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§ 1. Introduction.

In this paper we shall investigate several algebraic properties of topogenous matrices
of finite T¢-spaces which we have introduced and studied in our previous paper [17].
In § 2 we shall define an algebra of functions on a finite To-space and characterize the
topogenous matrix of the space as a certain transformation on this algebra. In §3 we
shall introduce topological invariants which we call the eigen values and the eigen
spaces of a finite To-space. These invariants seem to be powerful to study the classifi-
cation problem of finite To-spaces. In § 4 we shall give some simple examples.

§ 2. Algebras on finite T,-spaces.

Let (X, ) be a finite To-space on a set X={ai, az, ---, a,} and U; be the minimal
basic neighborhood of a; € X.
Then the topology © of X corresponds to a matrix 4=[a;;_] such that

a;=1 for a; € Uy,

1)

a;;=0 otherwise,

which we call the T-topogenous matrix of (X, 7).
Now let ¢; be the characteristic function xy, of U; in X, and let ¢; be the characteris-
tic function x,, of {a;} in X. Then we obviously have

(2) pi=2{¢;ila; € U}y (i=1,2, ..., n),
and we can note
(3) gi=2a;¢; (i=1,2, ..., n),
where
aij=1 for a; € U,,
ai;j=0 otherwise.
¢
|

@1
Hence let (0:[(42—! and ¢ = , then we have

2 | |
Lo, Lg,.
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(4) p=A4¢
where A4 is the topogenous matrix [a;; .

Q1

We call (oz[ } a basis of the space (X, ).

Dn

¢1
In particular ¢ = [ : i} is a basis of the discrete space (X, ).

ba

Let ¢; and ¢, be two bases of the spaces (X, r;) and (X, t3) respectively. Then we
have t, =1, if and only if ¢, is a permutation of ¢;.

Next, on the set {¢1, ¢3, ---, ¢} we define a binary operation by the multiplication
of real function. Then we have clearly

(5) 0ip;i=\N 1wl ar € UyNUj},

where the symbol Vv denotes the supremum. In a basis ¢ of the discrete space, the
following is evident.

$ih;=0 if i3¢j,
Lemma 1. Let ¢ be a basis of a finite To-space (X, ). Then

(6)

) QiP;i= 2.0k Py
where «y, are integers, and the summands c,@), are defined for such k that a, € U;N\Usj.

Proor. We can find a suitable basis ¢ of (X, ) such that ¢ = A¢, where 4 is a
triangular topogenous matrix. Since the diagonal elements of 4 are 1, we have det
| 4] =1, and the inverse matrix 47! of A is also a triangular matrix whose elements
are integers, and we have

{

a7
T Do
¢n-“ @
Therefore ¢,, is described as

(8) ¢’m: Z {r.b¢ﬂ | ap € Um}:

where 7, are integers. On the other hand, ¢;= >, {¢:|a: € U;} and ¢;=2:{¢:|a; € U;}
imply

(9) ¢i¢j:Z{¢mlamE U,f\U]}

F¢1‘] ffﬁl"l |
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From (8) and (9) we have

(10) vip;=2{appsla, € UiNUst.
By Lemma 1 we obtain

@1
THEOREM 1. Let o= [ : } be a basis of a finite To-space, R (@) be the set {2 ;p;i|a; :
P

integer}, and define algebraic operations in R(p) as follows :

(11) élaifﬂi)-l-(élﬂmi):él (ai+3i)¢{o
(12) T(iZ:Jlai(ﬂi): 21(7’%)%-
(13) (z_glai(”i) <jz§18j¢j ) =2.(iB;) (pigs).

Then R(p) is an algebra over the ring J of rational integers.

If ¢ 1s a basis of the space (X, 7), then ¢ ={¢1, ¢z, ---, ¢} represents simultaneously
the basis of the algebra R(¢). The correspondence ¢—¢ =A¢ induces a ring isomor-
phism of the algebra R(¢) onto R(¢). .

A continuous mapping of a finite T,-space to another finite Ty-space induces in a
natural manner a homomorphism between the above defined function algebras.

hy 81

THEOREM 2. Let h={ : } and g ={ : J be bases of finite To-spaces (X, t) and (Y, 0)
hn 8m

respectively, and let f be a continuous mapping of (X, t) into (Y, 0). Then f induces a homo-

morphism fy : R(g)— R(h).

Proor. Let X= {al, A2y -y a,,} and Y= '{bl, bz, ceey bm}, and let '{V1, Vz, sy Vm} be
the minimal basic neighborhood system of (Y, o).

First, define a mapping fx: {g1, &2 ---» gny—>R(h) as follows : fix(g;) is the charac-
teristic function of f~'(¥;) in X. In an analogous argument which we have used in the
proof of Lemma 1, we obtain

fx(g)=2Arshe| f (ar) € Vi},

where 7, are integers, then fx(g;) belongs to R(h) and the mapping fx is well-defined.
Second, we extend the mapping fx to a mapping on R(h) which we denote by the
same letter fy as follows :

(14) - fx(Zaig)=2aif(g),

where «; are integers. We shall prove

fx(gi&) = fx(g) fx(g)-
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Since fx (g:) =%s-1v,), we have

(15) f*(gi) f*(gj) - xf‘l(Vi)xf-l(Vj) - xf‘l(Vi)r\f-l(Vj) = xf“l(vir\vj)-

From (7) and (14) we have
(16)  fx(gigs) =fxQilauglbi € VinVih)=2Aawt -yl b € VinVi}.
On the other hand,
v, = 8igi= ; {aigi|lbie VinVi} = ; {auxy, | b € VinV}.
Let ay be an element of f~'(V;\V;). Then
Xv,nv; (flar))=1,

and
Qan ; {axv, (flaw) | b€ ViNV;}=1.

Since f(ax) € V; implies x-17,,(ax) =1, we have

(18) ; {axs-1vy(an) | b € Vin Vi =1.

If a € £~(V;N\ V), then in a similar calculation we have

(19) ; {ax s, (ar) | b € ViNV;}=0.
Therefore,
(20) ; {afle—l(vl) | by e ViN I/J} =XV AV

From (15), (16) and (20), we have
f(gign) = fx(g0fx(gn,
and
F((Baig) (B8 = fx(X(@iBs) (g:181)

= 2(aiB) f+(gigi)
=2.(:Bi) f«(g) fx(g)
=(2aif«(g:)) (L Bif+(g:)
=fx(Zaig) fx(XBig-

Thus fx : R(g)— R(h) is a ring homomorphism.
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LemMA 2. Under the condition of Theorem 2, let U be any open set of space (Y, o). Then
Sx(xw) =%y ‘
Proor. We note xy in the form
xu=V{gslbr€ U}
- =24{Brgrlbr€ U}
=2 {Bwxv, | br € U},
where (8 are integers. Then
feCr)=fx(L4{Brge|br € U})
=2 {Brfx(gr) | br € U}
=2 {Bwxs1v | br € U}.

Let a; € f'(U), and take a ¥V} such that f(a;) € V,CU. Then we have xy,(f(a;))=1,
and it follows from xy( f(a;)) =1 that

; {Brxv,(fla)|bre Ut =1.
Since xs-1v, (@) =2v,(f(ar)), we have
é\: 1Brxs-1v (@) b€ Ut =1.

In a similar way, a; ¢ f~}(U) implies

z? {Brxs-1vy(ar) | b € U} =0.

Hence

fa(aw)= ; {Brxs-1v,y| bs € Ut =25-117).

THEOREM 3. Let f be a continuous mapping of a finite To-space (X, t) into a finite To-
space (Y, 0), and let t be a continuous mapping of (Y, o) into a finite To-space (Z, 7). Also, let
@, h and g be bases of the spaces (X, ©), (Y, 0) and (Z, ) respectively. Then we have

(tof)x=fxotx.

&1
Proor. Let g={ : jl and let {V1, V3, -+, Vu} be the minimal basic neighborhood

8m
system of (Z, 7). Then we need only to prove the following

(o f)x(gd)=(fxotx) (g) (i=1,2, ..., m).

From the definition of the induced homomorphism,
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(¢ °f)>1<(gi) =Xty (V)
and

Fx(tx(g)) = fu(t-1v )
By Lemma 2, we have

Sx@v ) = %1317 )
Therefore

(tof)x(g) = (fxotx)(gi)-

THEOREM 4. Let f be a homeomorphism of a finite To-space (X, t) onto a finite To-space
(Y, 0). Then the induced homomorphism fx is an isomorphism.

Proor. Let ¢ and & be bases of the spaces (X, r) and (Y, 0) respectively. We
remark that, if { : X— X is the identity mapping, the induced homomorphism ix: R(¢)
— R(gp) is also the identity automorphism.

If £ is the homeomorphism in the Theorem, then fof~" and f~'of are the identity
mappings, and from Theorem 3,

(fof Dx=fxofx (flof)x=fre fx".
Then fylofy and fyofy! are both identity automorphisms. Therefore fy is an isomor-
phism.
§ 3. Eigen values in finite T-spaces. -

In [1] we have defined that two (n, n) matrices 4 and B are equivalent and noted
as A~B when there exists a permutation matrix P such that B=P'AP.

THEOREM 5. Let A and B be two topogenous matrices, Then A is equivalent to B if and
only if AA’ is equivalent to BB’

Proor. Suppose 4 is equivalent to B. Then by the above definition there exists a
permutation matrix P such that B=P'A4P, and

BB'=(P'AP)(P'AP) =P'APP’'AP.
Since a permutation matrix is orthogonal, we have PP’ =E, and
BB'=P'(AA")P.
Thus
BB'~A44'.

The sufficiency of this theorem follows from the next three lemmas.
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LemmA 3. Let A and B be two triangular To-topogenous matrices. If AA = BB’, then
A=B.

Proor. For two triangular T'-topogenous matrices 4=[a;; ] and B=[b;; ], suppose

AA'=BB'=[c;;]. Since 4 is a triangular T,-topogenous matrix, A has the following
form :

a,-,-=1 or Q,
a;=1 (i:]-a 2, -y n)a
a,-,-=0 fOI‘ l<]

Therefore we have

n
Cii—= Zalkaz‘k =aii.

k=1
Similarily,
Ci1i— Z birbi= bu,
k=1
and

ailzbil (l=1, 23 Tty n)'

Then the first column of A4 is equal to that of B.

Next assume that the j th column of 4 is equal to the j th column of B for j=1, 2,
...y k—1. Then for I>>k, we have

k=1

Cr= 2, arai+a,
ji=1

P
cr= 2, bajbij+ b
i=1
Since az;=b;; and a;;=b;; , we have
ann="b.

If 1<k , then we also have a;;=5;,=0. Hence the k th columns of 4 and B are equal.
Thus by induction we have 4= B.

If A=[ai]is a (n, n) To-topogenous matrix, then 4 determines a finite T,-topolo-
gical space (see [17]). In the following we represent the underlying set by X = {as, a.,

-+, @n}, and the corresponding minimal basic neighborhood system by B= {Uy, Uy, -
U,}. ‘

b

LemMmA 4. Let A be a To-topogenous matrix. Then AA'=[ c;; ] has the following properties.
(1) AA'is symmetric and its determinant | AA"| is 1.



8 M. SHIRAKI

(2)  cij is the number of elements which are contained in U;N\U;, where U; and U; are the
minimal basic neighborhoods of a; and a; respectively.

Proor. (1) is obvious.
Let A=[aj;], then we have

aipdir= 1 SAir=aj,= 1,

Sar€e U;and ap € U;.
”
Therefore c¢;;j= ) aiza;: is the number of elements a; which are contained in U; N\ U;,.
k=1

Lemma 5. Let A be a triangular To-topogenous matrix and B be a non-triangular T -topo-
genous matrix. Then AA' > BB'.

Proor. Assume that 4=[a;;] is a triangular T,-topogenous matrix, and let p < g.
If ay,=1, then a,,=0 since 4 is a triangular matrix. Hence we have

ay€ U, a, ¢ U,.
It follows from Lemma 3 that
Cpg=Cpp< Cqq-
If a,,=0, then a,,=0 since 4 is a triangular matrix. Hence we have
ay ¢ Uy, ag € Up.
It follows that
Cpa<Cpps Cpe<Cqq-

Therefore to prove Lemma 4, it suffices to prove that if 4 is not triangular, then for
AA'=[ci;] there exists a pair (p, g), p<g, such that C,,>C,, and Cy,=C,,.
Since 4 is not triangular, there exists a pair (p, ¢) such that p<g and

app=1, ap,=1,
a.,=0, aq=1,
in other words,
a, € Up, a, ¢ U,
Hence we have
U,C Uy, U, U,,

it follows from Lemma 3 that

Cpg=Cqq< Cppe
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Proof of the sufficiency of Theorem 5.
Assume BB'~AA’. We take a triangular T-topogenous matrix C which is equi-
valent to B. Then we have

CC'~BB'~AA4'.
Then there is a permutation matrix P such that
CC'=P(AA")P=(PAP")(PAP").

Since C is triangular, by Lemma 5, PAP’ must be triangular, and by Lemma 3, we
have

C=PAP'.
Therefore A is equivalent to C and to B.
Now we shall define important topological invariants of a finite To-space.

DeriNiTION 1. Let 4 be a topogenous matrix of a finite To-space X. Then the
characteristic polynomial, the eigen values, the eigen spaces and the eigen vectors of the
matrix AA’ are said to be the characteristic polynomial, the eigen values, the eigen spaces
and the eigen vectors of the space X, respectively.

ExampLE. Consider the following finite To-space. The set is X={a1, a3, as}, and
the family of minimal basic neighborhoods are Uy={a,}, Us={az}, Us={a1, a3, as}.
The triangular To-topogenous matrix of this space is

100
.A=‘0 10}.
21114
Therefore

101
AA = [ 011 1 .
113
The characteristic polynomial P(x) of the space X is
P(x)= IxE—AA'I =x3—5x2+5x—1,
and the eigen values of the space X are
1, 2—y3, 2+4 3.

'The following important theorem is an immediate consequence of the above defini-
tion.
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THEOREM 6. A finite To-space is characterized completely by two topological invariants, the
eigen values and the eigen vectors, of the space.

THEOREM 7. The eigen values of a finite To-space are positive. If the space has a rational
etgen value, it must be 1.

Proor. Let A4 be a topogenous matrix of a finite To-space X. Then 44’ is a posi-
tive Hermitian matrix. Hence its eigen values are positive.
Since | 44’| =1, the characteristic polynomial of the space has the form

P(x)=u"—(T,(44A)Nx"" + -+ (= 1),

where the coefficients are integers. Therefore, if P(x) has a rational root, it must be 1
or —1.

For the product of finite T,-spaces, we have the following theorem.

TueorEM 8. For finite To-spaces X, Y, let M, N ; Pi(x), Py(x) and (A1, 2y -5 Zn),
(U1, U2y -y tm) e the topogenous matrices, the characteristic polynomials and the eigen values of
X and Y, respectively. And let L and P(x) be the topogenous matrix and the characteristic poly-
nomial of the product space X x Y, respectively. Then

(1) LL' is equivalent to the direct product of MM' and NN, that is LL'~(MM") X (NN').
2 Px)=I{(x—Aiyp)|i=1,2, ..., n;j=1,2, ..., m}.

Proor. First, as we have proved in [ 1], the topogenous matrix of the product space
X x Y is equivalent to the direct product of the topogenous matrices of X and Y. Hence

LL'~(MXN) (MXN)'.
Since (MXN) (MXN)Y =(MXN) (M X N)=(MM)X(NN’"), we have
LL' ~ (MM X (NN").
Next, we consider orthogonal matrices C; and C; such that
MM =C,S,Ci}, NN =C,S,C;*.

S, is a diagonal matrix whose diagonal elements 2;, s, ---, 4, are eigen values of MM,
and S; is a diagonal matrix whose diagonal elements #1, 43, ---, 4 are eigen values of
NN'. Therefore

MM X NN'=(C,S,C7") X (C;S,C31)
=(C1 X C2) (81X 8;) (CTPXCFY)
=(C1XC3) (S1XS2) (C1XC2)™.

Since C;, C; are orthogonal matrices, C;)XC; is also orthogonal. And S;XS; is a
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diagonal matrix whose diagonal elements are A;41, A12, -y 2iltms -5 Anllis Aullzy -
Anttw which are the eigen values of the product space. Therefore we have

P(x)=H{<x—lz/lJ)|l=13 2: ttty TI/;]:]., 25 Tty m}'

In general, the characteristic polynomials of matrices 4B and BA are equal. Espe-

cially, so are those of 44" and 4'A4.
From this, it follows that

THEOREM 9. Any finite To-space and its dual space have the same eigen values.

Remark. The concept of the eigen values of spaces seems to be powerful to classify
finite To-spaces. We do not know any di_ﬁ'erent two finite T,-spaces with the same
eigen values except in the case that one is the dual of the other.

Let X be a finite partially ordered set and a be an element of X. Then, by the length
I[a] of a, we mean the maximum of all the lengths ¢ of the chains ¢y<a;< - <a;i=a
in X.

TueorREM 10. Let X be a finite T-space, and assume that there exist distinct two points a;
and a; of X such that

(1) Lai]=1la;].

(2) If apis a point of X such that aiﬂeakﬁ;dj, then ap>a; is equivalent to ar>a; and also
ar<a; is equivalent to a,< aj.

Then 1 is an eigen value of X.

Proor. Let A4 be the topogenous matrix of X and let 44’=[cs]. We have already
seen that ¢y, is the number of the points which are contained in the intersection U,N\ U,
of the minimal basic neighborhoods U of a; and U, of a;.

From the condition (2), it is easy to calculate that if i 3¢k =¢j, then

Cik=Cpri=— Cpj=Cjp,
and
Cii= Cjj.

On the other hand clearly we have c¢;;<<ci. Also [[a;]=I[[a;] implies a; ¢ U;.
Now if a; € Uj and I=¢j , then a; <aj, and from the assumption of the theorem we have
a;<a;. Therefore a; € U;. From this we can prove

Cij=Ciji— 1.

From the above discussion, the ¢ th row and the j th row of the matrix 44" — E have
the same components. Hence the characteristic polynomial P(x)=|xE— AA’| has an
eigen value 1.
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§ 4. Examples.

Finally we shall mention the scheme of all T-spaces consisting of four elements, and
the associated partially ordered sets, topogenous matrices 4, A4’ and characteristic
polynomials P(x).

(1) A=(1000 A4 =(1111
1100 1222
1110 1233
1111 1234

Pi(x)=x*—10x34+15x2—7x+1
=(x—1) (x*—9x%+6x—1).

2) A=(1000 AA'=(1111
1100 1212
1010 1122
1111 12214
Py(x) =x*—9x%+16x%—9x+1
=(x—1)2%(x*—7x+1).
11
22
3 2
23

Py(x)=x*—9x%+ 1422 —7x+1
=(x—1) (x3—8x2+6x—1).

(4) A=(1000 A4'=(1011
0100 0111
1110 1133
1111 1134
Py(x) =Py().
(5) =(1000 A4'=(1111
1100 1211
1010 1122
1011 1123

(3) =(1000 A4 =(11
1100 12
1110 12
1101 12

Py(x)=x"'—8x3+14x*—Tx+1.
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(6) A=(1000 AA'=(101
0100 010
1010 102
1111 112
Py(x)=Ps(x).
@) A=(1000 AA'=(101
0100 011
1110 113
1101 112
Py(x)=x*—8x°+14x>—8x+1
=(x—1)*(x*—6x+1).
(8) A=(1000) A4=(101
0100 010
1010 102
1101 111
Py(x)=a*—Tx3+13x>—Tx+1.
(9) A=(1000 AA'=(111
1100 121
1010 112
1001 111
Py(x)=x*—Tx3+12x%>—Tx+1
=(x—1) (x2—5x+1).
(10) A=(1000] A4'=[100
0100 010
0010 001

1111 111
Pm(x)=P9(x).

W N =
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11)

(12)

(13)

(14)

(15)
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A=(1000 AA'=(100
0100 011
0110 012
0111 012

Py(x)=x'—7x3+11x2—6x+1
=(x—1) (#*—6x2+5x—1).

A=(1000 AA'=(100
0100 o111
0110 012
0101/ 011

Py(2)=x*—6x3+1042—6x+1
=(x—1)%(x2—4x+1).

A=(1000 AA =1
0100 0
0010 0
0111 0

Pi3(x) = Py3(x).
A=(1000 AA =
11100
0010
0011

- O = O
- = O O
w = = O

S O M oM
S O o
- - o o
D = o o

Py(x)=x*—6x3+11x%>—6x+1

=(x2—3x+1)32
A=(1000 AA' =(100
10100 010

0010 001

0011 001

Pis(x)=x*—5x°+8x*—5x+1
=(x—1)%(x*—3x+1).

0
1
2
3

N = = O
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16) o o A=(1000) A4=(1000
0100 0100

0010 0010

. o 0001 0001

P(x)=x"—4x3+6x2—4x+1
=(x—14
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