A Wreath Product Group and Its Geometry (2-Design)

著者	ATSUMI Tsuyoshi
journal or	鹿児島大学理学部紀要.数学・物理学・化学
publication title	
volume	6
page range	11-12
別言語のタイトル	ある群とその幾何
URL	http://hdl.handle.net/10232/00006996

Rep. Fac. Sci. Kagoshima Univ., (Math. Phys. Chem.) No. 6, pp. 11-12, 1973

A Wreath Product Group and Its Geometry (2-Design)

By

Tsuyoshi Atsumi

(Received September 30, 1973)

1. Summary and Introduction

The purpose of this paper is to construct an infinite class of 2-designs which includes Alltop's designs [1] as a special case in a sense. We follow Alltop's method for constructing 2-designs. So, to complete the argument, we quote Alltop's method of constructing t-designs.

For a finite set \mathcal{Q} let $\sum_{k}(\mathcal{Q})$ denote the class of k-subsets of \mathcal{Q} where k-subset means any set of k elements of \mathcal{Q} . By a $t-(v, k, \lambda)$ design we mean a pair $(\mathcal{Q}, \mathscr{D})$, where $|\mathcal{Q}| = v$, $\mathscr{D} \subset \sum_{k}(\mathcal{Q})$ and each t-subset of \mathcal{Q} is contained in exactly λ members of \mathscr{D} . S_{v} , the group of the permutations of \mathcal{Q} , acts in a natural way on $\sum_{k}(\mathcal{Q})$, $\sum_{j}(\sum_{k}(\mathcal{Q}))$, etc. Alltop's method for constructing t-designs is to start with a group G, acting on \mathcal{Q} , and let \mathscr{D} be any proper orbit under G in $\sum_{k}(\mathcal{Q})$. G decomposes $\sum_{i}(\mathcal{Q})$ into m orbits $Q_{1}, \cdots, \frac{m}{Q_{m}}$. By the t-proportionality vector of G on \mathcal{Q} we mean the m-tuple $(|Q_{1}|, \cdots, |Q_{m}|)$. Now let \mathcal{A} be any member of $\sum_{k}(\mathcal{Q})$, t < k < v-1. We call (u_{1}, \cdots, u_{m}) the t-proportionality vector of \mathcal{A} , where u_{i} is the number of members of \mathcal{Q} contained in \mathcal{A} . Let \mathscr{D} be the orbit of \mathcal{A} under G. The number λ_{i} of members of \mathscr{D} containing any $\Gamma_{i} \in Q_{i}$ is $u_{i} |\mathscr{D}|/$ $|Q_{i}|$. If $\lambda_{1} = \lambda_{2} = \cdots = \lambda_{m}$, then $(\mathcal{Q}, \mathscr{D})$ is a $t-(v, k, \lambda)$.

2. 2-designs from a wreath product group

Let v=mn and $\mathcal{Q}=\{a_1, \dots, a_n, \beta_1 \dots \beta_n, \gamma_1 \dots, \gamma_n, \dots\}$, and let $G=S_m \bigg| S_n$. Although G is not doubly transitive on \mathcal{Q} , G decomposes $\sum_2(\mathcal{Q})$ into only 2 orbits. Let Q_1 be the orbit of $\{a_i, \beta_j\}$ and Q_2 the orbit of $\{a_i, \beta_i\}$. The 2-proportionality vector of G on \mathcal{Q} is $\left(\binom{mn}{2} - \binom{m}{2}n, \binom{m}{2}n\right)$. For $ms \leq k < n$ let

For Δ , $\Delta = \{a_1, \dots, a_{k-(m-1)s}, \beta_1 \dots \beta_s, \gamma_1 \dots \gamma_s, \dots\}$. $u_1 = \binom{k}{2}s - \binom{m}{2}s$ and $u_2 = \binom{m}{2}s$.

The orbit of Δ under G yields a 2-design if

$$\frac{u_2}{u_1} = \frac{\binom{m}{2}n}{\binom{mn}{2} - \binom{m}{2}n}.$$
(1)

(1) will hold provided ms(v-1)=k(k-1). The number of blocks will be

$$b = m^{k-ms} \binom{n}{s} \binom{n-s}{k-ms}$$

and

$$\lambda = \frac{b\binom{m}{2}s}{\binom{m}{2}n} = \frac{bs}{n}.$$

Thus we have the following theorem.

THEOREM. If $v-1 \left| \frac{k(k-1)}{m} \right|$, $m \left| v \right|$ and $\frac{k(k-1)}{v-1} \leq k < \frac{v}{m}$, then 2-(v, k, λ) design exists such that $\lambda = \frac{bs}{n}$,

$$b = m^{k-ms} {n \choose s} {n-s \choose k-ms}$$
 and $n = \frac{v}{m}$.

REMARK. In the above theorem if we put m=2, then $2-(v, k, \lambda)$ design reduces to Alltop's design in a sense.

For example, k=12, m=3, v=45, s=1 and $\lambda=3^{9} \cdot \begin{pmatrix} 14\\5 \end{pmatrix}$ satisfy the conditions of the theorem. So 2-(45, 12, λ) design exists where $\lambda=3^{9} \cdot \begin{pmatrix} 14\\5 \end{pmatrix}$.

Acknowledgment

The author is grateful to Professors Hiroshi Nagao and Yoshio Matsuoka for their kind suggestions.

Reference

[1] W.O. Alltop, Some 3-designs and a 4-design, J. Comb. Theory 11 (1971), 190-195.