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The purpose of this note is to show that any compact Hausdorff space is represented

as也e inverse limit space of an inverse limit system in whi血each space is a Oompact

subspace of a finite dimensional Euclidean cube.

Let Z be a compact Hausdroff space and let J-[0, 1] be the closed interval with the

usual topology. Suppose that C(X)-{恥: FL ∈ M} is the family of all continuous map-

pings from X to /. Now we consider a family D-[{恥)岬　a is a finite subset of M).

And we define an order relation < in D by saying/<#, where/-{恥)脚and g-

(恥W ifォ⊂β　Then (D,<) is a directed set. Because, given/-{恥)岬∈D and g-

(恥}//,牀｣^A wetakeh-{恥)岬Ufl. Of course his inD (Such the h is denoted by / vg)･

Then we have obviously hy>f and h^>g, hence (D, <) is a directed set.

For each恥∈C(X), setting H -恥(X), H^ is a compact subset of /. And for each/-

(臥)岬∈D, we define a mapping/ : X-U{H - p∈a} by

/(*)-(臥(x) : u∈a) ,

and set Xf-f(X). Then/ is continuous and Xt is a compact subspace of a finite

dimensional Euclidean space.

Next, we consider the family {Xf:/∈ D}. For eachf9g ∈ D with/<</> a mapping 7t/g:

Xg -Xf is defined by

*ft9ix) - f(x)�"

Then 7tfg has the following properties :
●

(1) 7tfg is well defined.

(2) 7tfg is continuous onto.

(3) Ttff is identity.

(ア) 1if<9<h, then itsg7tgh-7tfh.

In fact, suppose /<#, where/-{恥)脚and ff-{恥}luep. Iig(x)-g(y), then恥(*)一恥(y) for

p∈β　Since/<#, we have a⊂β so that恥(x)-恥(y) for u∈a. Hencef(%)-f(y), and we

have (1). (2) is evident since 7tfg is a projection of the product space onto its factor space.

(3) and (4) follow immediately from the definition of the mapping 7tfg. Therefore we can

conclude that the family {X/9 7tfg} is an inverse limit system over the directed set D.

Moreover, since Xf is a non empty compact Hausdorff space, the inverse limit space
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X∞ of the inverse limit system [Xf, 7tfg) is non empty compact Hausdroff [1].

Now, the evalution mapping e :X-Il{Xf. f∈D) is continuous [2]. And e(x) ∈ X∞

since e(x)-{/(a;) : /∈ D] and 7thff(x)-h(x) whenever A</.

The mapping e is miective. To prove this, suppose that x and y are two distinct

points of X. Since X is a compact Hausdorff space, there exists a mapping甲veG(X) such

that

甲,(x)=-0 and甲(y)-i.

Take h-{恥} consisting of only one element恥　Then h is a member ofD and h(x)幸%).

Thus e{x)幸e(y), so that e is injective.

Next, we shall show that e(X) is dense in X∞　For this, it is sufficient to prove that

every open neighborhood of any point of X∞ contains a point ofe(X). Let {xf} ∈ X∞, and

suppose that口iVr.f∈ D] is an arbitrary open neighborhood of {xA, where each Vt is an open

neighborhood of Xf in Xf, and U/-X/ for all but a finite number of/∈ D. Let the且nite

elements of D be {g, -,h), and take ¢-gv･･･vh. Then t血ere exists ay∈Xsuchthat

x¢-ォ%) ∈X¢ since x少∈X少and X¢-ijj(X). When considering [f{y): f∈D) ∈X∞,

*gmy)'-9(y)>　- , 7t帥4>(y)-%)>

and since ib(y) -xやand for?<¢ 7tl拘-xh we have

g{y)-x,,�"�"�", %)-*a�"

It follows that {f(y)}∈口　/∈ D). This proves that e(Z)--X∞･

Since X is a compact Hausdorff space and e is a continuous mapping, e(X) also is

a compact Hausdroff space. Moreover since X∞ is Hausdroff, e(X) is closed in X∞. Con-

sequentely,

e(X) - e(X)- - X∞,

and therefore e is homemorphism.

Thus we have established the following theorem.

●

Theorem. Every compact Hausdroff space is homeomorphic to the inverse limit space

of an inverse limit system %n which each space is a compact subspace of afinite dimensional

Euclidean space.
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