FINITE TO-SPACES AND SIMPLICIAL STRUCTURES

著者	SHIRAKI Mitsunobu
journal or	鹿児島大学理学部紀要.数学・物理学・化学
publication title	
volume	2
page range	17-28
別言語のタイトル	有限 TO-空間と単体的構造
URL	http://hdl.handle.net/10232/00006989

Rep. Fac. Sci. Kagoshima Univ., (Math. Phys. Chem.) No. 2, p. 17-28, 1969

FINITE T₀-SPACES AND SIMPLICIAL STRUCTURES

By

Mitsunobu Shiraki

(Received September 30, 1969)

§ 1. Introduction.

We consider the problem to represent faithfully a given finite T_0 -space by a set of simplexes. To represent the space one may naturally consider the nerve of the minimal basic neighborhood system of the finite T_0 -space. But such the nerve representation is not sufficient to characterize the following simple spaces. In a given set $X = \{a_1, a_2, a_3\}$ we consider two topologies whose minimal basic neighborhoods are

$$B_1 = \{\{a_1\}, \{a_1, a_2\}, \{a_1, a_2, a_3\}\},\$$

$$B_2 = \{\{a_1\}, \{a_1, a_2\}, \{a_1, a_3\}\}.$$

Then these topological spaces have the same nerve representations, that is, there exists the same simplicial complex consisting of a triangle and all faces of the triangle.

On the other hand, M. C. McCord [1] has had some interesting results for homology and homotopy properties of finite spaces, and for a given finite T_0 -space he has constructed a simplicial complex taking each totally ordered subset as a simplex, where he has used that the finite T_0 -space is equivalent to a partially ordered set.

However this simplicial complex is not sufficient to characterize the given finite T_0 -space. For instance, in a set $X = \{a_1, a_2, a_3, a_4\}$, we consider two distinct topologies whose minimal basic neighborhood systems are

Then these spaces have the same McCord's simplicial complexes.

In this note, we shall introduce the concept of a partially simplicial complex which consists of open simplexes. Such a complex characterizes completely a finite T_0 -space.

多原始 最终的过去式和过去分词 化氯化乙酸 化乙基乙基苯酚亚

§ 2. Partially simplicial complexes.

Two (geometric) open simplexes σ_1 and σ_2 in the Euclidean space R^m are said to be properly joined if

$$\bar{\sigma}_1 \cap \bar{\sigma}_2 = \bar{\sigma}_3$$

where $\bar{\sigma}_i$ is the closure of σ_i , and σ_3 is the common face of σ_1 and σ_2 .

DEFINITION 1. A set K of (geometric) open simplexes is said to be a *quasi simplicial* complex if any two simplexes of K are properly joined.

DEFINITION 2. Let K_1 and K_2 be two quasi simplicial complexes. Then a mapping $\varphi: K_1 \rightarrow K_2$ is said to be *quasi simplicial* if

 $\sigma < \tau \Rightarrow \varphi(\sigma) < \varphi(\tau) \qquad \text{for} \quad \sigma, \tau \in K,$

where the symbol < is the face relation.

DEFINITION 3. Let K be a star-finite quasi complex. Then we consider a space which is homeomorphic to the subspace $\bigcup \{\sigma | \sigma \in K\}$ of the Euclidean space. Such a space is denoted by |K|, and is called the *quasi polytope* of K.

DEFINITION 4. A finite quasi simplicial complex K is said to be a *n*-partially simplicial complex if

- (1) If $\sigma, \tau \in K$ and $\sigma \cap \tau$ is a k-simplex, then the set $\{\rho \in K | \rho < \sigma \cap \tau\}$ has k+1 elements.
- (2) $\{v^0 | v^0 < \tau, \tau \in K\}$ has *n* elements, where v^0 is a 0-simplex.

EXAMPLE. We set $\sigma^0 = \langle a_1 \rangle$, $\sigma_1^1 = \langle a_1 a_2 \rangle$, $\sigma_2^1 = \langle a_1 a_3 \rangle$, $\sigma^2 = \langle a_1 a_2 a_3 a_4 \rangle$. Then

$$K = \{\sigma^0, \sigma_1^1, \sigma_2^1, \sigma^2\}$$

is a 4-partially simplicial complex.

DEFINITION 5. Let K_1 and K_2 be two partially simplicial complexes. Then a mapping $f: K_1 \rightarrow K_2$ is said to be an *isomorphism* if the following are satisfied:

(1) f is bijective.

(2) f and f^{-1} are quasi simplicial.

If such an isomorphism exists between K_1 and K_2 , then K_1 and K_2 are said to be *isomrophic*, and we denote by $K_1 \approx K_2$.

The following is evident.

THEOREM 1. Let K_1 and K_2 be two partially simplicial complexes, then

$$K_1 pprox K_2 \Rightarrow |K_1| \simeq |K_2|.$$

§ 3. Simplicial presentation.

Let (X, \mathcal{U}) be a finite topological space. We define an order relation \leq in X by

saying $x \leq y$ when $U_x \subset U_y$ (where U_x and U_y are minimal basic neighborhoods of x and y respectively). Then (X, \leq) is a quasi ordered set.

We have mentioned the following lemmas in [2].

LEMMA 1. A finite topological space (X, U) is a T_0 -space if and only if (X, \leq) is a partially ordered set.

LEMMA 2. Suppose (X, \mathcal{U}) and (Y, \mathcal{D}) are finite T_0 -spaces with the associated partially ordered sets (X, \leq) and (Y, \leq) respectively. Then a mapping $f: (X, \mathcal{U}) \to (Y, \mathcal{D})$ is continuous if and only if $f: (X, \leq) \to (Y, \leq)$ is order-preserving, f is a homeomorphism if and only if f is an order-isomorphism of (X, \leq) onto (Y, \leq) .

We shall now verify the following theorem.

THEOREM 2. Let (X, τ) be a finite T_0 -space. Then there exists a partially simplicial complex K with the following properties:

- (1) There exists a bijective correspondence that assigns to each point of X a simplex of K.
- (2) K is a topological invariant of (X, τ) .

Conversely, for each partially simplicial complex K there exists a finite T_0 -space (K, U), whose induced partially simplicial complex L is isomorphic to K. If K and L are isomorphic partially simplicial complexes, then the corresponding T_0 -spaces (K, U) and (L, \mathcal{D}) are homeomorphic.

PROOF. Let (X, τ) be a finite T_0 -space such that $X = \{a_1, a_2, \dots, a_n\}$ and let (X, \leq) be a partially ordered set which is induced from (X, τ) . We consider the (n-1)-simplex $\sigma^{n-1} = \langle a_1 a_2 \dots a_n \rangle$, and denote the closure of the simplex σ^{n-1} by $K(\sigma^{n-1})$.

We define a mapping $g: X \to K(\sigma^{n-1})$ as follows: For $a_i \in X$, let σ_i be the face of σ^{n-1} whose vertices are $\{a_k \in X \mid a_k \ge a_i\}$. Then we put

$$g(a_i) = \sigma_i \in K(\sigma^{n-1}).$$

Setting K = g(X), we shall verify that K is a *n*-partially simplicial complex, i.e., K satisfies (1) and (2) of Definition 4.

From the above definition we immediately find that K is a quasi simplicial complex. We shall show that K satisfies (1) of Definition 4. Suppose that σ_i , $\sigma_j \in K$ and $\rho = \sigma_i \cap \sigma_j$, where $\sigma_i = \langle a_{i_1} \cdots a_{i_k} \rangle$, $\sigma_j = \langle a_{j_1} \cdots a_{j_l} \rangle$, $\rho = \langle a_{r_1} \cdots a_{r_k} \rangle$. Then $\{a_{r_1}, \dots, a_{r_k}\} = \{a_{i_1}, \dots, a_{i_k}\} \cap \{a_{j_1}, \dots, a_{j_l}\}$. Now set

$$\sigma_q = g(a_q) \qquad (q = r_1, \ldots, r_k).$$

If a_m is a vertex of σ_q , then we have $a_q \leq a_m$. Since a_q is a vertex of σ_i , we have $a_i \leq a_q$. Thus we have $a_i \leq a_m$. Hence a_m is a vertex of σ_i . An analogous argument shows that a_m is a vertex of σ_j . So a_m is a vertex of $\rho = \sigma_i \cap \sigma_j$. Thus

$$\sigma_q < \rho \qquad (q = r_1, \ldots, r_k).$$

If $r_t \neq r_s$, then since $a_{r_i} \neq a_{r_s}$, from the definition of σ_i we have either $a_{r_i} < \sigma_{r_s}$ or $a_{r_s} < \sigma_{r_i}$. So $\sigma_{r_i} \neq \sigma_{r_s}$. Hence ρ has distinct k faces $\sigma_{r_1}, \sigma_{r_2}, \dots, \sigma_{r_k}$.

Now, from the construction of K it is clear that K satisfies (2) of Definition 4.

We remark that $a_i \leq a_j$ holds in (X, \leq) if and only if $g(a_i) > g(a_j)$ holds in K.

We have to show that K is a topological invariant. Let (X, \mathcal{U}) and (Y, \mathcal{D}) be two homeomorphic finite T_0 -spaces, and let K and L be two partially simplicial complexes corresponding to (X, \mathcal{U}) and (Y, \mathcal{D}) as above respectively. We show that $K \approx L$.

Consider the partially ordered sets (X, \leq) and (Y, \leq) associated with (X, \mathcal{U}) and (Y, \mathcal{D}) , respectively. Then by Lemma 2, there exists a bijective mapping $f: (X, \leq) \rightarrow (Y, \leq)$ such that $x_1 \leq x_2 \Leftrightarrow f(x_1) \leq f(x_2)$. Then we have

$$g(x_1) > g(x_2) \Leftrightarrow g(f(x_1)) > g(f(x_2)).$$

This implies that $K \approx L$.

We shall prove the latter assertions of Theorem 2. Let K be a partially simplicial complex, and define an ordering \leq between elements of K as follows:

$$\sigma \leq \tau \Leftrightarrow \sigma > \tau$$
, for $\sigma, \tau \in K$.

Then (K, \leq) is a partially ordered set whose ordering defines a T_0 -topology \mathcal{U} of K. Let L be the partially simplicial complex which is defined by (K, \mathcal{U}) . As we have already verified, there exists a bijection $g: (K, \mathcal{U}) \to L$ such that

$$\sigma > \tau \Leftrightarrow \sigma \leq \tau \Leftrightarrow g(\sigma) > g(\tau).$$

Hence we have $K \approx L$.

Finally, if $h: K \to L$ is an isomorphism of a partially simplicial complex K to a partially simplicial complex L, then for $\sigma, \tau \in K$,

$$\sigma > \tau \Leftrightarrow h(\sigma) > h(\tau),$$

and

 $\sigma \leq \tau \Leftrightarrow h(\sigma) \leq h(\tau).$

Therefore (K, \mathcal{U}) and (L, \mathcal{D}) are homeomorphic.

Thus the proof of Theorem 2 is complete.

DEFINITION 6. Let (X, τ) be a finite T_0 -space, whose associated partial order is denoted by \leq . A partially simplicial complex K is said to be a *simplicial presentation* of (X, τ) if there exists a mapping $f: K \to X$ such that

- (1) f is bijective.
- (2) $\sigma < \tau \Leftrightarrow f(\sigma) \ge f(\tau)$.

The mapping f is called a *simplicial presentation mapping*.

From this definition, $f = g^{-1}$: $K \to X$ in the proof of Theorem 2 is a simplicial presentation mapping, and K is a simplicial presentation of X.

For the following two lemmas we reffer McCord [1].

LEMMA 3. Let P be a continuous mapping of a topological space X to another topological space Y, and U be a basis-like open cover of Y satisfying the following condition: for each $U \in U$, the restriction $P|P^{-1}(U): P^{-1}(U) \rightarrow U$ is a weak homotopy equivalence. Then P itself is a weak homotopy equivalence.

LEMMA 4. Let X be a finite T_0 -space, and let U_i be the minimal basic neighborhood of a_i , and let **B** be the minimal basic neighborhood system. Then

- (1) **B** is a basis-like open cover of X.
- (2) U_i is contractible to a point a_i .

We now obtain the following lemma.

LEMMA 5. Let (X, τ) be a finite T_0 -space, $f: K \to X$ be a simplicial presentation mapping, and K be a simplicial presentation of (X, τ) . Then, for each $a_i \in X$, $|f^{-1}(U_i)|$ is a contractible open set of |K|, where U_i is the minimal basic neighborhood of a_i .

PROOF. For each $a_i \in X$, a_i is the maximum element of U_i , and $\sigma_i = f^{-1}(a_i)$ is an open simplex such that $\{a_k \in X | a_k \ge a_i\}$ are its vertices. Since we have $a_j \in U_i \Leftrightarrow a_j \le a_i \Leftrightarrow f^{-1}(a_i) > f^{-1}(a_i)$, $f^{-1}(a_i)$ is the common face of all simplexes $f^{-1}(a_j)$ such that $a_j \in U_i$. $T_i = \{a_k \in X | \exists a_j \le a_i, a_k \ge a_j\}$ is the set of vertices of $f^{-1}(U_i)$ and $V_i = \{a_k \in X | a_k \ge a_i\}$ is the set of vertices of $f^{-1}(a_i)$, so we have $T_i > V_i$.

Now, suppose that

$$x = \sum \left\{ x_k a_k \, \big| \, a_k \in T_i \right\}$$

is the barycentric coordinates of x with respect to T_i . Set

$$\alpha(x) = \sum \left\{ x_k \, | \, a_k \in V_i \right\}$$

and

$$\varphi(x) = \sum \left\{ \frac{1}{\alpha(x)} x_k a_k | a_k \in V_i \right\}.$$

Then $\varphi(x) \in f^{-1}(a_i) (=\sigma_i)$. If $x \in \sigma_i$, then $\alpha(x) = 1$ and $\varphi(x) = x$. Hence $\varphi: |f^{-1}(U_i)| \to |\sigma_i|$ is a retraction.

Next, we define $H: |f^{-1}(U_i)| \times I \rightarrow |f^{-1}(U_i)|$ by

$$H(x, t) = (1-t)x + t\varphi(x).$$

Since $x \in |f^{-1}(U_i)|$, there is a $a_k \in U_i$ such that $x \in |f^{-1}(a_k)|$. Then from $x \in \sigma_k$ and $\sigma_i < \sigma_k$, we have $H(x, t) \in |f^{-1}(U_i)|$. And

$$H(x, 0) = x,$$

$$H(x, 1) = \varphi(x),$$

$$H(x, t) = x \quad \text{if} \quad x \in |\sigma_i|.$$

Thus $|\sigma_i|$ is the strong deformation retract of $|f^{-1}(U_i)|$. Since the open simplex σ_i is contractible to its barycenter $b(\sigma_i)$, the proof of Lemma 3 is complete.

Let X be a finite T_0 -space, K be a simplicial presentation of X, and let $f: K \to X$ be the presentation mapping. We use the same symbol f to represent the following mapping $f: |K| \to X$. For $x \in |K|$, there is an unique simplex $\sigma_i \in K$ such that $x \in |\sigma_i|$. Then we set

$$f(x)=f(\sigma_i).$$

f is continuous. To show this, let $f(x)=f(\sigma_i)=a_i$, and let W be any open neighborhood of a_i . If U_i is the minimal neighborhood of a_i , then $U_i \subset W$. Now the open star of σ_i :

$$\operatorname{St}(\sigma_i) = \bigcup \{ \sigma_k \in K | \sigma_k > \sigma_i \}$$

is an open set of |K|, hence it is an open neighborhood of x. If $y \in St(\sigma_i)$, there exists an unique open simplex σ_k such that $y \in \sigma_k$ and $\sigma_k > \sigma_i$. Then

$$f(y) = f(\sigma_k), \quad f(\sigma_k) \leq f(\sigma_i) = a_i.$$

Hence $f(y) \leq a_i$, that is, $f(y) \in U_i \subset W$. Thus

$$f(\operatorname{St}(\sigma_i)) \subset W.$$

The next theorem follows immediately from Lemmas 3, 4, and 5.

THEOREM 3. Let X be a finite T_0 -space, and let $f: K \to X$ be the simplicial presentation mapping of the simplicial presentation K of X to X, then f induces the weak homotopy equivalence $f: |K| \to X$.

LEMMA 6. If K is a quasi complex, then

$$N = \{ \langle b(\sigma_0)b(\sigma_1)\cdots b(\sigma_k) \rangle | \sigma_0 \langle \sigma_1 \langle \cdots \langle \sigma_k, \sigma_i \in K \} \}$$

is a simplicial complex, where $b(\sigma_k)$ is the barycenter of σ_k .

PROOF. From the definition of N, it is clear that $s > \tau$ and $s \in N$ imply $\tau \in N$, and for $s_1, s_2 \in N$ we have

$$s_1 = \langle b(\sigma_1)b(\sigma_2)\cdots b(\sigma_i) \rangle, \sigma_1 < \sigma_2 < \cdots < \sigma_i, \sigma_k \in N,$$

$$s_2 = \langle b(\tau_1)b(\tau_2)\cdots b(\tau_j) \rangle, \tau_1 < \tau_2 < \cdots < \tau_j, \tau_k \in N.$$

Also, if $\eta_1 < \eta_2 < \cdots < \eta_l$ and $\{\sigma_1, \sigma_2, \dots, \sigma_i\} \cap \{\tau_1, \tau_2, \dots, \tau_j\} = \{\eta_1, \eta_2, \dots, \eta_l\}$, then

 $\langle b(\eta_1)b(\eta_2)\cdots b(\eta_l) \rangle \in N$. Since any two simplexes of K are properly joined,

$$s_1 \cap s_2 = \langle b(\eta_1)b(\eta_2) \dots b(\eta_l) \rangle \in N.$$

Hence $s_1 \cap s_2$ is the common face of s_1 and s_2 . Thus N is a simplicial complex.

N is said to be the *nucleus* of the quasi simplicial complex K.

Let K be a quasi simplicial complex. We consider the simplicial complex

$$\operatorname{Cl} K = \{s \mid \exists \sigma \in K : s < \sigma\}$$

which is induced by K, and let ClK_1 be the first barycentric subdivision of ClK. Then

 $K_1 = \{ \sigma \in \operatorname{Cl} K_1 \, | \, \sigma \subset |K| \}$

is called the first barycentric subdivision of K.

LEMMA 7. Let K be a partially simplicial complex, and let N be the nucleus of K. Then |N| is a strong deformation retract of |K|.

PROOF. Let K_1 be the first barycentric subdivision of K, and let

$$B = \{b_i | b_i = b(\sigma_i), i = 1, 2, \dots, n\}$$

be the set of vertices of N. Then

$$\operatorname{St}(b_i) = \bigcup \left\{ \sigma \in K_1 \mid b_i < \sigma \right\}$$

is defined as the open star of b_i in K_1 .

First, we remark that

$$|K| = \bigcup \{ \operatorname{St}(b_i) | b_i \in B \}.$$

For, if $x \in |K|$, then since $|K| = |K_1|$, there exist unique simplexes $\sigma \in K$ and $\sigma_1 \in K_1$ such that $x \in \sigma$ and $x \in \sigma_1$. Let $b(\sigma) = b_i \in B$. Since K_1 is the first barycentric subdivision of K, and since $\sigma_1 \subset \sigma$, we have $\sigma_1 \subset \operatorname{St}(b_i)$ and $x \in \sigma_1 \subset \operatorname{St}(b_i) \subset \bigcup {\operatorname{St}(b_i) | b_i \in B}$. Hence $|K| = \bigcup {\operatorname{St}(b_i) | b_i \in B}$.

Second, we remark that N is a full subcomplex of K_1 . For, if $\langle b_1 b_2 \cdots b_p \rangle \in K_1$ $(b_i \in B)$, then $\sigma_1 \langle \sigma_2 \langle \cdots \langle \sigma_p \rangle$ and $b_i = b(\sigma_i)$. Hence $\langle b_1 b_2 \cdots b_p \rangle \in N$ follows from the definition of N.

We shall now prove that |N| is a strong deformation retract of |K|.

Let $x \in |K| = |K_1|$. There exists an unique open simplex $\sigma_1 \in K_1$ such that $x \in \sigma_1$. Then we set

$$\alpha(x) = \sum \{x(b_i) \mid b_i \in B\},\$$

where $x(b_i)$ is the barycentric coordinate of b_i , and define

$$r(x) = \sum \left\{ \frac{1}{\alpha(x)} x(b_i) b_i | b_i \in B \right\}.$$

Then r(x) belongs to a face τ of σ_1 . Since vertices of τ belong to B, remarking that N is a full subcomplex of K_1 , we have $\tau \in N$ and $r(x) \in |N|$. On the other hand, if $x \in |N|$, then since $\alpha(x)=1$ we have r(x)=x. Thus $r: |K| \to |N|$ is a retraction. Next, we define a mapping $H: |K| \times I \to |K|$ by

$$H(x, t) = t \cdot r(x) + (1-t)x.$$

Then we have

H(x, 0) = x for t = 0, H(x, 1) = r(x) for t = 1,

and

$$H(x, t) = x$$
 for $x \in |N|$.

Hence |N| is a strong deformation retract of |K|.

LEMMA 8. Let $f: K \rightarrow L$ be a quasi simplicial mapping of a quasi simplicial complex K to a quasi simplicial complex L. Then f induces a simplicial mapping f^* of the nucleus N(K) of K to the nucleus N(L) of L.

PROOF. $f^*: N(K) \rightarrow N(L)$ is defined by

$$f^*(b(\sigma_i)) = b(f(\sigma_i)).$$

If $\langle b(\sigma_0)b(\sigma_1)\cdots b(\sigma_k) \rangle \in N(K)$, where $\sigma_0 < \sigma_1 < \cdots < \sigma_k$, $\sigma_i \in K$, then

$$f^*(\langle b(\sigma_0)b(\sigma_1)\dots b(\sigma_k)\rangle) = \{b(f(\sigma_0), b(f(\sigma_1)), \dots, b(f(\sigma_k))\}.$$

Since f is quasi simplicial, we have $f(\sigma_0) < f(\sigma_1) < \cdots < f(\sigma_k)$. The simplex with vertices $\{b(f(\sigma_0)), b(f(\sigma_1)), \dots, b(f(\sigma_k))\}$ is in N(L). Thus f^* is a simplicial mapping.

Let K and L be quasi simplicial complexes, and g be a single valued transformation of the vertices of simplex of K to the vertices of simplex of L. We call that g is a simplicial mapping of K to L, when for every simplex $\sigma = \langle a_1 a_2 \cdots a_p \rangle$ of K, $\langle \{g(a_1), g(a_2), \dots, g(a_p)\} \rangle$ is a simplex of L.

By barycentric extension, we can extend this mapping g to a continuous mapping, and again we call it the simplicial mapping of the quasi polytope |K| to the quasi polytope |L|.

THEOREM 4. Let g be a continuous mapping of a finite T_0 -space X to a finite T_0 -space Y, and let $f_X: K(X) \to X$ and $f_Y: K(Y) \to Y$ be two presentation mappings. If $K_1(X)$ and $K_1(Y)$ are the first barycentric subdivisions of K(X) and K(Y) respectively, then g induces a simplicial mapping g_1 of $K_1(X)$ to $K_1(Y)$, and $f_Y \circ g_1 = g \circ f_X$ holds.

PROOF. For $a_i \in X$, we set

Finite T_0 -Spaces and Simplicial Structures

$$S_i = \{b_k \in Y | b_k \geq g(a_i)\}.$$

Since g is continuous, $a_j \ge a_i$ implies $S_j \in S_i$. Let

$$T_i = \{ b_k \in S_i \mid a_j > a_i \Rightarrow b_k \notin S_j \},$$

and define a mapping $g_1: K_1(X) \rightarrow K_1(Y)$ as follows: let c be a vertex of a simplex in $K_1(X)$, and let

$$c = b(\langle a_{i_1}a_{i_2}\cdots a_{i_k}\rangle),$$

where $a_{i_l} \in X(l=1, 2, ..., k)$. The simplex $\langle a_{i_1}a_{i_2}\cdots a_{i_k} \rangle$ is a face of a certain simplex $f_X^{-1}(a_p) \in K(X)$. Then we have $a_{i_l} \geq a_p$ (l=1, 2, ..., k). Since g is continuous, we have $g(a_{i_l}) \geq g(a_p)$. Hence the simplex $\langle T_{i_l} \rangle$ which is determined by T_{i_l} is a face of $f_Y^{-1}(g(a_p))$. Therefore we have

$$< \cup \{T_{i_l} | l = 1, 2, ..., k\} > < f_Y^{-1}(g(a_p)).$$

We now define g_1 by setting

$$g_1(c) = b(\langle \cup \{T_{i_l} | l = 1, 2, ..., k\} \rangle).$$

We show that g_1 is simplicial. Let $\langle c_1 c_2 \cdots c_k \rangle \in K_1(X)$, and let

$$c_i = b(\sigma_i) \qquad (i = 1, 2, \dots, k),$$

$$\sigma_1 < \sigma_2 < \dots < \sigma_k, \qquad \sigma_i = < a_{i_1} a_{i_2} \cdots a_{i_l} >.$$

Then

$$g_1(c_i)=b(\tau_i),$$

where $\tau_i = < \cup \{T_{i_h} | h = 1, 2, ..., l\} >$, so

 $\sigma_i \! < \! \sigma_j \! \Rightarrow \! \tau_i \! < \! \tau_j.$

Thus

$$< g_1(c_1)g_1(c_2) \cdots g_1(c_k) > \epsilon K_1(Y).$$

Therefore g_1 is a simplicial mapping.

Finally we show that $f_Y \circ g_1 = g \circ f_X$. Suppose $x \in |K_1(X)|$. There exists an unique open simplex $\sigma \in K_1(X)$ such that $x \in \sigma$. From the definition of the first barycentric subdivision, $\sigma = \langle c_1 c_2 \cdots c_p \rangle$ is such that $c_i = b(\tau_i), \tau_1 < \tau_2 < \cdots < \tau_p, \tau_p \in K(X), \tau_p = f_X^{-1}(a_p)$. Since $g_1(c_p) = g_1(b(f_X^{-1}(a_p))) = b(f_Y^{-1}(g(a_p)))$,

$$g_1(x) \in \langle \{g_1(c_1), g_1(c_2), ..., g_1(c_p)\} \rangle \subset f_Y^{-1}(g(a_p)).$$

Hence we have

$$f_Y(g_1(x)) = f_Y(f_Y^{-1}(g(a_p))) = g(a_p).$$

On the other hand, since $\langle c_1 c_2 \cdots c_p \rangle \subset \tau_p$, we have

$$f_X(x) = f_X(\sigma) = f_X(\tau_p) = a_p.$$

Then we have $g \circ f_X(x) = g(a_p)$, and $f_Y \circ g_1 = g \circ f_X$.

THEOREM 5. Let g be a continuous mapping of a finite T_0 -space X to a finite T_0 -space Y. Then g induces a simplicial mapping g_N of the nucleus N(X) of K(X) to the nucleus N(Y) of K(Y), and the following diagram is commutative, where f_X , f_Y , ψ_X , ψ_Y are weak homotopy equivalences, and r_X , r_Y are strong deformation retracts.

PROOF. Let $f_X: K(X) \to X$ and $f_Y: K(Y) \to Y$ be simplicial presentation mappings of X and Y respectively, and define $g_0: K(X) \to K(Y)$ by

$$g_0 = f_Y^{-1} \circ g \circ f_X.$$

 g_0 is a quasi simplicial mapping. Indeed, if $\sigma_i > \sigma_j$, then $f_X(\sigma_i) \leq f_X(\sigma_j)$. Since g is a continuous mapping and hence an order-preserving mapping, we have $g \circ f_X(\sigma_i) \leq g \circ f_X(\sigma_j)$, and

$$f_Y^{-1} \circ g \circ f_X(\sigma_i) > f_Y^{-1} \circ g \circ f_X(\sigma_j).$$

Hence g_0 is a quasi simplicial mapping.

By Lemma 8, g_0 induces a simplicial mapping $g_N: N(X) \to N(Y)$. We define $\psi_X: |N(X)| \to X$ as follows: For each $x \in |N(X)|$ there is an unique open simplex $\langle b(\sigma_0) b(\sigma_1) \cdots b(\sigma_k) \rangle \in N(K)$, $\sigma_0 < \sigma_1 < \cdots < \sigma_k$, $\sigma_i \in K(X)$ such that $x \in \langle b(\sigma_0)b(\sigma_1) \cdots b(\sigma_k) \rangle$. Then we define

$$\psi_X(x) = f_X(\sigma_k).$$

Let r_X be the retraction defined in the proof of Lemma 7. Then from the definition of ψ_X ,

$$\psi_X \circ r_X = f_X.$$

Since |N(X)| is a strong deformation retract of |K(X)| and f_X is a weak homotopy equivalence, ψ_X is a weak homotopy equivalence. Now for each $x \in |N(X)|$ there is an unique open simplex $\langle b(\sigma_0) b(\sigma_1) \cdots b(\sigma_k) \rangle \ni x$, $\sigma_0 \lt \sigma_1 \lt \cdots \lt \sigma_k$. Since $g_N(\lt b(\sigma_0)b(\sigma_1) \cdots b(\sigma_k) \rangle) = \langle b(g_0(\sigma_0))b(g_0(\sigma_1)) \cdots b(g_0(\sigma_k)) \rangle$,

Finite T_0 -Spaces and Simplicial Structures

$$g_N(x) \in \langle b(g_0(\sigma_0))b(g_0(\sigma_1))\cdots b(g_0(\sigma_k)) \rangle.$$

Then we have

$$\psi_Y(g_N(x)) = f_Y(g_0(\sigma_k)) = g \circ f_X(\sigma_k).$$

Hence from $g \circ \psi_X(x) = g \circ f_X(\sigma_k)$, we have

$$\psi_Y \circ g_N = g \circ f_X.$$

§ 4. Partially simplicial complexes and induced finite T_0 -spaces.

In Theorem 2, for every partially simplicial complex K, we have considered an equivalent finite T_0 -space (K, \mathcal{U}) which has been constructed in the following way. For each $\sigma \in K$, put

$$V_{\sigma} = \{\tau \in K | \tau > \sigma\}.$$

Then (K, \mathcal{U}) is a finite T_0 -space such that V_{σ} is the minimal basic neighborhood of σ .

The following Lemma 9 and Theorem 6 are easily found.

Let K be a partially simplicial complex, and (K, \mathcal{U}) be the corresponding finite T_0 -space. Then clearly the identity mapping $i: K \to (K, \mathcal{U})$ is the simplicial presentation mapping. Hence we have the following lemma.

LEMMA 9. The identity mapping $i: K \to (K, \mathcal{U})$ induces a weak homotopy equivalence $i: |K| \to (K, \mathcal{U})$.

THEOREM 6. Let $g: K \to L$ be a quasi simplicial mapping of a partially simplicial complex K to a partially simplicial complex L. If $f_K: |K| \to (K, \mathcal{U})$ and $f_L: |L| \to (L, \mathcal{D})$ are two simplicial presentation mappings, then g is a continuous mapping of (K, \mathcal{U}) to (L, \mathcal{D}) , and g has the following properties:

- (1) let K_1 and L_1 be the first barycentric subdivisions of K and L respectively. Then g induces a simplicial mapping $g_1: |K_1| \rightarrow |L_1|$ such that $f_L \circ g_1 = g \circ f_K$.
- (2) Let N(K) and N(L) be the nucleuses of K and L respectively, and let $\psi_K = f_K | N(K)$ and $\psi_L = f_L | N(L)$. Then g induces a simplicial mapping g_N : $|N(K)| \rightarrow |N(L)|$ such that $\psi_L \circ g_N = g \circ \psi_K$.

PROOF. If σ , $\tau \in (K, \mathcal{U})$ and $\sigma \leq \tau$, then we have $\sigma > \tau$ in K. Since g is quasi simplicial, we have $g(\sigma) > g(\tau)$ in L and $g(\sigma) \leq g(\tau)$ in (L, \mathcal{D}) . Then by Lemma 2, $g: (K, \mathcal{U}) \rightarrow (L, \mathcal{D})$ is continuous.

Thus (1) and (2) follow immediately from Theorem 4 and Theorem 5.

THEOREM 7. Let K be a n-partially simplicial complex, and let α_i be the number of i-simplexes of K. Then we have

(1) $\alpha_0+\alpha_1+\cdots+\alpha_{n-1}=n$.

- (2) $1 \leq \alpha_0 \leq n$.
- (3) $0 \le \alpha_i \le n-i$, (i=1, 2, ..., n-1).

PROOF. (1). We need to prove that a *n*-partially simplicial complex K has just n elements. Let (K, \mathcal{U}) be the finite T_0 -space corresponding to K, and L be the simplicial presentation of (K, \mathcal{U}) which has been constructed in the proof of Theorem 2, that is,

$$L = \{ s(\sigma) \mid \sigma \in K \}$$

where $s(\sigma)$ is a simplex with vertices $\{\tau \in K | \tau > \sigma\}$. From the proof of Theorem 2, the number of vertices $\{\sigma | \sigma \in K\}$ of *L* is equal to the number of simplexes of *L*. Then by the second assertion of Theorem 2, we have $K \approx L$. So *L* has *n* vertices. Therefore *K* has *n* elements.

(2). From (1), we have $\alpha_0 \leq n$. We prove that $\alpha_0 \geq 1$. Suppose $\sigma_0 \in K$ and σ_0 is a k_0 -simplex. When $k_0=0$, we have $\alpha_0 \geq 1$. When $k_0>0$, from (1) of Definition 4, σ_0 has k_0 proper faces in K. We take such a face σ_1 , and let k_1 be the dimension of σ_1 . When $k_1=0$, we have $\alpha_0 \geq 1$. When $k_1>0$, σ_1 has k_1 proper faces in K. We repeat a similar process and find that K has at least a 0-simplex. Thus (2) holds.

(3). Assume that $\alpha_i \ge n-i+1$ for some *i*. Any *i*-simplex in *K* has *i* proper faces in *K*. Hence the number of all simplexes in *K* are not less than

$$(n-i+1)+i=n+1.$$

This contradicts (1).

Reference

- [1] M. C. McCORD: Singular homology groups and homotopy groups of finite topological spaces. Duke Math. J. Vol. 33, (1966) 465-474.
- [2] M. SHIRAKI: On finite topological spaces. Reports of the Faculty of Science Kagoshima Univ. No. 1 (1968) 1-8.