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§ 1. Introduction.

We consider the problem to represent faithfully a given finite To-space by a set of
simplexes. To represent the space one may naturally consider the nerve of the minimal
basic neighborhood system of the finite Ti-space. But such the nerve representation is
not sufficient to characterize the following simple spaces. In a given set X={a1, a2, a3}
we consider two topologies whose minimal basic neighborhoods are

B,= {{al}, {ala aZ}a {als a2,y aS}},
B;={{a1}, {a1, as}, {a1, as}}.

Then these topological spaces have the same nerve representations, that is, there exists
the same simplicial complex consisting of a triangle and all faces of the triangle.

On the other hand, M. C. McCord [ 1] has had some interesting results for homology
and homotopy properties of finite spaces, and for a given finite T,-space he has con-
structed a simplicial complex taking each totally ordered subset as a simplex, where he
has used that the finite T'p-space is equivalent to a partially ordered set.

However this simplicial complex is not sufficient to characterize the given finite T-
space. For instance, in a set X={a1, as, a3, a4}, we consider two distinct topologies
whose minimal basic neighborhood systems are

BII{{al}: '{ah a2}3 {al’ a3}, {ala az, A3, a4}}’
BZ: {{al}a {aZ}’ {01, az, a3}: {al’ Qaz, a3, (14}}-

Then these spaces have the same McCord’s simplicial complexes.
In this note, we shall introduce the concept of a partially simplicial complex which
consists of open simplexes. Such a complex characterizes completely a finite To-space.

§ 2. Partially simplicial complexes.

Two (geometric) open simplexes 07 and 0, in the Euclidean space R™ are said to be
properly joined if '

6‘1[\0—'220—'3,



18 M. SHIRAKI
where G; is the closure of ¢;, and ¢ is the common face of ¢; and 75.

DeriniTION 1. A set K of (geometric) open simplexes is said to be a quasi simplicial
complex if any two simplexes of K are properly joined.

DeriNiTION 2. Let K; and K, be two quasi simplicial complexes. Then a mapping
¢: Ki— K, is said to be quasi simplicial if

o<t )< ) for o,7€k,
where the symbol < is the face relation.

DeriniTION 3. Let K be a star-finite quasi complex. Then we consider a space
which is homeomorphic to the subspace \U{c |0 € K} of the Euclidean space. Such a
space is denoted by | K|, and is called the quasi polytope of K.

DeriNiTION 4. A finite quasi simplicial complex K is said to be a n-partially simplicial
complex if

(1) Ifo,7€K and 0Nt is a k-simplex, then the set {o € K|po<oNt} has k+1
elements.

(2) {v°|v°<7, v € K} has n elements, where v° is a 0-simplex.

ExampLE. We set 6°=<a,>, 0l=<aia;>, 0i=<a1a3>, 0°= <ai1asa30:>.
Then

K={0°, 01, 03, 0"}
is a 4-partially simplicial complex.

DeriniTION 5. Let K; and K be two partially simplicial complexes. Then a map-
ping f: K;— K, is said to be an isomorphism if the following are satisfied:

(1) fis bijective.
(2) fand f! are quasi simplicial.

If such an isomorphism exists between K; and K3, then K; and K are said to be isomro-
phic, and we denote by K; ~ K.

The following is evident.
THEOREM 1. Let Ky and K, be two partially simplicial complexes, then

Ki~K, = IKII :|K2|

§ 3. Simplicial presentation.

Let (X, %) be a finite topological space. We define an order relation < in X by
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saying x < y when U, C U, (where U, and U, are minimal basic neighborhoods of x
and y respectively). Then (X, <) is a quasi ordered set.
We have mentioned the following lemmas in [ 2].

Lemma 1. A finite topological space (X, U) is a To-space if and only if (X, <) is a partially
ordered set.

LeEmMA 2. Suppose (X, U) and (Y, V) are finite To-spaces with the associated partially
ordered sets (X, <) and (Y, <) respectively. Then a mapping f: (X, U)— (Y, W) is con-
tinuous if and only if f: (X, <)— (Y, <) is order-preserving, f is a homeomorphism if and
only if f is an order-isomorphism of (X, <) onto (Y, <.

We shall now verify the following theorem.

Tueorem 2. Let (X, ©) be a finite To-space. Then there exists a partially simplicial
complex K with the following properties

(1)  There exists a bijective correspondence that assigns to each point of X a simplex of K.
(2) K is a topological invariant of (X, <).

Conversely, for each partially simplicial complex K there exists a finite To-space (K, U), whose
induced partially simplicial complex L is isomorphic to K. If K and L are isomorphic partially
simplicial complexes, then the corresponding To-spaces (K, U) and (L, V) are homeomorphic.

Proor. Let (X, r) be a finite To-space such that X={a, as, -, a,} and let (X, <)
be a partially ordered set which is induced from (X, r). We consider the (n —1)-simplex
0" '=<aa;---a,>, and denote the closure of the simplex ¢"~* by K(¢"%).

We define a mapping g: X— K(6"') as follows: For a; € X, let 0; be the face of ¢"~*
whose vertices are {a; € X |ax>a;}. Then we put

g(a,-) =0; € K(O'n—l).

Setting K= g(X), we shall verify that K is a n-partially simplicial complex, i.e., K
satisfies (1) and (2) of Definition 4.
From the above definition we immediately find that K is a quasi simplicial complex.
We shall show that K satisfies (1) of Definition 4. Suppose that d;, 0, € K and p=
0; M0y, where ¢;= <a,-1---a,-h>, 0;= <ajl---ajl>, o= <a,1---a,k>. Then {a,l, cey
a, .t =1ai, -, ai,} N{aj, ---, a;,}. Now set

qug(aQ) (9=T1, L) rk)'

If a,, is a vertix of ¢, then we have a;, <a,. Since a, s a vertex of ¢;, we have a;<a,.
Thus we have a¢; <a,. Hence a, is a vertex of ;. An analogous argument shows
that a,, is a vertex of 6;. So a, is a vertex of p=0;"\0;. Thus

0.4<p (q=r1, Tty rk)'
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If r,=¢r, then since a,,=¢a,, from the definition of ¢; we have either a,, <l:6, or
a,,<0,,. Sod,=0,. Hence o has distinct % faces 6,, 6,, ---, 0,.

Now, from the construction of K it is clear that K satisfies (2) of Definition 4.

We remark that a; <la; holds in (X, <) if and only if g(a;) > g(a;) holds in K.

We have to show that K is a topological invariant. Let (X, %) and (Y, Q%) be two
homeomorphic finite To-spaces, and let K and L be two partially simplicial complexes
corresponding to (X, %) and (Y, ) as above respectively. ‘We show that K~ L.

Consider the partially ordered sets (X, <) and (Y, <) associated with (X, %) and
(Y, ), respectively. Then by Lemma 2, there exists a bijective mapping f: (X, <)
— (Y, <) such that x; <x3; f(x1) <f(x3). Then we have

g(x1) > g(xs) & g(f(x1) > g(f(x2)).

This implies that K= L.
We shall prove the latter assertions of Theorem 2. Let K be a partially simplicial
complex, and define an ordering < between elements of K as follows:

c<tr&0 >, for o,7€Kk.

Then (K, <) is a partially ordered set whose ordering defines a T,-topology % of K.
Let L be the partially simplicial complex which is defined by (K, %). As we have
already verified, there exists a bijection g: (K, %) — L such that

c>t0<t& g0) > g).

Hence we have K~ L.
Finally, if A: K— L is an isomorphism of a partially simplicial complex K to a par-
tially simplicial complex L, then for g, ¢ € K,

g >t & h(0) > h(z),
and
| o <t & h(o) <h(o).
Therefore (K, %) and (L, ) are homeomorphic.
Thus the proof of Theorem 2 is complete.

DerFiNITION 6. Let (X, 7) be a finite T,-space, whose associated partial order is de-
noted by <. A partially simplicial complex K is said to be a simplicial presentation of
(X, 7) if there exists a mapping f: K— X such that

(1) fis bijective.
2) <& f(0) > f(2).
The mapping f is called a simplicial presentation mapping.
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From this definition, f= g ': K— X in the proof of Theorem 2 is a simplicial pre-
sentation mapping, and K is a simplicial presentation of X.
For the following two lemmas we reffer McCord [1].

Lemma 3. Let P be a continuous mapping of a topological space X to another topological
space Y, and U be a basis-like open cover of Y satisfying the following condition: for each U € U,
the restriction P|P~Y(U): P~Y(U)—U is a weak homotopy equivalence. Then P itself is a
weak homotopy equivalence.

LemMmA 4. Let X be a finite To-space, and let U; be the minimal basic neighborhood of ai,
and let B be the minimal basic neighborhood system. Then

(1) B s a basis-like open cover of X.
(2) U, is contractible to a point a;.
We now obtain the following lemma.

LemMa 5. Let (X, ) be a finite To-space, f: K— X be a simplicial presentation mapping,
and K be a simplicial presentation of (X, 7). Then, for each a; € X, | f~(U;)| is a contrac-
tible open set of | K|, where U; is the minimal basic neighborhood of a;.

Proor. For each a; € X, a; is the maximum element of U;, and ¢;=f""(a;) is an
open simplex such that {a; € X|a;>>a;} are its vertices. Since we have a; € U; & a; <
a;© f(a;) > fH(a:), f'(a:) is the common face of all simplexes f~'(a;) such that
a; € U Ti={ar € X| 3a;<ai, ax>>a;} is the set of vertices of f~(U;) and V;=
{ar € X|ar>a;} is the set of vertices of f~'(a;), so we have T;D V. '

Now, suppose that

x={xrar|ar € Ti}
is the barycentric coordinates of x with respect to T;. Set
a(x)=2{xx|ar € Vi}
and

¢(x)=2{—cx—(1x—)xkak|ak € V,-}.
Then ¢(x) € f~'(a:) (=0:). If x €0;, then a(x)=1 and ¢(x)=x. Hence ¢: |f~!
(U;)|—|0;]| is a retraction.
Next, we define H: | f~1(U)| x I—>|f~(U))| by

H(x, )=01—t)x+tp(x).

Since x € | f~(U;)|, there is a a; € U; such that x € | f'(ax)|. Then from x € 6 and
0:;< 0% we have H(x, t) € | f~'(U;)|. And
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H(x, 0)=x,
H(x, 1)=g¢(x),
H(x, t)=x if xe€|o;l.

Thus |0;| is the strong deformation retract of |f~*(U;)|. Since the open simplex 6;
is contractible to its barycenter b(¢;), the proof of Lemma 3 is complete.

Let X be a finite T-space, K be a simplicial presentation of X, and let f: K— X be
the presentation mapping. We use the same symbol f to represent the following map-
ping f: |K|—>X. For x € |K|, there is an unique simplex 0; € K such that x € |d;].
Then we set

fx)=f(0)).

S is continuous. To show this, let f(x)=f(0;)=a;, and let I be any open neighbor-
hood of a;. If U; is the minimal neighborhood of a;, then U; C . Now the open star
of o i

St(o)=\UA{0, € K|0w >0}

is an open set of | K|, hence it is an open neighborhood of x. If y € St(c;), there exists
an unique open simplex ¢ such that y € g, and 0, >0;. Then

f)=flon),  flon) <flo)=a.
Hence f(y) <aj, thatis, f(y) € U;CW. Thus
fStla)) C Ww.
The next theorem follows immediately from Lemmas 3, 4, and 5.

THEOREM 3. Let X be a finite To-space, and let f: K—X be the simplicial presentation
mapping of the simplicial presentation K of X to X, then f induces the weak homotopy equivalence
[ IK|->X.

LemMa 6. If K is a quasi complex, then
N={<b(00)b(01)--b(0s) > |0,<0:<---< 04, 0; € K}
is a simplicial complex, where b(0y) is the barycenter of 0.

Proor. From the definition of N, it is clear that s>t and s € N imply 7 € N, and
for s;, s; € N we have

s1=<b(61)b(02) - b(0)) >, 01<0,<--<0;, 04 € N,
Sz=<b(‘[1)b(fz)"'b(fj)>, Tl< T2<"'< Tjy Tr € N.

A].SO, if 771<772<"'<771 and {Gla O2y -1y 0','}[\{’(.'1, T2y -9 fi}={7713 N2y <<+ 771}’ then
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<b(9)b(y2)---b(p;)> € N. Since any two simplexes of K are properly joined,
s1Msz= <b(71)b(72)---b(7.) > € N.
Hence s;N\s; is the common face of s, and s;.  Thus IV is a simplicial complex.

N is said to be the nucleus of the quasi simplicial complex K.
Let K be a quasi simplicial complex. We consider the simplicial complex

ClK={s|Joc€eK:s<oa}
which is induced by K, and let C1K; be the first barycentric subdivision of C1KX. Then
Ki={0€eClK;|cC |K|}
is called the first barycentric subdivision of K.

LemMa 7. Let K be a partially simplicial complex, and let N be the nucleus of K. Then
| N| is a strong deformation retract of |K|.

Proor. Let K; be the first barycentric subdivision of K, and let
B={b;|bi=b(d), i=1,2, -, n}
be the set of vertices of N. Then
St(b;))=\U{o € K,|b; < g}

is defined as the open star of b; in K;.
First, we remark that

|K|=\U{St(s,)|b; € B}.

For, if x € | K|, then since |K|=|K;|, there exist unique simplexes ¢ € K and 0, € K;
such that x € 6 and x € 6,. Let b(6)=b; € B. Since Kj is the first barycentric subdi-
vision of K, and since ¢; C 0, we have 0, CSt(d;) and x € 6, CSt(b;) C\U{St(d;)|b; € B}.
Hence |K|=\U{St(b;)|b; € B}.

Second, we remark that N is a full subcomplex of K;. For, if <b1b;.--b,> € K;
(b; € B), then 0,<0,<---<6, and b;=0b(0;). Hence <b;b;--b,> € N follows from
the definition of V.

We shall now prove that | N| is a strong deformation retract of | K|.

Let x € |K|=|K;|. There exists an unique open simplex 0; € K; such that x € 7;.
Then we set

a(x)=21{x(b;)|b; € B},
where x(b;) is the barycentric coordinate of b;, and define

r(x)= Z{E(l-ax(b,-)b,-lb,- € B}.
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Then r(x) belongs to a face v of 0;. Since vertices of t belong to B, remarking that
N is a full subcomplex of K;, we have v € N and r(x) € |[N|. On the other hand, if
x € |N|, then since a(x)=1 we have r(x)=x. Thus r: |K|—|N| is a retraction.
Next, we define a mapping H: |K| x I—|K| by

H(x, t)=t-r(x)+ (1 —10t)x.
Then we have
H(x, 0)=x for =0,
H(x, 1)=r(x) for t=1,
and
H(x,t)=x for x € |N]|.
Hence |N| is a strong deformation retract of |K]|.

LemMmA 8. Let f: K—L be a quasi simplicial mapping of a quasi simplicial complex K to
a quasi simplicial complex L. Then f induces a simplicial mapping f* of the nucleus N(K') of
K to the nucleus N(L) of L.

Proor. f*: N(K)— N(L) is defined by

F*(0:)=0b(f(02).
If <b(09)b(01)---b(0:) > € N(K), where 6,<0,<---<0}, 0; € K, then

[H(<b(00)b(01)...b(0) >)={b(f(00), b(f(@1)), -, b(f (TR}

Since f is quasi simplicial, we have f(0,) < f(6:1)<---< f(6). The simplex with ver-
tices {b(f(00)), b(f(01)), ---, b(f(04)} is in N(L). Thus f* is a simplicial mapping.

Let K and L be quasi simplicial complexes, and g be a single valued transformation
of the vertices of simplex of K to the vertices of simplex of L. We call that g is a
simplicial mapping of K to L, when for every simplex 0= <ajas:- a,> of K, <{g(ay),
g(az), -, glap)}> is a simplex of L.

By barycentric extension, we can extend this mapping g to a continuous mapping,
and again we call it the simplicial mapping of the quasi polytope |K| to the quasi
polytope |L]|. '

THEOREM 4. Let g be a continuous mapping of a finite To-space X to a finite To-space Y,
and let fx: K(X)—>X and fy: K(Y)—>Y be two presentation mappings. If Ki(X) and
Ki(Y) are the first barycentric subdivisions of K(X) and K(Y) respectively, then g induces a
simplicial mapping g1 of Ki(X) to Ki(Y), and fyo g1= geofx holds.

Proor. For a; € X, we set
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Si={br€ Y|b, > g(a)}.
Since g is continuous, a; >a; implies S;C S;. Let
T;=A{b: € Sila; > a;=>b, ¢ S},

and define a mapping gi: Ki(X)—K:(Y) as follows: let ¢ be a vertex of a simplex in
K (X), and let

c=b(< a;,ai, - ai, >),

where a;, € X(I=1, 2, ..., k). The simplex <a;a;, - a;,> is a face of a certain simplex

fx'(a;) € K(X). Then we have a;,>a, (I=1, 2, ..., k). Since g is continuous, we
have g(a;)> g(a,). Hence the simplex < T;,> which is determined by Tj, is a face
of fy'(g(ay)). Therefore we have

<VUAT;,|1=1, 2, ..., B} ><fy (g (ay).
We now define g; by setting
g1(0)=b(<\U{T;,|l=1, 2, ..., K} >).
We show that g is simplicial. Let <cicz:--¢p> € Ki(X), and let -
ci=b(0)) =12, ..., k),
01<02<-< O, 0;=<aiai, - aj>.
Then
gl(Ci)=b(fi),
where ;=< \U{T;,|h=1,2, ..., I} >, s0
0:<0;=> ;<)
Thus
< giler) giler) - giler) > € Ki(Y).

Therefore g, is a simplicial mapping.

Finally we show that fye g1 =gefx. Suppose x € |[K;(X)|. There exists an unique
open simplex ¢ € K;(X) such that x € 6. From the definition of the first barycentric
subdivision, 6= <cjcz -+ ¢,> is such that ¢;=b(t)), 11 <t <--<1}, 7 € K(X), 7,=
fx'(ap). Since gi(cp) = g1(b(fx'(2))) =b(fr'(g(as))),

gi1(x) € <{gilcr), gi(ca), -, g1lep)} > Cfyt(glan)-

Hence we have

fr(g(®)=fr(fr'(g(ay))=g(a,).
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On the other hand, since <cjcz---¢cp> C 1), we have
fx(x)=fx(0)=fx(ts)=as
Then we have geofx(x)=g(a,), and freg1=gofx.

THEOREM 5. Let g be a continuous mapping of a finite To-space X to a finite To-space Y.
Then g induces a simplicial mapping gn of the nucleus N(X) of K(X) to the nucleus N(Y) of
K(Y), and the following diagram is commutative, where fx, fv, ¢x, ¢y are weak homotopy
equivalences, and rx, ry are strong deformation retracts.

| K(X)| |K(Y)|
rx ry
\ . /
|N(X)| =|N(Y)|
fx lsl)x ¢y l fr
X -Y
g

Proor. Let fx: K(X)—>X and fy: K(Y)—Y be simplicial presentation mappings
of X and Y respectively, and define go: K(X)—K(Y) by

gi=17"0g°fx.

&o is a quasi simplicial mapping. Indeed, if 0; >0;, then fx(0;) <fx(0;). Since g
is a continuous mapping and hence an order-preserving mapping, we have ge fx(0;) <
8°fx(0;), and

frloegefx(d:) > fylogefx(0)).

Hence gy is a quasi simplicial mapping.

By Lemma 8, g, induces a simplicial mapping gn: N(X)—>N(Y). We define ¢x:
|N(X)|—>X as follows: For each x € | N(X)| there is an unique open simplex <b(0)
b(o) - b(o)> € NK), 0,<L0,<--<0y, 0;€K(X) such that x € < b(00)b(01) -
b(cr)>. Then we define

x(x)=fx(0%).

Let rx be the retraction defined in the proof of Lemma 7. Then from the definition
Of {[) X,

dxorx=fx.

Since | N(X)| is a strong deformation retract of |K(X)| and fx is a weak homotopy
equivalence, ¢ x is a weak homotopy equivalence. ~Now for each x € | N(X)| there is
an unique open simplex <b(00)b(01) - b(0%)> 3 x, 0,<0:<---<0p. Since gn(<
b(00)b(01) --- b(0) >) = < b(g0(00))b(80(01)) -+ b(go(01)) >,
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gn (%) € <b(go(00))b(go(01)) -+ b(go(04)) >

Then we have
dy(gn (%)) =fr(go(0r) = gofx(0s).
Hence from go¢x(x)= gofx(04), we have

Yyogn=geofx.

§ 4. Partially simplicial complexes and induced finite T(-spaces.

In Theorem 2, for every partially simplicial complex K, we have considered an
equivalent finite T,-space (K, %) which has been constructed in the following way.
For each 0 € K, put

V,={r € K|t >0}.

Then (K, %) is a finite T-space such that 7, is the minimal basic neighborhood of ¢.
The following Lemma 9 and Theorem 6 are easily found.
Let K be a partially simplicial complex, and (K, 1) be the corresponding finite 7T-
space. Then clearly the identity mapping i: K— (K, %) is the simplicial presentation
mapping. Hence we have the following lemma.

LemMmA 9. The identity mapping i: K— (K, U) induces a weak homotopy equivalence i:
|K|—>(K, ).

THEOREM 6. Let g: K—L be a quasi simplicial mapping of a partially simplicial complex
K to a partially simplicial complex L. If fx: |K|—> (K, U) and fr: |L|— (L, W) are two
simplicial presentation mappings, then g is a continuous mapping of (K, U) to (L, V), and g
has the following properties:

(1) let Ky and Ly be the first barycentric subdivisions of K and L respectively. Then g
induces a simplicial mapping g1: |Ky|—|Ly| such that fro g1 = gofx.

(2) Let N(K) and N(L) be the nucleuses of K and L respectively, and let ¢ x=fx|N(K)
and ¢1r=fr|N(L). Then g induces a simplicial mapping gn: | N(K)|—|N(L)| such
that ¢10gn=g°Pk.

Proor. If g, v € (K, ) and 0 <, then we have 6 >t in K. Since g is quasi sim-
plicial, we have g(0) > g(r) in L and g(0) < g(r) in (L, 9. Then by Lemma 2,
g: (K, h)—(L, ) is continuous.

Thus (1) and (2) follow immediately from Theorem 4 and Theorem 5.

THEOREM 7. Let K be a n-partially simplicial complex, and let c; be the number of i-sim-
plexes of K. Then we have

1) aptai+-+a,_1=n.
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(2) lgafogn.
(3) Ogaign'ﬁi, (I":l’ 2: Tty n'—l)'

Proor. (1). We need to prove that a n-partially simplicial complex K has just n
elements. Let (K, %) be the finite To-space corresponding to K, and L be the simplicial
presentation of (K, %) which has been constructed in the proof of Theorem 2, that is,

L={s(0)|c e K}

where s(0) is a simplex with vertices {r € K|r>0}. From the proof of Theorem 2,
the number of vertices {0|0 € K} of L is equal to the number of simplexes of L. Then
by the second assertion of Theorem 2, we have K~ L. So L has n vertices. Therefore
K has n elements. ,

(2). From (1), we have ay<n. We prove thatay>1. Suppose 0, € K and 6, is a
ko-simplex. When ko=0, we have ap_>1. When k,>0, from (1) of Definition 4, 7,
has £, proper faces in K. We take such a face 01, and let £; be the dimension of ;.
When £,=0, we have ay>>1. When k;>0, 0, has k; proper faces in K. We repeat
a similar process and find that K has at least a 0-simplex. Thus (2) holds.

(3). Assume that a;>n—i-+1 for some i. Any i-simplex in K has ¢ proper faces
in K. Hence the number of all simplexes in K are not less than

(n—i+1)+i=n+1.

This contradicts (1).
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