2 foranyQ € F.

- Moreover, by contraction of edges, we may assume that
(1.2) Any Q € F has at most one vertex which does not belong to another members in F.
For brevity we say that G is an M C P-graph, denoted by the pair (G, F'), if there exists
a maxclique partition F' of G with (1.1) and (1.2).

In what follows let (G, F') be an MCP-graph. Then we can define a hypergraph
U(G, F) := (F,E) on F, which is called an M P-hypergraph of MCP-graph (G, F) for
brevity. Here the hyperedge set E = {¢(v);v € V(G)}, where ¢(v) is the subset of F
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defined by

(1.3)  ¢(v) ={Q € Fv e V(Q)}.
By virtue of (1.2) the map ¢ : V(G) 3 v — ¢ (v) € E is bijective. So we note that the
hyperedge set E is identified with V(G). For any Q € F we put

(14)  H(Q):={p(v);Q € ¥(v)}.
Then the next Lemma follows immediately from the fact that F' is a maxclique partition

of G with (1.1) and (1.2).

Lemma 1.1.

(1.5)  For any distinct u,v € V(G), [Y(u)N(v)] < 1 and |(u)Nep(v)] = 1 if and only

) if w and v are adjacent,

(1.6)  ¥(u) (o) = {Q) if and only if uv € E(Q),

(1.7)  For any Q € F, any hyperedge (w) belongs to H(Q) if (w) N(v) # O for all
P(v) € H(Q),

(1.8) |H(Q)| >2 forany Q € F. ]

The assertion (1.5) implies that the map 1 is an isomorphism from G to the line graph
U(G) := L(Y(G, F)) of the M P-hypergraph ¥(G, F'). Each H(Q),Q € F, induces a max-
clique < H(Q) > of ¥(G) by (1.7). Moreover the family ¥(F) := {< H(Q) >;Q € F'}
1s a maxclique partition of W(G) by (1.6). Therefore, under these notation, we get the
following

Theorem 1.2. Let (G, F) be an M CP-graph.

(1)  ¥(G) is an MC P-graph with the mazclique partition V(F),
(2)  (V(G),¥(F)) is isomorphic to (G, F). o

2 Characterization of M P-hypergraphs

In this section we shall characterize the hypergraph H whose line graph L(H) be-
comes an M CP-graph. Let H = (X, F) be a simple and connected hypergraph with finite
vertex set X and hyperedge set E. For any = € X we set
(2.1) H(z):={e€ E;z € ¢e}.

A subfamily E’ of E is said to be intersecting if e; N ey # 0 for any e;,e; € E'. An
intersecting family £’ is said to be mazimal if it is not properly contained in another
intersecting family of F.

Definition 2.1. Any hypergraph H = (X, E) is called an M L-hypergraph if it satis-
fies the following conditions:
(2.2)  FEach hyperedge e is nonempty,
(2.3)  |H(z)| =2 for any z € X,
(2.4) lesNeg| <1 for any distinct e1,¢e5 € E,
(2.5)  H(z) is a mazimal intersecting subfamily of E for any z € X. O
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We note that the next condition (2.6) follows from the condition (2.4):
(2.6) |H(x)N H(y)| <1 for any distinct z,y € X.
Obviously the M P-hypergraph ¥(G, F') of any MC P-graph (G, F') is an M L-hypergraph
by Lemma 1.1.

Lemma 2.2. The line graph L(H) of any M L-hypergraph H = (X, E) is an MCP-
graph, and the family H(X) := {< H(z) >;z € X} is a maxclique partition of L(H),
where < H(x) > is the subgraph of L(H) induced by H(x).

Proof. Since H(z) is an intersecting family in E, < H(z) > is a clique of L(H),
and is maximal by (2.5). Let e;,e; € E be adjacent in L(H). Then by (2.4) there exists
an unique xo € X such that e; Ne; = {x0}. So the edge e1e5 in L(H) is in the unique
maxclique < H(z¢) >. Hence H(X) is a maxclique partition of L(H). For any = € X,
H(z) contains at most one singleton and the order of < H(z) > is at least two by (2.3).
Thus H(X) satisfies (1.1) and (1.2). This completes the proof. O

Combining Theorem 1.2 and Lemma 2.2 we have

Theorem 2.3. A hypergraph H = (X, E) is an M P-hypergraph of any M C P-graph
(G, F) if and only if it is an M L-hypergraph. In this case G is isomorphic to the line
graph of H. m

For any M L-hypergraph H = (X, E) we consider the Helly condition:
(2.7)  Any intersecting family of E is contained in H(z) for some x € X.
If H satisfies (2.7), it is seen easily that MC(L(H)) = H(X). Hence we have

Theorem 2.4. For any graph G, MC(G) is a mazclique partition of G if and only
if G is the line graph of any M L-hypergraph with the Helly condition (2.7). O

3 ML-graphs

Any 2-uniform hypergraph is identified with a simple graph. So any 2-uniform
M L-hypergraph is called an M L-graph. For any graph G, the conditions (2.2) and
(2.4) hold trivially. The condition (2.3) corresponds to the condition 6(G) > 2, where
6(G) = min{deg(v);v € V(G)}. For any v € V(G), let H(v) be the set of edges incident
to v. Evidently H(v) is a maximal intersecting family if deg(v) > 2. On the other hand
let deg(v) = 2 and N(v) = {w, z}, where N(v) is the neighborhood of v. Then H(v) is
maximal if and only if wz ¢ FE(G), that is, < {v} U N(v) > is the path Ps;. Consequently
we have

Theorem 3.1. Any graph G is an M L-graph if and only if it satisfies the following
two conditions:
(1) 6(G) 22,
(2)  For anyv € V with deg(v) =2, < {v} U N(v) > is the path P;. O

If a graph G with §(G) > 2 contains no triangles, then it is an M L-graph satisfying
the Helly condition (2.7). So from Theorem 2.4 we have
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Theorem 3.2. Let G be any graph with §(G) > 2, and L(G) be the line graph of G.
If G is triangle-free, then MC(L(G)) is a maxzclique partition of L(G). O

4 Complete r-partite graphs with maxclique partition

For any r > 2, let G := K(ny,ny,---,n,) be the complete r-partite graph with partite
sets V;,|V;| = nj(j = 1,2,---,r). For the case r = 2, each edge of G is a maxclique and
G has the maxclique partition {¢;e € F(G)}.

Now assume that r > 2 and G has a maxclique partition F = {Q;;j =1,2,---,m}.
We note that each Q; is of order r. Let s = ¥%_;n;. For any v € V(G) we put
(41) E,={Qe F;veV(Q)}.

Then for every partite set V;, F' is partitioned into the disjoint family {E,;v € V;}, and

E,| = == for any v € V;. So we have nj(s — n;) = m(r — 1) for any j = 1,2,---,7.
From these relations we conclude that n :=n; =ny =--- =n,,m = n? and |E,| = n.

Lemma 4.1. If K(ny,ny,- -, n,) has a mazclique partition F = {Q;;7 = 1,2,---,m},

thenn:=ny =ny =--- =n, and m = n?. O

For any fixed positive integers n,r, let us denote by K(n;r) the complete r-partite
graph such that each partite set Vj,j = 1,2,---,r, is an n-set. Evidently K(1;r) = K,
and K(n,2) are MC P-graphs. So in what follows let n > 1 and r > 2. Suppose K(n;r)
has a maxclique partition F. Let W(K(n;r),F) = (F,E) be the M P-hypergraph of
(K(n;r), F'), where the hyperedge set E = {E,;v € V(K(n;r))}. For any Q € F we put
(12) H(Q):= (v e V(Q)}.

Then the above discussions are summarized as follows.

Lemma 4.2. V(K (n;r), F) has the following properties:

(43) |F|=n?

(14)  |H(Q) = forany Q€ F,

(4.5) |E,| =n for anyv € V(K(n;r)),

(4.6)  For any partite set V;, P; := {E,;v € V;} is a partition of F and |P;| = n,
(4.7)  For any distinct partite sets V;, Vi, |E, N Ey| =1 for any (v,w) € V; x Vj,
(4.8)

For any Q € F and E, € E with Q ¢ E,, there exists an unique E,, € H(Q) for
which E,NE, = 0. O

Let @, F, be as in (4.8). Then there is an unique P; containing E,. By (4.6) there
exists an unique F,, € P; with Q € E,,. Hence we have (4.8).

5 AF-hypergraphs

Let n,r be any fixed integers with n > 1 and r > 2. We shall characterize the M P-
hypergraph of MC P-graph (K(n;r), F).
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Definition 5.1. Any M L-hypergraph H = (X, E) is called an AF-hypergraph, de-
noted by H(X, E;n,r), if the following three conditions hold:

(5.1) |e]=n for anye € E,
(5.2) |H(z)|=r for anyz € X,

(5.3)  For anyz € X and e € E with x ¢ e, there exists an unique eg € H(z) such that
en € = m 0

In (5.3), any hyperedges in H(z) except e must intersect the hyperedge e. From this
fact we have
(54) r<n+l.

By virtue of (5.3) we can define an equivalence relation = in E as follows:
(5.5) For anyej,eq € E,ey =€y ifeg =€y oregNey = 0.

We denote by é the equivalence class containing e € E and by E the quotient set of
E with respect to =. Then under the these notation the following Lemma is seen easily
from (5.1)-(5.3).

Lemma 5.2.

(5.6)  For any z € X, H(x) is a representative system of E and |E| =r,
(5.7)  For any e € E, € induces a partition of X, i.e., X = U{f; f € €}, and |é| = n,
(5.8) | X|=n? ]

Let £ = {€;;7=1,2,---,r}. Then for any j,k with 1 <j <k <r,en f # 0 for any
(e, f) € €; X €x. Therefore the line graph of H(X, E;n,r) is isomorphic to the complete
r-partite graph K(n;r), with partite n-sets é€;,7 = 1,2,---,r. On the other hand, as
noted in Lemma 4.2, the M P-hypergraph of (K(n;r), F) is an AF-hypergraph. Hence
we have

Theorem 5.3. Any hypergraph H is an M P-hypergraph of K(n;r) if and only if it
is an AF-hypergrap H(X, E;n,r). O

FromTheorem 5.3 and Theorem 2.2 we have

Theorem 5.4. The complete r-partite graph K(n;r) has a mazclique partition if
and only if there exists an AF-hypergraph H(X, E;n,r). o

We note that any AF-hypergraph H(X, F;n,n + 1) satisfies the condition:
(5.9) |H(z)NH(y)| =1 for any distinct z,y € X.
From (5.3) and (5.9), any AF-hypergraph H(X, E;n,n + 1) is identified with the finite
Affine plane of order n.

Theorem 5.5. K(n;n + 1) has a mazclique partition for any n = p™, where p is a
prime and m is a positive integer.
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Proof. This follows from Theorem 5.4 and the fact (e.g. [1]) that there exists the
finite Affine plane H(X, E;n,n + 1) of order n for n = p™. O

Remark 5.6. For any integer n > 2, let p be the least prime divisor of n. Then we
can construct an AF-hypergraph H(X, E;n,p+1). Hence K(n;p + 1) has a maxclique
partition. Especially K'(n;3) has has a maxclique partition for any n, and so has K(n;4)
for any odd n.
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Appendix

There are some errors in the author’s paper :

On set representations and intersection numbers of some graphs, Rep. Fac. Sci.
Kagoshima Univ., 33(2000), 39-46.
We correct these errors as follows.

(1) In Lemma 3.2(3) and Theorem 3.3 the equal = must be replaced by <. So
Theorem 3.3 gives an upper estimation of the intersection number of the complete r-
partite graph. However this estimation is not so good. For example #( K (my, mq, m3))
= mymy < my(mq + my — 1).

(2) In Lemma 4.4 the family of maxcliques {Q,;; € [n — 1]} is not MC(G,) but a
minimal maxclique edge cover of G, where n is even.

(3) By the above correction, in Theorem 4.5 i{(G,,) = 6,,(G,,) holds only for odd n.



