A Weath Product Group and Its Geometry （ 2 －Desi gn）

著者	ATSUM Tsuyoshi
j our nal or publ i cat i on titl e	鹿児島大学理学部紀要．数学•物理学•化学
vol une	6
page range	$11-12$
別言語のタイトル	ある群とその幾何
URL	ht t p：／／hdl ．handl e．net $/ 10232 / 00006996$

A Wreath Product Group and Its Geometry (2-Design)

By
Tsuyoshi Atsumi

(Received September 30, 1973)

1. Summary and Introduction

The purpose of this paper is to construct an infinite class of 2-designs which includes Alltop's designs [1] as a special case in a sense. We follow Alltop's method for constructing 2 -designs. So, to complete the argument, we quote Alltop's method of constructing t designs.

For a finite set Ω let $\Sigma_{k}(\Omega)$ denote the class of k-subsets of Ω where k-subset means any set of k elements of Ω. By a $t-(v, k, \lambda)$ design we mean a pair (Ω, \mathscr{D}), where $|\Omega|=v$, $\mathscr{D} \subset \Sigma_{k}(\Omega)$ and each t-subset of Ω is contained in exactly λ members of $\mathscr{D} . S_{v}$, the group of the permutations of Ω, acts in a natural way on $\Sigma_{k}(\Omega), \Sigma_{j}\left(\sum_{k}(\Omega)\right)$, etc. Alltop's method for constructing t-designs is to start with a group G, acting on Ω, and let \mathscr{D} be any proper orbit under G in $\Sigma_{k}(\Omega)$. $\quad G$ decomposes $\Sigma_{t}(\Omega)$ into m orbits $Q_{1}, \cdots, \frac{m}{Q_{m}}$. By the t-proportionality vector of G on Ω we mean the m-tuple ($\left.\left|Q_{1}\right|, \cdots,\left|Q_{m}\right|\right)$. Now let Δ be any member of $\Sigma_{k}(\Omega), t<k<v-1$. We call ($u_{1}, \cdots \cdots, u_{m}$) the t-proportionality vector of Δ, where u_{i} is the number of members of Q_{i} contained in Δ. Let \mathscr{D} be the orbit of Δ under G. The number λ_{i} of members of \mathscr{D} containing any $\Gamma_{i} \in Q_{i}$ is $u_{i}|\mathscr{D}| \mid$ $\left|Q_{i}\right|$. If $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m}$, then (Ω, \mathscr{O}) is a $t-(v, k, \lambda)$.

2. 2-designs from a wreath product group

Let $v=m n$ and $\Omega=\left\{\alpha_{1}, \cdots, \alpha_{n}, \beta_{1} \cdots \beta_{n}, \gamma_{1} \cdots, \gamma_{n}, \cdots\right\}$, and let $\left.G=S_{m}\right\} S_{n}$. Although G is not doubly transitive on Ω, G decomposes $\Sigma_{2}(\Omega)$ into only 2 orbits. Let Q_{1} be the orbit of $\left\{\alpha_{i}, \beta_{j}\right\}$ and Q_{2} the orbit of $\left\{\alpha_{i}, \beta_{i}\right\}$. The 2-proportionality vector of G on Ω is $\left(\binom{m n}{2}-\binom{m}{2} n,\binom{m}{2} n\right)$. For $m s \leqq k<n$ let

$$
\begin{array}{ll}
\Delta & \Delta=\left\{\alpha_{1}, \cdots, \alpha_{k-(m-1)}, \beta_{1} \cdots \beta_{s}, \gamma_{1} \cdots \gamma_{s}, \cdots\right\} . \\
\text { For } \Delta, & u_{1}=\binom{k}{2} s-\binom{m}{2} s \quad \text { and } \quad u_{2}=\binom{m}{2} s .
\end{array}
$$

The orbit of Δ under G yields a 2 -design if

$$
\begin{equation*}
\frac{u_{2}}{u_{1}}=\frac{\binom{m}{2} n}{\binom{m n}{2}-\binom{m}{2} n} \tag{1}
\end{equation*}
$$

(1) will hold provided $m s(v-1)=k(k-1)$.

The number of blocks will be

$$
b=m^{k-m s}\binom{n}{s}\binom{n-s}{k-m s}
$$

and

$$
\lambda=\frac{b\binom{m}{2} s}{\binom{m}{2} n}=\frac{b s}{n}
$$

Thus we have the following theorem.
Theorem. If $v-1\left|\frac{k(k-1)}{m}, m\right| v$ and $\frac{k(k-1)}{v-1} \leqq k<\frac{v}{m}$, then $2-(v, k, \lambda)$ design exists such that $\lambda=\frac{b s}{n}$,

$$
b=m^{k-m s}\binom{n}{s}\binom{n-s}{k-m s} \quad \text { and } \quad n=\frac{v}{m} .
$$

Remark. In the above theorem if we put $m=2$, then $2-(v, k, \lambda)$ design reduces to Alltop's design in a sense.

For example, $k=12, m=3, v=45, s=1$ and $\lambda=3^{9} \cdot\binom{14}{5}$ satisfy the conditions of the theorem. So $2-(45,12, \lambda)$ design exists where $\lambda=3^{9} \cdot\binom{14}{5}$.

Acknowledgment

The author is grateful to Professors Hiroshi Nagao and Yoshio Matsuoka for their kind suggestions.

Reference

[1] W.O. Alltop, Some 3-designs and a 4-design, J. Comb. Theory 11 (1971), 190-195.

