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The purpose of this note is to show that any compact Hausdorff space is represented
as the inverse limit space of an inverse limit system in which each space is a compact
subspace of a finite dimensional Euclidean cube.

Let X be a compact Hausdroff space and let I=[0, 1] be the closed interval with the
usual topology. Suppose that O(X)={p,: u € M} is the family of all continuous map-
pings from X to I. Now we consider a family D={{g,},c.: @ is a finite subset of M]}.
And we define an order relation < in D by saying f<g, where f= {®,} e« and g=
{Pulueps if acp. Then (D, <) is a directed set. Because, given f={®,}, €D and g=
{Pulueg € D, we take h={(@,} scavy. Of course A is in D (Such the 4 is denoted by f V).
Then we have obviously A>f and h>>g, hence (D, <) is a directed set.

For each ¢,cC(X), setting H,=g,(X), H, is a compact subset of I. And for each f=
{Pu)uea € D, we define a mapping f : X - II{H,: uca} by

f@)={p.(®) : pea},
and set X =f(X). Then f is continuous and X, is a compact subspace of a finite
dimensional Euclidean space.
Next, we consider the family (X s feD}. TFor eachf, g e D with f<g, a mapping zy,:
X, — Xy is defined by

7709(@) = f(@).
Then 7, has the following properties:
(1) 7y, is well defined.
(2) =y, is continuous onto.
(3) /s is identity.
(4) if f<g<h, then =y, myp=mny;.

In fact, suppose f<g, where f={p,},cx and g={@,} .c g 1 g(2)=g(y), then ¢ (z)=p,(y) for
pef. Since f<g, we have acp, so that ¢,(x)=@,(y) for uca. Hence f(z)=f(y), and we
have (1). (2) is evident since 7, is a projection of the product space onto its factor space.
(3) and (4) follow immediately from the definition of the mapping ms,. Therefore we can
conclude that the family (X, z(,} is an inverse limit system over the directed set D.
Moreover, since X is a non empty compact Hausdorff space, the inverse limit space
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Xo of the inverse limit system {Xy, 74} is non empty compact Hausdroff [1].

Now, the evalution mapping e : X—II{X;: feD} is continuous [2]. And e(z) € X
since e(x)={f(x) : fe D} and = f(x)=nh(x) whenever h<f.

The mapping e is injective. To prove this, suppose that « and y are two distinct
points of X. Since X is a compact Hausdorff space, there exists a mapping ¢,eC(X) such
that

, @, () =0 and ¢,(y) = 1.
Take h={p,} consisting of only one element @,. Then % is a member of D and A(z)=A(y).
Thus e(z)=e(y), so that e is injective.

Next, we shall show that e(X) is dense in Xe. For this, it is sufficient to prove that
every open neighborhood of any point of Xo contains a point of e(X). Let {#f} ¢ X, and
suppose that II{U: f € D} is an arbitrary open neighborhood of {z/}, where each U/ is an open
neighborhood of z; in Xy, and U;=X/ for all but a finite number of fe D. Let the finite
elements of D be {g, ---,h}, and take )=¢V ---\Vh. Then there exists a y ¢ X such that
xy=(y) € Xo, since zy € Xy and Xy=1(X). When considering {f(y): fe D} € Xc,

g () =g (), -+, maeth(y) = h(y),

and since Y(y) = 24 and for 1<y = yxy = x;, we have

g(y)=wg7 ) h(y)=wh ‘
It follows that {f(y)}ell{U;: fe D}. This proves that e(X) =Xo.
Since X is a compact Hausdorff space and e is a continuous mapping, e(X) also is
a compact Hausdroff space. Moreover since X, is Hausdroff, e¢(X) is closed in Xw. Con-
sequentely,

e(X) = ¢(X)” = Xo,

and therefore e is homemorphism.
Thus we have established the following theorem.

TareoreM. Ewvery compact Hausdroff space is homeomorphic to the inverse limst space
of an tnverse limit system in which each space s a compact subspace of a finite dimensional
Euclidean space.
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