FI N TE TO－SPACES AND SI MPLI CI AL STRUCTURES

著者	SHI RAK M t sunobu
j ournal or publ i cat i on title	鹿児島大学理学部紀要．数学•物理学•化学
vol une	2
page range	$17-28$
別言語のタイトル	有限 TO 空間と単体的構造
URL	ht tp：／／hdl ．handl e．net $/ 10232 / 00006989$

FINITE T_{0}-SPACES AND SIMPLICIAL STRUCTURES

By
Mitsunobu Shiraki
(Received September 30, 1969)

§ 1. Introduction.

We consider the problem to represent faithfully a given finite T_{0}-space by a set of simplexes. To represent the space one may naturally consider the nerve of the minimal basic neighborhood system of the finite T_{0}-space. But such the nerve representation is not sufficient to characterize the following simple spaces. In a given set $X=\left\{a_{1}, a_{2}, a_{3}\right\}$ we consider two topologies whose minimal basic neighborhoods are

$$
\begin{aligned}
& \boldsymbol{B}_{1}=\left\{\left\{a_{1}\right\},\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{2}, a_{3}\right\}\right\}, \\
& \boldsymbol{B}_{2}=\left\{\left\{a_{1}\right\},\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{3}\right\}\right\} .
\end{aligned}
$$

Then these topological spaces have the same nerve representations, that is, there exists the same simplicial complex consisting of a triangle and all faces of the triangle.

On the other hand, M. C. McCord [1] has had some interesting results for homology and homotopy properties of finite spaces, and for a given finite T_{0}-space he has constructed a simplicial complex taking each totally ordered subset as a simplex, where he has used that the finite T_{0}-space is equivalent to a partially ordered set.

However this simplicial complex is not sufficient to characterize the given finite $T_{0^{-}}$ space. For instance, in a set $X=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, we consider two distinct topologies whose minimal basic neighborhood systems are

$$
\begin{aligned}
& \boldsymbol{B}_{1}=\left\{\left\{a_{1}\right\},\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{3}\right\},\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right\}, \\
& \boldsymbol{B}_{2}=\left\{\left\{a_{1}\right\},\left\{a_{2}\right\},\left\{a_{1}, a_{2}, a_{3}\right\},\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right\}
\end{aligned}
$$

Then these spaces have the same McCord's simplicial complexes.
In this note, we shall introduce the concept of a partially simplicial complex which consists of open simplexes. Such a complex characterizes completely a finite T_{0}-space.

§ 2. Partially simplicial complexes.

Two (geometric) open simplexes σ_{1} and σ_{2} in the Euclidean space R^{m} are said to be properly joined if

$$
\bar{\sigma}_{1} \cap \bar{\sigma}_{2}=\bar{\sigma}_{3}
$$

where $\bar{\sigma}_{i}$ is the closure of σ_{i}, and σ_{3} is the common face of σ_{1} and σ_{2}.
Definition 1. A set K of (geometric) open simplexes is said to be a quasi simplicial complex if any two simplexes of K are properly joined.

Definition 2. Let K_{1} and K_{2} be two quasi simplicial complexes. Then a mapping $\varphi: K_{1} \rightarrow K_{2}$ is said to be quasi simplicial if

$$
\sigma<\tau \Rightarrow \varphi(\sigma)<\varphi(\tau) \quad \text { for } \quad \sigma, \tau \in K
$$

where the symbol $<$ is the face relation.
Definition 3. Let K be a star-finite quasi complex. Then we consider a space which is homeomorphic to the subspace $\cup\{\sigma \mid \sigma \in K\}$ of the Euclidean space. Such a space is denoted by $|K|$, and is called the quasi polytope of K.

Definition 4. A finite quasi simplicial complex K is said to be a n-partially simplicial complex if
(1) If $\sigma, \tau \in K$ and $\sigma \cap \tau$ is a k-simplex, then the set $\{\rho \in K \mid \rho<\sigma \cap \tau\}$ has $k+1$ elements.
(2) $\left\{v^{0} \mid v^{0}<\tau, \tau \in K\right\}$ has n elements, where v^{0} is a 0 -simplex.

Example. We set $\sigma^{0}=<a_{1}>, \sigma_{1}^{1}=\left\langle a_{1} a_{2}\right\rangle, \sigma_{2}^{1}=<a_{1} a_{3}>, \sigma^{2}=<a_{1} a_{2} a_{3} a_{4}>$. Then

$$
K=\left\{\sigma^{0}, \sigma_{1}^{1}, \sigma_{2}^{1}, \sigma^{2}\right\}
$$

is a 4-partially simplicial complex.
Definition 5. Let K_{1} and K_{2} be two partially simplicial complexes. Then a mapping $f: K_{1} \rightarrow K_{2}$ is said to be an isomorphism if the following are satisfied:
(1) f is bijective.
(2) f and f^{-1} are quasi simplicial.

If such an isomorphism exists between K_{1} and K_{2}, then K_{1} and K_{2} are said to be isomrophic, and we denote by $K_{1} \approx K_{2}$.

The following is evident.
Theorem 1. Let K_{1} and K_{2} be two partially simplicial complexes, then

$$
K_{1} \approx K_{2} \Rightarrow\left|K_{1}\right| \simeq\left|K_{2}\right| .
$$

§ 3. Simplicial presentation.

Let (X, \mathcal{U}) be a finite topological space. We define an order relation \leq in X by
saying $x \leq y$ when $U_{x} \subset U_{y}$ (where U_{x} and U_{y} are minimal basic neighborhoods of x and y respectively). Then (X, \leq) is a quasi ordered set.

We have mentioned the following lemmas in [2].
Lemma 1. A finite topological space (X, \mathcal{U}) is a T_{0}-space if and only if (X, \leq) is a partially ordered set.

Lemma 2. Suppose (X, \mathcal{U}) and (Y, \mathcal{Q}) are finite T_{0}-spaces with the associated partially ordered sets (X, \leq) and (Y, \leq) respectively. Then a mapping $f:(X, U) \rightarrow(Y, Q)$ is continuous if and only if $f:(X, \leq) \rightarrow(Y, \leq)$ is order-preserving, f is a homeomorphism if and only if f is an order-isomorphism of (X, \leq) onto (Y, \leq).

We shall now verify the following theorem.
Theorem 2. Let (X, τ) be a finite T_{0}-space. Then there exists a partially simplicial complex K with the following properties:
(1) There exists a bijective correspondence that assigns to each point of X a simplex of K.
(2) K is a topological invariant of (X, τ).

Conversely, for each partially simplicial complex K there exists a finite T_{0}-space (K, \mathcal{U}), whose induced partially simplicial complex L is isomorphic to K. If K and L are isomorphic partially simplicial complexes, then the corresponding T_{0}-spaces (K, \mathcal{U}) and (L, \mathcal{V}) are homeomorphic.

Proof. Let (X, τ) be a finite T_{0}-space such that $X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and let (X, \leq) be a partially ordered set which is induced from (X, τ). We consider the ($n-1$)-simplex $\sigma^{n-1}=<a_{1} a_{2} \ldots a_{n}>$, and denote the closure of the simplex σ^{n-1} by $K\left(\sigma^{n-1}\right)$.

We define a mapping $g: X \rightarrow K\left(\sigma^{n-1}\right)$ as follows: For $a_{i} \in X$, let σ_{i} be the face of σ^{n-1} whose vertices are $\left\{a_{k} \in X \mid a_{k} \geq a_{i}\right\}$. Then we put

$$
g\left(a_{i}\right)=\sigma_{i} \in K\left(\sigma^{n-1}\right)
$$

Setting $K=g(X)$, we shall verify that K is a n-partially simplicial complex, i.e., K satisfies (1) and (2) of Definition 4.

From the above definition we immediately find that K is a quasi simplicial complex.
We shall show that K satisfies (1) of Definition 4. Suppose that $\sigma_{i}, \sigma_{j} \in K$ and $\rho=$ $\sigma_{i} \cap \sigma_{j}$, where $\sigma_{i}=\left\langle a_{i_{1}} \cdots a_{i_{h}}\right\rangle, \sigma_{j}=\left\langle a_{j_{1}} \cdots a_{j_{l}}\right\rangle, \rho=\left\langle a_{r_{1}} \cdots a_{r_{k}}>\right.$. Then $\left\{a_{r_{1}}, \cdots\right.$, $\left.a_{r_{k}}\right\}=\left\{a_{i_{1}}, \cdots, a_{i_{h}}\right\} \cap\left\{a_{j_{1}}, \cdots, a_{j_{l}}\right\}$. Now set

$$
\sigma_{q}=g\left(a_{q}\right) \quad\left(q=r_{1}, \ldots, r_{k}\right)
$$

If a_{m} is a vertix of σ_{q}, then we have $a_{q} \leq a_{m}$. Since a_{q} is a vertex of σ_{i}, we have $a_{i} \leq a_{q}$. Thus we have $a_{i} \leq a_{m}$. Hence a_{m} is a vertex of σ_{i}. An analogous argument shows that a_{m} is a vertex of σ_{j}. So a_{m} is a vertex of $\rho=\sigma_{i} \cap \sigma_{j}$. Thus

$$
\sigma_{q}<\rho \quad\left(q=r_{1}, \ldots, r_{k}\right)
$$

If $r_{t} \neq r_{s}$, then since $a_{r_{t}} \neq a_{r_{s}}$, from the definition of σ_{i} we have either $a_{r_{t}} \nleftarrow \sigma_{r_{s}}$ or $a_{r_{s}} \nleftarrow \sigma_{r_{t} .}$. So $\sigma_{r_{t}} \neq \sigma_{r_{s}}$. Hence ρ has distinct k faces $\sigma_{r_{1}}, \sigma_{r_{2}}, \ldots, \sigma_{r_{k}}$.

Now, from the construction of K it is clear that K satisfies (2) of Definition 4.
We remark that $a_{i} \leq a_{j}$ holds in (X, \leq) if and only if $g\left(a_{i}\right)>g\left(a_{j}\right)$ holds in K.
We have to show that K is a topological invariant. Let (X, U) and ($Y, Q)$ be two homeomorphic finite T_{0}-spaces, and let K and L be two partially simplicial complexes corresponding to (X, \mathscr{U}) and (Y, Q) as above respectively. We show that $K \approx L$.

Consider the partially ordered sets (X, \leq) and (Y, \leq) associated with (X, \mathcal{U}) and ($Y, Q)$, respectively. Then by Lemma 2, there exists a bijective mapping $f:(X, \leq)$ $\rightarrow(Y, \leq)$ such that $x_{1} \leq x_{2} \Leftrightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$. Then we have

$$
g\left(x_{1}\right)>g\left(x_{2}\right) \Leftrightarrow g\left(f\left(x_{1}\right)\right)>g\left(f\left(x_{2}\right)\right) .
$$

This implies that $K \approx L$.
We shall prove the latter assertions of Theorem 2. Let K be a partially simplicial complex, and define an ordering \leq between elements of K as follows:

$$
\sigma \leq \tau \Leftrightarrow \sigma>\tau, \quad \text { for } \quad \sigma, \tau \in K .
$$

Then (K, \leq) is a partially ordered set whose ordering defines a T_{0}-topology \mathcal{U} of K. Let L be the partially simplicial complex which is defined by (K, \mathcal{U}). As we have already verified, there exists a bijection $g:(K, \mathcal{U}) \rightarrow L$ such that

$$
\sigma>\tau \Leftrightarrow \sigma \leq \tau \Leftrightarrow g(\sigma)>g(\tau) .
$$

Hence we have $K \approx L$.
Finally, if $h: K \rightarrow L$ is an isomorphism of a partially simplicial complex K to a partially simplicial complex L, then for $\sigma, \tau \in K$,

$$
\sigma>\tau \Leftrightarrow h(\sigma)>h(\tau)
$$

and

$$
\sigma \leq \tau \Leftrightarrow h(\sigma) \leq h(\tau) .
$$

Therefore (K, \mathcal{U}) and (L, \mathscr{Q}) are homeomorphic.
Thus the proof of Theorem 2 is complete.
Definition 6. Let (X, τ) be a finite T_{0}-space, whose associated partial order is denoted by \leq. A partially simplicial complex K is said to be a simplicial presentation of (X, τ) if there exists a mapping $f: K \rightarrow X$ such that
(1) f is bijective.
(2) $\sigma<\tau \Leftrightarrow f(\sigma) \geq f(\tau)$.

The mapping f is called a simplicial presentation mapping.

From this definition, $f=g^{-1}: K \rightarrow X$ in the proof of Theorem 2 is a simplicial presentation mapping, and K is a simplicial presentation of X.

For the following two lemmas we reffer McCord [1].
Lemma 3. Let P be a continuous mapping of a topological space X to another topological space Y, and U be a basis-like open cover of Y satisfying the following condition: for each $U \in U$, the restriction $P \mid P^{-1}(U): P^{-1}(U) \rightarrow U$ is a weak homotopy equivalence. Then P itself is a weak homotopy equivalence.

Lemma 4. Let X be a finite T_{0}-space, and let U_{i} be the minimal basic neighborhood of a_{i}, and let \boldsymbol{B} be the minimal basic neighborhood system. Then
(1) \boldsymbol{B} is a basis-like open cover of X.
(2) U_{i} is contractible to a point a_{i}.

We now obtain the following lemma.
Lemma 5. Let (X, τ) be a finite T_{0}-space, $f: K \rightarrow X$ be a simplicial presentation mapping, and K be a simplicial presentation of (X, τ). Then, for each $a_{i} \in X,\left|f^{-1}\left(U_{i}\right)\right|$ is a cuntractible open set of $|K|$, where U_{i} is the minimal basic neighborhood of a_{i}.

Proof. For each $a_{i} \in X, a_{i}$ is the maximum element of U_{i}, and $\sigma_{i}=f^{-1}\left(a_{i}\right)$ is an open simplex such that $\left\{a_{k} \in X \mid a_{k} \geq a_{i}\right\}$ are its vertices. Since we have $a_{j} \in U_{i} \Leftrightarrow a_{j} \leq$ $a_{i} \Leftrightarrow f^{-1}\left(a_{j}\right)>f^{-1}\left(a_{i}\right), f^{-1}\left(a_{i}\right)$ is the common face of all simplexes $f^{-1}\left(a_{j}\right)$ such that $a_{j} \in U_{i} . \quad T_{i}=\left\{a_{k} \in X \mid \exists a_{j} \leq a_{i}, a_{k} \geq a_{j}\right\}$ is the set of vertices of $f^{-1}\left(U_{i}\right)$ and $V_{i}=$ $\left\{a_{k} \in X \mid a_{k} \geq a_{i}\right\}$ is the set of vertices of $f^{-1}\left(a_{i}\right)$, so we have $T_{i}>V_{i}$.

Now, suppose that

$$
x=\sum\left\{x_{k} a_{k} \mid a_{k} \in T_{i}\right\}
$$

is the barycentric coordinates of x with respect to T_{i}. Set

$$
\alpha(x)=\sum\left\{x_{k} \mid a_{k} \in V_{i}\right\}
$$

and

$$
\varphi(x)=\sum\left\{\left.\frac{1}{\alpha(x)} x_{k} a_{k} \right\rvert\, a_{k} \in V_{i}\right\} .
$$

Then $\varphi(x) \in f^{-1}\left(a_{i}\right)\left(=\sigma_{i}\right)$. If $x \in \sigma_{i}$, then $\alpha(x)=1$ and $\varphi(x)=x$. Hence $\varphi: \mid f^{-1}$ $\left(U_{i}\right)|\rightarrow| \sigma_{i} \mid$ is a retraction.

Next, we define $H:\left|f^{-1}\left(U_{i}\right)\right| \times I \rightarrow\left|f^{-1}\left(U_{i}\right)\right|$ by

$$
H(x, t)=(1-t) x+t \varphi(x)
$$

Since $x \in\left|f^{-1}\left(U_{i}\right)\right|$, there is a $a_{k} \in U_{i}$ such that $x \in\left|f^{-1}\left(a_{k}\right)\right|$. Then from $x \in \sigma_{k}$ and $\sigma_{i}<\sigma_{k}$, we have $H(x, t) \epsilon\left|f^{-1}\left(U_{i}\right)\right|$. And

$$
\begin{aligned}
& H(x, 0)=x, \\
& H(x, 1)=\varphi(x) \\
& H(x, t)=x \quad \text { if } \quad x \in\left|\sigma_{i}\right| .
\end{aligned}
$$

Thus $\left|\sigma_{i}\right|$ is the strong deformation retract of $\left|f^{-1}\left(U_{i}\right)\right|$. Since the open simplex σ_{i} is contractible to its barycenter $b\left(\sigma_{i}\right)$, the proof of Lemma 3 is complete.

Let X be a finite T_{0}-space, K be a simplicial presentation of X, and let $f: K \rightarrow X$ be the presentation mapping. We use the same symbol f to represent the following mapping $f:|K| \rightarrow X$. For $x \in|K|$, there is an unique simplex $\sigma_{i} \in K$ such that $x \in\left|\sigma_{i}\right|$. Then we set

$$
f(x)=f\left(\sigma_{i}\right)
$$

f is continuous. To show this, let $f(x)=f\left(\sigma_{i}\right)=a_{i}$, and let W be any open neighborhood of a_{i}. If U_{i} is the minimal neighborhood of a_{i}, then $U_{i} \subset W$. Now the open star of σ_{i} :

$$
\operatorname{St}\left(\sigma_{i}\right)=\cup\left\{\sigma_{k} \in K \mid \sigma_{k}>\sigma_{i}\right\}
$$

is an open set of $|K|$, hence it is an open neighborhood of x. If $y \in \operatorname{St}\left(\sigma_{i}\right)$, there exists an unique open simplex σ_{k} such that $y \in \sigma_{k}$ and $\sigma_{k}>\sigma_{i}$. Then

$$
f(y)=f\left(\sigma_{k}\right), \quad f\left(\sigma_{k}\right) \leq f\left(\sigma_{i}\right)=a_{i} .
$$

Hence $f(y) \leq a_{i}$, that is, $f(y) \in U_{i} \subset W$. Thus

$$
f\left(\operatorname{St}\left(\sigma_{i}\right)\right) \subset W
$$

The next theorem follows immediately from Lemmas 3, 4, and 5.
Theorem 3. Let X be a finite T_{0}-space, and let $f: K \rightarrow X$ be the simplicial presentation mapping of the simplicial presentation K of X to X, then f induces the weak homotopy equivalence $f:|K| \rightarrow X$.

Lemma 6. If K is a quasi complex, then

$$
N=\left\{<b\left(\sigma_{0}\right) b\left(\sigma_{1}\right) \cdots b\left(\sigma_{k}\right)>\mid \sigma_{0}<\sigma_{1}<\cdots<\sigma_{k}, \sigma_{i} \in K\right\}
$$

is a simplicial complex, where $b\left(\sigma_{k}\right)$ is the barycenter of σ_{k}.
Proof. From the definition of N, it is clear that $s>\tau$ and $s \in N$ imply $\tau \in N$, and for $s_{1}, s_{2} \in N$ we have

$$
\begin{aligned}
& s_{1}=<b\left(\sigma_{1}\right) b\left(\sigma_{2}\right) \cdots b\left(\sigma_{i}\right)>, \sigma_{1}<\sigma_{2}<\cdots<\sigma_{i}, \sigma_{k} \in N, \\
& s_{2}=<b\left(\tau_{1}\right) b\left(\tau_{2}\right) \cdots b\left(\tau_{j}\right)>, \tau_{1}<\tau_{2}<\cdots<\tau_{j}, \tau_{k} \in N .
\end{aligned}
$$

Also, if $\eta_{1}<\eta_{2}<\cdots<\eta_{l}$ and $\left\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{i}\right\} \cap\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{j}\right\}=\left\{\eta_{1}, \eta_{2}, \cdots, \eta_{l}\right\}$, then
$<b\left(\eta_{1}\right) b\left(\eta_{2}\right) \ldots b\left(\eta_{t}\right)>\epsilon N$. Since any two simplexes of K are properly joined,

$$
s_{1} \cap s_{2}=<b\left(\eta_{1}\right) b\left(\eta_{2}\right) \ldots b\left(\eta_{l}\right)>\epsilon N
$$

Hence $s_{1} \cap s_{2}$ is the common face of s_{1} and s_{2}. Thus N is a simplicial complex.
N is said to be the nucleus of the quasi simplicial complex K.
Let K be a quasi simplicial complex. We consider the simplicial complex

$$
\mathrm{Cl} K=\{s \mid \exists \sigma \in K: s<\sigma\}
$$

which is induced by K, and let $\mathrm{Cl} K_{1}$ be the first barycentric subdivision of $\mathrm{Cl} K$. Then

$$
K_{1}=\left\{\sigma \in \mathrm{Cl} K_{1}|\sigma \subset| K \mid\right\}
$$

is called the first barycentric subdivision of K.
Lemma 7. Let K be a partially simplicial complex, and let N be the nucleus of K. Then $|N|$ is a strong deformation retract of $|K|$.

Proof. Let K_{1} be the first barycentric subdivision of K, and let

$$
B=\left\{b_{i} \mid b_{i}=b\left(\sigma_{i}\right), \quad i=1,2, \cdots, n\right\}
$$

be the set of vertices of N. Then

$$
\operatorname{St}\left(b_{i}\right)=\cup\left\{\sigma \in K_{1} \mid b_{i}<\sigma\right\}
$$

is defined as the open star of b_{i} in K_{1}.
First, we remark that

$$
|K|=\cup\left\{\operatorname{St}\left(b_{i}\right) \mid b_{i} \in B\right\}
$$

For, if $x \in|K|$, then since $|K|=\left|K_{1}\right|$, there exist unique simplexes $\sigma \in K$ and $\sigma_{1} \epsilon K_{1}$ such that $x \in \sigma$ and $x \in \sigma_{1}$. Let $b(\sigma)=b_{i} \in B$. Since K_{1} is the first barycentric subdivision of K, and since $\sigma_{1} \subset \sigma$, we have $\sigma_{1} \subset \operatorname{St}\left(b_{i}\right)$ and $x \in \sigma_{1} \subset \operatorname{St}\left(b_{i}\right) \subset \cup\left\{\operatorname{St}\left(b_{i}\right) \mid b_{i} \in B\right\}$. Hence $|K|=\cup\left\{\operatorname{St}\left(b_{i}\right) \mid b_{i} \in B\right\}$.
Second, we remark that N is a full subcomplex of K_{1}. For, if $\left\langle b_{1} b_{2} \ldots b_{p}>\epsilon K_{1}\right.$ $\left(b_{i} \in B\right.$), then $\sigma_{1}<\sigma_{2}<\cdots<\sigma_{p}$ and $b_{i}=b\left(\sigma_{i}\right)$. Hence $<b_{1} b_{2} \cdots b_{p}>\epsilon N$ follows from the definition of N.

We shall now prove that $|N|$ is a strong deformation retract of $|K|$.
Let $x \in|K|=\left|K_{1}\right|$. There exists an unique open simplex $\sigma_{1} \in K_{1}$ such that $x \in \sigma_{1}$. Then we set

$$
\alpha(x)=\sum\left\{x\left(b_{i}\right) \mid b_{i} \in B\right\}
$$

where $x\left(b_{i}\right)$ is the barycentric coordinate of b_{i}, and define

$$
r(x)=\sum\left\{\left.\frac{1}{\alpha(x)} x\left(b_{i}\right) b_{i} \right\rvert\, b_{i} \in B\right\}
$$

Then $r(x)$ belongs to a face τ of σ_{1}. Since vertices of τ belong to B, remarking that N is a full subcomplex of K_{1}, we have $\tau \epsilon N$ and $r(x) \epsilon|N|$. On the other hand, if $x \epsilon|N|$, then since $\alpha(x)=1$ we have $r(x)=x$. Thus $r:|K| \rightarrow|N|$ is a retraction. Next, we define a mapping $H:|K| \times I \rightarrow|K|$ by

$$
H(x, t)=t \cdot r(x)+(1-t) x .
$$

Then we have

$$
\begin{array}{ll}
H(x, 0)=x & \text { for } \quad t=0 \\
H(x, 1)=r(x) & \text { for } \quad t=1
\end{array}
$$

and

$$
H(x, t)=x \quad \text { for } \quad x \in|N|
$$

Hence $|N|$ is a strong deformation retract of $|K|$.
Lemma 8. Let $f: K \rightarrow L$ be a quasi simplicial mapping of a quasi simplicial complex K to a quasi simplicial complex L. Then f induces a simplicial mapping f^{*} of the nucleus $N(K)$ of K to the nucleus $N(L)$ of L.

Proof. $f^{*}: N(K) \rightarrow N(L)$ is defined by

$$
f^{*}\left(b\left(\sigma_{i}\right)\right)=b\left(f\left(\sigma_{i}\right)\right)
$$

If $<b\left(\sigma_{0}\right) b\left(\sigma_{1}\right) \cdots b\left(\sigma_{k}\right)>\epsilon N(K)$, where $\sigma_{0}<\sigma_{1}<\cdots<\sigma_{k}, \sigma_{i} \in K$, then

$$
f^{*}\left(<b\left(\sigma_{0}\right) b\left(\sigma_{1}\right) \ldots b\left(\sigma_{k}\right)>\right)=\left\{b\left(f\left(\sigma_{0}\right), b\left(f\left(\sigma_{1}\right)\right), \ldots, b\left(f\left(\sigma_{k}\right)\right)\right\}\right.
$$

Since f is quasi simplicial, we have $f\left(\sigma_{0}\right)<f\left(\sigma_{1}\right)<\cdots<f\left(\sigma_{k}\right)$. The simplex with vertices $\left\{b\left(f\left(\sigma_{0}\right)\right), b\left(f\left(\sigma_{1}\right)\right), \cdots, b\left(f\left(\sigma_{k}\right)\right)\right\}$ is in $N(L)$. Thus f^{*} is a simplicial mapping.

Let K and L be quasi simplicial complexes, and g be a single valued transformation of the vertices of simplex of K to the vertices of simplex of L. We call that g is a simplicial mapping of K to L, when for every simplex $\sigma=<a_{1} a_{2} \cdots a_{p}>$ of $K,<\left\{g\left(a_{1}\right)\right.$, $\left.g\left(a_{2}\right), \ldots, g\left(a_{p}\right)\right\}>$ is a simplex of L.

By barycentric extension, we can extend this mapping g to a continuous mapping, and again we call it the simplicial mapping of the quasi polytope $|K|$ to the quasi polytope $|L|$.

Theorem 4. Let g be a continuous mapping of a finite T_{0}-space X to a finite T_{0}-space Y, and let $f_{X}: K(X) \rightarrow X$ and $f_{Y}: K(Y) \rightarrow Y$ be two presentation mappings. If $K_{1}(X)$ and $K_{1}(Y)$ are the first barycentric subdivisions of $K(X)$ and $K(Y)$ respectively, then g induces a simplicial mapping g_{1} of $K_{1}(X)$ to $K_{1}(Y)$, and $f_{Y} \circ g_{1}=g \circ f_{X}$ holds.

Proof. For $a_{i} \in X$, we set

$$
S_{i}=\left\{b_{k} \in Y \mid b_{k} \geq g\left(a_{i}\right)\right\}
$$

Since g is continuous, $a_{j} \geq a_{i}$ implies $S_{j} \subset S_{i}$. Let

$$
T_{i}=\left\{b_{k} \in S_{i} \mid a_{j}>a_{i} \Rightarrow b_{k} \notin S_{j}\right\},
$$

and define a mapping $g_{1}: K_{1}(X) \rightarrow K_{1}(Y)$ as follows: let c be a vertex of a simplex in $K_{1}(X)$, and let

$$
c=b\left(<a_{i_{1}} a_{i_{2}} \cdots a_{i_{k}}>\right)
$$

where $a_{i_{l}} \in X(l=1,2, \ldots, k)$. The simplex $<a_{i_{1}} a_{i_{2}} \cdots a_{i_{k}}>$ is a face of a certain simplex $f_{X}^{-1}\left(a_{p}\right) \in K(X)$. Then we have $a_{i_{l}} \geq a_{p}(l=1,2, \ldots, k)$. Since g is continuous, we have $g\left(a_{i_{l}}\right) \geq g\left(a_{p}\right)$. Hence the simplex $<T_{i_{l}}>$ which is determined by $T_{i_{l}}$ is a face of $f_{Y}^{-1}\left(g\left(a_{p}\right)\right)$. Therefore we have

$$
<\cup\left\{T_{i_{l}} \mid l=1,2, \ldots, k\right\}><f_{Y}^{-1}\left(g\left(a_{p}\right)\right)
$$

We now define g_{1} by setting

$$
g_{1}(c)=b\left(<\cup\left\{T_{i_{l}} \mid l=1,2, \ldots, k\right\}>\right) .
$$

We show that g_{1} is simplicial. Let $\left\langle c_{1} c_{2} \cdots c_{k}\right\rangle \epsilon K_{1}(X)$, and let

$$
\begin{aligned}
& c_{i}=b\left(\sigma_{i}\right) \quad(i=1,2, \cdots, k), \\
& \sigma_{1}<\sigma_{2}<\cdots<\sigma_{k}, \quad \sigma_{i}=<a_{i_{1}} a_{i_{2}} \cdots a_{i_{l}}>
\end{aligned}
$$

Then

$$
g_{1}\left(c_{i}\right)=b\left(\tau_{i}\right)
$$

where $\tau_{i}=<\cup\left\{T_{i_{h}} \mid h=1,2, \ldots, l\right\}>$, so

$$
\sigma_{i}<\sigma_{j} \Rightarrow \tau_{i}<\tau_{j} .
$$

Thus

$$
<g_{1}\left(c_{1}\right) g_{1}\left(c_{2}\right) \cdots g_{1}\left(c_{k}\right)>\epsilon K_{1}(Y)
$$

Therefore g_{1} is a simplicial mapping.
Finally we show that $f_{Y} \circ g_{1}=g \circ f_{X}$. Suppose $x \epsilon\left|K_{1}(X)\right|$. There exists an unique open simplex $\sigma \in K_{1}(X)$ such that $x \in \sigma$. From the definition of the first barycentric subdivision, $\sigma=<c_{1} c_{2} \cdots c_{p}>$ is such that $c_{i}=b\left(\tau_{i}\right), \tau_{1}<\tau_{2}<\cdots<\tau_{p}, \tau_{p} \in K(X), \tau_{p}=$ $f_{X}^{-1}\left(a_{p}\right)$. Since $g_{1}\left(c_{p}\right)=g_{1}\left(b\left(f_{X}^{-1}\left(a_{p}\right)\right)\right)=b\left(f_{Y}^{-1}\left(g\left(a_{p}\right)\right)\right)$,

$$
g_{1}(x) \epsilon<\left\{g_{1}\left(c_{1}\right), g_{1}\left(c_{2}\right), \ldots, g_{1}\left(c_{p}\right)\right\}>C f_{\bar{Y}}^{-1}\left(g\left(a_{p}\right)\right)
$$

Hence we have

$$
f_{Y}\left(g_{1}(x)\right)=f_{Y}\left(f_{Y}^{-1}\left(g\left(a_{p}\right)\right)\right)=g\left(a_{p}\right) .
$$

On the other hand, since $\left\langle c_{1} c_{2} \cdots c_{p}\right\rangle \subset \tau_{p}$, we have

$$
f_{X}(x)=f_{X}(\sigma)=f_{X}\left(\tau_{p}\right)=a_{p} .
$$

Then we have $g \circ f_{X}(x)=g\left(a_{p}\right)$, and $f_{Y} \circ g_{1}=g \circ f_{X}$.
Theorem 5. Let g be a continuous mapping of a finite T_{0}-space X to a finite T_{0}-space Y. Then g induces a simplicial mapping g_{N} of the nucleus $N(X)$ of $K(X)$ to the nucleus $N(Y)$ of $K(Y)$, and the following diagram is commutative, where $f_{X}, f_{Y}, \psi_{X}, \psi_{Y}$ are weak homotopy equivalences, and r_{X}, r_{Y} are strong deformation retracts.

Proof. Let $f_{X}: K(X) \rightarrow X$ and $f_{Y}: K(Y) \rightarrow Y$ be simplicial presentation mappings of X and Y respectively, and define $g_{0}: K(X) \rightarrow K(Y)$ by

$$
g_{0}=f_{Y}^{-1} \circ g \circ f_{X}
$$

g_{0} is a quasi simplicial mapping. Indeed, if $\sigma_{i}>\sigma_{j}$, then $f_{X}\left(\sigma_{i}\right) \leq f_{X}\left(\sigma_{j}\right)$. Since g is a continuous mapping and hence an order-preserving mapping, we have $g \circ f_{X}\left(\sigma_{i}\right) \leq$ $g \circ f_{X}\left(\sigma_{j}\right)$, and

$$
f_{Y}^{-1} \circ g \circ f_{X}\left(\sigma_{i}\right)>f_{Y}^{-1} \circ g \circ f_{X}\left(\sigma_{j}\right)
$$

Hence g_{0} is a quasi simplicial mapping.
By Lemma $8, g_{0}$ induces a simplicial mapping $g_{N}: N(X) \rightarrow N(Y)$. We define ψ_{X} : $|N(X)| \rightarrow X$ as follows: For each $x \in|N(X)|$ there is an unique open simplex $<b\left(\sigma_{0}\right)$ $b\left(\sigma_{1}\right) \cdots b\left(\sigma_{k}\right)>\epsilon N(K), \sigma_{0}<\sigma_{1}<\cdots<\sigma_{k}, \sigma_{i} \in K(X)$ such that $x \epsilon<b\left(\sigma_{0}\right) b\left(\sigma_{1}\right) \cdots$ $b\left(\sigma_{k}\right)>$. Then we define

$$
\psi_{X}(x)=f_{X}\left(\sigma_{k}\right)
$$

Let r_{X} be the retraction defined in the proof of Lemma 7. Then from the definition of ψ_{X},

$$
\psi_{X} \circ r_{X}=f_{X}
$$

Since $|N(X)|$ is a strong deformation retract of $|K(X)|$ and f_{X} is a weak homotopy equivalence, ψ_{X} is a weak homotopy equivalence. Now for each $x \epsilon|N(X)|$ there is an unique open simplex $<b\left(\sigma_{0}\right) b\left(\sigma_{1}\right) \cdots b\left(\sigma_{k}\right)>\ni x, \sigma_{0}<\sigma_{1}<\cdots<\sigma_{k}$. Since $g_{N}(<$ $\left.b\left(\sigma_{0}\right) b\left(\sigma_{1}\right) \cdots b\left(\sigma_{k}\right)>\right)=<b\left(g_{0}\left(\sigma_{0}\right)\right) b\left(g_{0}\left(\sigma_{1}\right)\right) \cdots b\left(g_{0}\left(\sigma_{k}\right)\right)>$,

$$
g_{N}(x) \epsilon<b\left(g_{0}\left(\sigma_{0}\right)\right) b\left(g_{0}\left(\sigma_{1}\right)\right) \cdots b\left(g_{0}\left(\sigma_{k}\right)\right)>.
$$

Then we have

$$
\psi_{Y}\left(g_{N}(x)\right)=f_{Y}\left(g_{0}\left(\sigma_{k}\right)\right)=g \circ f_{X}\left(\sigma_{k}\right) .
$$

Hence from $g \circ \psi_{X}(x)=g \circ f_{X}\left(\sigma_{k}\right)$, we have

$$
\psi_{Y} \circ g_{N}=g \circ f_{X}
$$

§ 4. Partially simplicial complexes and induced finite \boldsymbol{T}_{0}-spaces.

In Theorem 2, for every partially simplicial complex K, we have considered an equivalent finite T_{0}-space (K, \mathcal{U}) which has been constructed in the following way. For each $\sigma \epsilon K$, put

$$
V_{\sigma}=\{\tau \in K \mid \tau>\sigma\}
$$

Then (K, \mathscr{U}) is a finite T_{0}-space such that V_{σ} is the minimal basic neighborhood of σ.
The following Lemma 9 and Theorem 6 are easily found.
Let K be a partially simplicial complex, and (K, \mathcal{U}) be the corresponding finite T_{0-} space. Then clearly the identity mapping $i: K \rightarrow(K, \mathcal{U})$ is the simplicial presentation mapping. Hence we have the following lemma.

Lemma 9. The identity mapping $i: K \rightarrow(K, \mathcal{U})$ induces a weak homotopy equivalence i : $|K| \rightarrow(K, \mathscr{U})$.

Theorem 6. Let $g: K \rightarrow L$ be a quasi simplicial mapping of a partially simplicial complex K to a partially simplicial complex L. If $f_{K}:|K| \rightarrow(K, \mathcal{U})$ and $f_{L}:|L| \rightarrow(L, \vartheta)$ are two simplicial presentation mappings, then g is a continuous mapping of (K, \mathcal{U}) to (L, Q), and g has the following properties:
(1) let K_{1} and L_{1} be the first barycentric subdivisions of K and L respectively. Then g induces a simplicial mapping $g_{1}:\left|K_{1}\right| \rightarrow\left|L_{1}\right|$ such that $f_{L} \circ g_{1}=g \circ f_{K}$.
(2) Let $N(K)$ and $N(L)$ be the nucleuses of K and L respectively, and let $\psi_{K}=f_{K} \mid N(K)$ and $\psi_{L}=f_{L} \mid N(L)$. Then g induces a simplicial mapping $g_{N}:|N(K)| \rightarrow|N(L)|$ such that $\psi_{L} \circ g_{N}=g \circ \psi_{K}$.

Proof. If $\sigma, \tau \in(K, \mathcal{U})$ and $\sigma \leq \tau$, then we have $\sigma>\tau$ in K. Since g is quasi simplicial, we have $g(\sigma)>g(\tau)$ in L and $g(\sigma) \leq g(\tau)$ in (L, ϑ). Then by Lemma 2, $g:(K, U) \rightarrow(L, Q)$ is continuous.

Thus (1) and (2) follow immediately from Theorem 4 and Theorem 5.
Theorem 7. Let K be a n-partially simplicial complex, and let α_{i} be the number of i-simplexes of K. Then we have
(1) $\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n-1}=n$.
(2) $1 \leq \alpha_{0} \leq n$.
(3) $0 \leq \alpha_{i} \leq n-i, \quad(i=1,2, \cdots, n-1)$.

Proof. (1). We need to prove that a n-partially simplicial complex K has just n elements. Let (K, \mathscr{U}) be the finite T_{0}-space corresponding to K, and L be the simplicial presentation of (K, U) which has been constructed in the proof of Theorem 2, that is,

$$
L=\{s(\sigma) \mid \sigma \in K\}
$$

where $s(\sigma)$ is a simplex with vertices $\{\tau \in K \mid \tau>\sigma\}$. From the proof of Theorem 2, the number of vertices $\{\sigma \mid \sigma \in K\}$ of L is equal to the number of simplexes of L. Then by the second assertion of Theorem 2, we have $K \approx L$. So L has n vertices. Therefore K has n elements.
(2). From (1), we have $\alpha_{0} \leq n$. We prove that $\alpha_{0} \geq 1$. Suppose $\sigma_{0} \in K$ and σ_{0} is a k_{0}-simplex. When $k_{0}=0$, we have $\alpha_{0} \geq 1$. When $k_{0}>0$, from (1) of Definition $4, \sigma_{0}$ has k_{0} proper faces in K. We take such a face σ_{1}, and let k_{1} be the dimension of σ_{1}. When $k_{1}=0$, we have $\alpha_{0} \geq 1$. When $k_{1}>0, \sigma_{1}$ has k_{1} proper faces in K. We repeat a similar process and find that K has at least a 0 -simplex. Thus (2) holds.
(3). Assume that $\alpha_{i} \geq n-i+1$ for some i. Any i-simplex in K has i proper faces in K. Hence the number of all simplexes in K are not less than

$$
(n-i+1)+i=n+1 .
$$

This contradicts (1).

Reference

[1] M. C. McCord: Singular homology groups and homotopy groups of finite topological spaces. Duke Math. J. Vol. 33, (1966) 465-474.
[2] M. Shiraki: On finite topological spaces. Reports of the Faculty of Science Kagoshima Univ. No. 1 (1968) 1-8.

