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In the present paper we determine all metrical Finsler connections to study the
group of transformations of these connections and its invariants.

§ 0. Introduction.

In the ordinary treatments of the Finsler geometry the Cartan connection [3] is
adopted as a typical metrical Finsler connection, but sometimes the others are useful.
For example, V. Wagner [25] introduced the notion of generalized Cartan connection to
study the so-called cubic metric. So, it is important to consider the relations between
various metrical Finsler connections and to investigate what reasonable places they
hold among the general Finsler connections. In fact, it has been studied by many
authors from their respective standpoints (e.g. L. Berwald [2], M. Hashiguchi [5, 6, 8],
A. Kawaguchi [12], M. Matsumoto [13], R. Miron [17, 18], T. Ohkubo [21], A. Sanini
[23] ete.).

The purpose of the present paper is to determine all metrical Finsler connections to
study the group of transformations of these connections and its invariants. As the
results of these considerations we have three Finsler tensor fields H j-k,, M }:k, and N j-kl,
which are invariant for the semi-symmetric metrical Finsler connections having a com-
mon non-linear connection (Theorem 6. 2).

All metrical connections are determined in §3 using Obata’s operators [20] explained
in §2, and expressed in the various forms in §4, where the semi-symmetric metrical
Finsler connections make an important class. In §5 we treat the transformations of the
general metrical Finsler connections, and in the following §6 we obtain the above
invariants and consider their some properties.

Continued from this paper we should try to characterize the Finsler spaces
satisfying H j:kle }:klzN sz=0 for some semi-symmetric metrical Finsler connec-
tion. On the other hand, our method is applicable also to the cases of conformal
Finsler, almost symplectic, almost complex etc. structures (cf. V. Cruceanu and R.
Miron [4], R. Miron [16], R. Miron and V. Oproiu [19]). These shall be treated in the
following papers.

The notations and terminologies are those of M. Matsumoto [14, 15] with few
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modifications. For convenience’ sake, we shall devote §1 to sketching the materials
necessary for our discussions about the metrical Finsler connections.

This paper was mainly prepared by R. Miron, and was reconstituted by M. Hashi-
guchi adding some historical notes. The authors wish to express their sincere gratitude
to Professor Dr. M. Matsumoto for his kind recommendation to this joint work.

§1. The notion of metrical Finsler connection.

1.1. Let F, be an n-dimensional Finsler space having L(z, y) as the fundamental
function, where x=(2*) and y=(y) denote a point of the base manifold M and a
supporting element respectively. The components g¢;; of the fundamental tensor field
are given by ¢;;=1/202L2/3y’dy/, and the components %’ of the supporting element
become also y=g'/y;, where (¢*/)=(g;;)~1, y;=LoL[dy’.

By Matsumoto’s theory [14, 15] a Finsler connection FI' is defined in three man-
ners as a pair (I", N), as a pair (I"*, I"'?) or as a triad (I'y, N, I'®), where I" and I"* (resp.
I'’) are a connection and a horizontal (resp. vertical) connection in the Finsler bundle
F(M), N is a non-linear connection in the tangent bundle 7'(M), and I'y is a V-connec-
tion in the linear frame bundle L(M). When ka, C’f-k are the coefficients of I, and
N} and F}; are the respective ones of N and I'y, they are related in

Fis=jp—CinNY . (1.1)

The coefficients of I'* (resp. I'’) are F}:k, N; (resp. O;k).

Throughout the paper the Finsler connection FI' having N7, F;'-k, C’fk as the
coefficients is denoted by FI'=(N, F, C) for brevity, and also we use the following
abridged notations:

Al =yidl, Wpdi) = A—Al;, Suldin) = Aju+Ai+A4i.
1.2. Given a Finsler connection FI'=(N, F, C), for a Finsler tensor field, for
example, K} (z, y), the A- and v-covariant differentiations are defined by

K= 8K} |2t + Ky Fpy—Ki B, Kj|y = oK [0yt + K7 Cis—K Oy (1.2)
where §/8x* = d/ox*—N7F o oy™ .

For the supporting element y* we have y',,=Fi;—N%, o' |;=06;+C%;. The Finsler
tensor field D given by

D; =Fi—N; (1.3)
is called the deflection tensor field.
The Ricei identities applying to g¢;; are
Gijimi—Gijne = —9siRin—9isRin—gijisThi— 9i51 s B, (1.4)
Gisiwli— il = —9siPin—9isPiri— 9ijsChi—gij | s Pha » (1.5)
Fiileli—gijlile = —9sjSi—9:sSiu— il Shi » (1.6)
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where five torsion tensor fields 7', R1, C, P, S and three curvature tensor fields R%, P2

S?% appear, and their components are given by

T:Th=%p(Fiy, SuSh=%(Cix), C:Ch, (1.7)
R': Ry =%y (3Nifsay,  P: Piy=oNijoy'—Fis, (1.8)
R Ry = Wy (8F /st + F5 Fiy +CLRY: (1.9)
P2 Py = oF /oy —Cys+Chn Py (1.10)
82: S5 p = Wn P04 /0y" + C1Clii) . (1.11)

1.3. Let C(z/(t)) be a differentiable curve in M and C(x(¢), 4*(¢)) be a differenti-
able curve in 7'(M) mapped on C by the natural projection r: T(M)—»>M. Given a Finsler
connection FI'= (I", N), tangent vectors X(¢) along C are called parallel along C with
respect to C, if the equations

X4 rpXigh+CupXigh =0 (1.12)
are satisfied, where a dot means d/dt.
A Finsler connection FT is called metrical if the length (g;; (x, y) X*X7)1/2 of a vector

X(t) remains unchanged under the parallel displacement along any curve C with
respect to any C. Then the necessary and sufficient conditions that FI" be metrical are

9ine=0,  gilz=0. (1.13)
A remarkable metrical Finsler connection is the Cartan connection C’]’=(Z\07 , ﬁc’, é’),

whose coefficients are given by

R i L im j
Nk=—2_b)/oo/ayk, where  yjp = ——g""™(3gm /38" +ogm[02' —3g sfox™),  (1.14)

2
ci 1 ; .
7+ = 5939 |57 +8gum 55 —8g;4/52™) (1.18)
qi 1 o im k ; m L im E
Ci =59 (0 jm[2y* +0Grm[0y’ —0g;/0y ) =597 3ginloy" - (1.16)

Throughout the paper we specify the objects concerned with CI' by putting c¢. It
holds y"szo, y‘Tk=82 , that is,
Di=0, OCi—=o. (1.17)

In the following we determine all metrical Finsler connections.
§ 2. Obata’s operators of the Finsler space.
2.1. Let us consider the Finsler tensor fields

ir 1 far iy ir iqr i
LQsi - 7(8581'_95.1‘9 )’ ‘Q*Si = (853;“*‘9;;‘9 r) ’ (21)

bo |
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which have the following properties and play the same role as the operators 4,, 4, given
by M. Obata [20] in the Riemannian case. We shall call them Obata’s operators.
Proposition 2.1. Obata’s operators have the following properties:

955 +2%5 = 8387, 2.2)
Qirsn —Qin  gxirgesn _gwin  girgwsr _ gwirgen o (2.3)
2,7 =9{ =0, 9§§=—;—(n—1)8§, !2*%:%(%1) 5. (2.4)

Proposition 2.2. For any Finsler tensor field A%, the following three conditions
(1), (2), (3) are equivalent:

(1) Q:;Aik =0 (resp. Q*f;Aik =0),

(2) Q*7A} =A% (resp. QA = A}),

(3)  g,;A%s s symmetric (resp. alternate) with respect to the indeces 1 and j.

Using the above propositions we have easily

Theorem 2.1. A system of tensor equations

QX =Aj  (resp. 21X, =A}) (2.5)
with X'y, as unknowns, has solutions if and only if
QA3 =0 (resp. @%743, =0). (2.6)
If (2.6) holds, then the general solutions of (2.5) are
=AY (resp. Xy = A+ 2% 055, (2.7)

where Y}y, is an arbitrary Finsler tensor field.

2.2. Now, assume a Finsler connection to be metrical. Then Obata’s operators
are k- and v-covariant constants:

50 =0, 27=0, @*5,=0, @%7,=0, (2.8)
and the Ricci identity (1.4) becomes g ;Riz+¢iRjn=0. As to Py, S}kl the same
relations hold, and we have from Proposition 2.2

Theorem 2.2. The curvature tensor fields R;kl, ;kl: S}kl of a metrical Finsler
connection have the following properties:
DR =0, DRy, =0, Q¥R =0 (p=1,2,--1), (2.9)
QP =0, Q¥ Piua, =0, 2Pyl =0 (p=L1,2,---), (2.10)
O*88 =0, @S, =0, %S5l =0 (p=1,2,--+). (2.11)

Also, we observe that for the Cartan connection

c

. C c . . C c . C .
Q*5Cn=Cjp, Q%P =Pj (=Cjsy) - (2.12)
§ 3. The set of metrical Finsler connections.

3.1. We shall determine all metrical Finsler connections by a well-known method
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based on Theorem 2.1. Let FIO’=(Z\07 , I(f)’, CO’) be a fixed Finsler connection in F,. Then
any Finsler connection FI'=(N, F, C) in F, can be expressed in the form

Ni=Ni—d4f, Fiy=Fiy+Cindf—Bj, Ch=Cha—Dh,  (31)

where A%, B;k, D;:k are components of the difference tensor fields of FI' from F]o1 [14,
15]. There exists a one-to-one correspondence between the set of all Finsler connec-
tions FI" and the set of all triads of Finsler tensor fields A%, }’ b Df-k. So, to determine
FTI' in some geometrical conditions, for example, a metrical one, is the same as to
determine A¢, B}'- B D;“: & In some tensorial conditions.

In order that FI' is metrical, that is, (1.13) holds for FI', it is necessary and
sufficient that A}, ;:k, Dj-k satisfy

gij(:k"'gij(l)nA’I:+gsjB§k+gisB;'k =0, 9ika+gst3k+9isD;k =0,
which is equivalent to
9*1B3y = — %’gim(grnj?k‘i‘gijnAZ) , %D = — %-g""g,,,ji’k, (3.2)

where ,0 and ]0 denote the ~- and v-covariant differentiations with respect to FI. Thus
we have

Proposition 3.1. Let FI be a fized Finsler connection. Then the set of all
metrical Finsler connections FI' is given by (3.1), where A}, Bji, D are arbitrary Finsler
tensor fields satisfying (3.2). Especially, if FI s metrical, then (3.2) becomes !2*&; "
=0, 2%/7D3;,=0.

From Theorem 2.1, however, the system (3.2) has solutions in Bj;, Dj; for any
Finsler tensor field 4;=Xj. Substituting in (3.1) from the general solution we have

Theorem 3.1. Let FI be a fized Finsler conmection. The set of all metrical Finsler
connections FI' is given by

, 0, .
i i im0 Y oxm o oirys
Fiy =Fi+ 05X +‘—2‘*9' (Imiiet Gmil v X5) + 255 X1,

1

Oi 1 . 0 .
ir =0+ —Z—gmgmjlk-i-gs’; h>

where X}, X}”: b Y;: & are arbitrary Finsler tensor fields.

3.2. As the particular case X};:Xjsz}k:O in Theorem 3.1 we have

Theorem 3.2. Let FT be a gwen Finsler connection. Then the following Finsler
connection FI' vs metrical:

T i i 1 im0 . TR S
N =Ny, ij=ij+?!] GImjik s Ojk=0jk+79m9mf|k- (3.4)
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In many cases of Finsler geometry, for example, in the theory of extremals, a non-
metrical Finsler connection is determined easily and naturally. In order to derive a
metrical Finsler connection from a given non-metrical one, A. Kawaguchi [12] obtained
the metrization method essentially stated in the above theorems and showed that the
Cartan connection is derived from the Berwald one. We shall call the connection FI' in
Theorem 3.2 the Kawaguchs metrical connection derived from FI and denoted by K r.

As examples of non-metrical Finsler connections FI' we know the ones Br, Rr
and HTI given by L. Berwald [1], H.Rund [22] and M. Hashiguchi [9]:

Br: Ni=Ni, Fi=Fi+Pi,, Ci=o,

RI: Nj=Ni, Fiy=Fh, Ch—o,

HT: Ni=Ni, Fia=Fiat+Ph, Cis=Cir.
Paying attention to (2.12) we have from Theorem 3.2

Theorem 3.3. Let FI' be the Cartan, Berwald, Rund or Hashiguchi connection.
Then the Kawaguchs metrical connection K T derived Sfrom FT is the Cartan one.

3.3. We shall consider various expressions of Theorem 3.1. If we take a
metrical Finsler connection (e.g. CT') as FI in Theorem 3.1, we have

Theorem 3.4. The set of all metrical Finsler connections ts giwen by

Ni=Ni-Xi, Fj=Fiy+0,Xr+05X5, Ch=C0h+0i¥h, (5
where X}, X}:k, Y}:k are arbitrary Finsler tensor fields. .

In the above theorem we can replace X; by the deflection tensor field D;. We
shall denote by FI'(D) a Finsler connection having Dj as the deflection tensor field.
Especially, a Finsler connection is called a F-connection if D;=0.

If we contract the second of (3.5) by #/, and use (1.3), (1.17), then X} in (3.5) is
expressed as

Xi = Di—0i1 X3, . (3.6)
Conversely, Di may be arbitrarily given instead of Xi. Thus we have

Theorem 3.5. Let Dj be a given Finsler tensor field. Then the set of all metrical
Finsler connections FI'(D) is given by (3.5), where X'y, Yy are arbitrary Finsler tensor
fields and X, is given by (3.6).

Theorem 3.6. The set of all metrical F-connections is given by (3.5), where X}, Y
are arbitrary Finsler fields and Xj—=—2:0X ;5.

3.4. The arbitrariness of X} in Theorem 3.1 tells us any non-linear connection N
may become the non-linear connection of a metrical Finsler connection. We shall

denote by FI'(N) a Finsler connection having N as the non-linear connection. Theorem
3.1 is also restated as
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Theorem 3.7. Let FT be a fized Finsler connection. Given a non-linear connection
N, the set of all metrical Finsler connections FI'(N) 1s given by

1 7n 17
FJk —"F k+o .44 +—g m(gm]lk+gm;| X )+~Q ika
1 (3.7
O;k_'ojk_i'?g gm1|k+'gs]Yrk,

where X2=Z€7 N} and X}'-k, Y}: & are arbitrary Finsler tensor fields.
0
If we take N=N, we have Sanini’s result [23]:
0
Theorem 3.8. Let N be a given non-linear connection. Then the set of all metrical

Finsler connections FF(Z\OT ) is gwen by

i 1 1 2 1 im 0 ir
Fk—F;k‘i'?g gm]|k+'QS]er’ Ojk=0jk+“2“9 Imils+25; Yo,  (3.8)

where FT' is a Jfixed Finsler connection FF(N ) and X%y, Yy are arbitrary Finsler tensor
fields.

If we take a metrical Finsler connection (e.g. CI') as FT in the above theorem, we
have

Theorem 3.9. The set of all metrical Finsler connections FI' (Z\cf ) @8 given by
F§k=ﬁc1;k+~9"er, C; k—C’k-H?" h (3.9)

where X, Y;k are arbitrary Finsler tensor fields.

§ 4. Some special classes of metrical Finsler connections.

4.1. 'We shall here try to replace the arbitrary tensor fields X}, ¥%; in Theorem
3.4 by the torsion tensor fields T]k, i» We put

‘ 1 i
T*5 = 59 gl e—gin T+ g Th) 5

) (4.1)
S¥iy = 79 911 Sis—9i1Sta+gsnShi) -
Since Zc‘;k=0, we have from the second of (3.5)
=W (Fip) =W (Ol X+ 215 X5,) . (4.2)
Substituting in (4.1) from (4.2), we can express .Qf;X,k in terms of X and Ty
‘Q” ﬁk = Oka Cykmg le T*;k . (43)

Conversely, if for any alternate Finsler tensor field 7' j» we see (4.3) as a system of
Obata’s equations in X}, the compatibility condition (2.6) is easily verified. So, T
may be arbitrarily given instead of X};. As to Y7 the same argument holds and we
have



28 R. MiroN and M. HASHIGUCHI

Theorem 4.1. Let T;’:k, S}:k be given alternate Finsler tensor fields. Then the set
of all metrical Finsler connections having T, S;: & as the torsion tensor fields T, S* s given

by
N;; = Z{f;._ Z )
F;:k = F;:k-l-C;:sz’-i"O;mX;"—Cjkm 9”X7‘ +T*;k ) (4.4)
;:k = C;:k'l‘s*;:k )
where X% is an arbitrary Finsler tensor field and T*j- B S*jk are given by (4.1).

4.2. In the same way as in §3.3 the arbitrary Finsler tensor field X} in Theorem
4.1 may be replaced by the deflection tensor field Dj.

Theorem 4.2. Let D}, T}:k, S}“:k be given Finsler tensor fields and assume that Tf-k
and S;:k are alternate. Then there exists a unique metrical Finsler connection FI' (D)
having Ty, Sty as the torsion tensor fields T, S*. It is given by (4.4) with

X =Di+Cim(g™ Ty, —D)—T*3y . (4.5)
Theorem 4.3. Let T;:k, S”j-k be gwen alternate Finsler tensor fields. Then there

exusts a unique metrical F-connection having T}: % Sty as the torsion tensor fields T', S*. It
18 given by (4.4) with
X} = Clng™ Tory,—T*5s (4.6)

Theorem 4.4. There exists a unique metrical Finsler connection with the properties
Di=0, Tfk=0, Sj-k:O, that is, Ni=F:,, F}k:—Fz,-, C§k=02]~. This s the Cartan
connection CT.

This characterization of the Cartan connection is due to M. Matsumoto [13], in
which he noted that the Cartan connection has only one essential torsion C};, because
of T;:k:S}:k——-O, Ri,=R}, P —=Piy, and gave an example of a metrical Finsler con-
nection with many torsions, which is obtained from Theorem 4.2 by taking

Di =LY IL%i—y'ys), Tiu=LGjp—8iy)),  Sis=L*@jy—8iy;) -
4.3. Paying attention to the non-linear connection, Theorem 4.1 is also restated as
Theorem 4.5. Let N be a given non-linear connection, and let T}k, S;:k be given
alternate Finsler tensor fields. Then there exists o unique metrical Finsler connection FI'
(N) hawving Ty, Sty as the torsion tensor fields T, S*. It is given by
Fip =Fi+CipXP+Cin X —~Citmg" X1+ T*}4, a=C+S*,  (47)
where Xizl\pf}”;—Nﬁ and T*}:k, S*;k are giwven by (4.1).
The former of (4.7) s also written as
Fip = pis—CimNp—CinN 7 +Citmg"' N7+ T* 4 . (4.8)
Especially, if we take N =N , we have
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Theorem 4.6. Let T,k, S] 1 be given altemate Finsler tensor fields. Then there

exusts a unique metrical Finsler connection FI‘(N ) hamng T ks S 74 as the torsion tensor fields
T, S*. It s given by

F§k=i’§k+T*§k, O’;:k—C' s S, (4.9)
where T*};, S*iy are given by (4.1).
Theorem 4.7. There exists a unique metrical Finsler connection FI‘(Z(T ) whose
torsion tensor fields T, St vanish. This is the Cartan connection.
From (4.9) we have Dj=T*},. Conversely, the substitution in (4.5) from Dj=
T*;, yields X;=0. Thus we have
Theorem 4.8. A metrical Finsler connection having T}, as the torsion tensor field

T has the Cartan non-linear connection N of and only f the deflection tensor field is given by
Dj =T*,. (4.10)

4.4. A Finsler connection is called sems-symmetric if the torsion tensor fields T}k,
S have the form

= (T0i—T48))[(n—1),  Si=(8,;8i—8:8})/(n—1), (4.11)

where Tj=T;:,- and S j=S;,; will be called the A- and v-torsion vector fields respectively.

The Cartan connection is considered as a F-connection, or a Finsler connection FI'
[

(N), which is semi-symmetric and metrical and whose torsion vector fields T';, S; vanish.
If we put o;=T;/(n—1), 7;=8;/(n—1), that is, T ;3=U;x{0;8:}, Sjz=U;s{7;8;}, then
T*;:k, S*}, given by (4.1) become
T*, = 0,8k — g0’ = 282470, o' =g'a,),
fk N e N ( 7 ) (4.12)
S*jx = 180k —gjnt* = 224, (r" =g"7).

From Theorems 4.3 and 4.6 we have the generalizations of Hashiguchi’s results [8];
in which the semi-symmetry was defined as Tfk=91,-k {804}, Sj»=0:
Theorem 4.9. The set of all semi-symmetric metrical F-connections is given by
N,ﬁ = N,';—J—Lzé';ima’”—l-aos;i—-—ykai R
iy = Fj— LG} 0+ 6l —CluCi) o (4.13)
c . c . I3 . ¢ ; ; .
+(Cjsyr+COhsyi—Cinsy’) o' —Claoo+ 08— gjno’
Ojr = Cia+ridi—ginr’
where o;, 7; are arbitrary Finsler vector fields.

Theorem 4.10. The set of all semsi-symmetric metrical Finsler connections FT' (Zﬁ’ ) 18
gwen by

‘ _F'k+29k,o, . On=Cj+220,, (4.14)

where oj, 7;, are arbitrary Finsler vector fields.
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A Tinsler connection obtained by putting 7;=0 from Theorem 4.9 is called a
Wagner connection [8], and was used to study Wagner’s generalized Berwald space
[25]. It has moreover made the important contribution to the conformal theory of
Finsler metrics [10, 11]. On the other hand, in a Finsler connection of Theorem 4.10
the deflection tensor field is alive: Di=oy8;—yso’. The simplicity will, however,
lead us in §6 to the discussion of the transformations of such connections.

§ 5. The group of transformations of metrical Finsler connections.

5.1. Let FT, FI" be any two general metrical Finsler connections. If we see
Fr, FT as F.(;’, FTI' in Proposition 3.1, the given FI', FI" are expressed as
Nfc =N£—A1i > F;:k =F;k+C§mAi”—B;k, ’ C;k = O;:k" ;:k (5.1)
for some uniquely determined Finsler tensor fields A:, ;k, Dj-k satisfying
2%5Byy =0, 9%D;,=0. (5.2)
Conversely, given Finsler tensor fields A}, ;k, D}'-k satisfying (5.2), the above
(5.1) is thought to be a transformation of a Finsler connection FI" to a Finsler connection
FI'. Then it transforms a metrical one to a metrical one. We shall denote this trans-
formation by ¢ ( i jk, ka).
Let & be the set of all such transformations t(Ai, Bf B D}k). For any t(A}”;, B}:k,
D}:k), AV —jk, E;k) € T their product becomes
t(Z;, _;:ka B;k)ot(Alzez ;:k, ;k) = t(A;e+71;e, B;k‘}'B;k_“D;mZZz, D;k+D;k) ) (53)
which belongs to g And, any ¢ (4}, jk, D}:k) €& has the inverse t(—Aj, —B}:k—l—D;m
Z, —D;:k) in . Thus we have
Theorem 5.1. The set I of all transformations t(4i, ;:k, ;:k) gwen by (5.1)
with (5.2), together with the mapping product, is a group. This group acts on the set of all

Finsler connections effectively, and acts on the set of all metrical Finsler connections tran-
sutively.

5.2. The group Tis a subgroup of the general group ¥ of transformations of
Finsler connections [18]. On the other hand, it has five remarkable subgroups:

iN = {t(oa B_;'ka D;k) Ei} ) 3C = {t(A;e: ;'ks O) 6‘1} )

5, — ((45,0,0) €8},  Fyc— (0, By, 0) X},  Fwr — (10,0, Dly) €F) .
These are all abelian, and we have from (5.1), (1.1)

Proposition 5.1. 'i?p and %N preserve T' and N respectively. %NF preserves N
and Ty and so I, and %C preserves C and so T And, %Nc preserves N and C.

i”;'N, fgc and so %NC are normal subgroups of T [18]. ‘gp and ?Zth are not normal in
%, but normal in ,’%C and %N respectively.

Any element of § can be expressed as the product of elements of ig; and %N:
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t(A#, Biz, Dj) = (0, Bjs, Diz)ot(4}, 0,0) , (5.4)
which is not necessarily equal to £ (4%, 0, 0)ot(0, B’ b ;k) Thus we have
Theorem 5.2. The group % is the semi-direct product of its subgroups %p and %N:
T3, x%y.
Also, any element of % can be expressed as the product of elements of T and %‘Np:
#( Ak, Big, Dj3) = 10, 0, Diz)ot(A}, B, 0) (5.5)
which is not necessarily equal to ¢ (4}, ;:k, 0)ot (0, 0, D,-k). Thus we have
Theorem 5.3. The group % 4s the semi-direct product of its sbugroups %‘c and %Np:
FFcxEvr .
5.3. By Proposition 5.1 we can consider that Theorem 5.2 and Theorem 5.3

correspond to Matsumoto’s first and second definitions (1", N) and (I, I'*) of a Finsler
connection respectively

Asis easﬂy seen, iN 18 the direct product of its subgroups INC and ‘:INF IN ENC

X‘INF, and ‘37(; is the direct product of its subgroups %, and ‘ZNC ifc—ipx%Nc Cor-
responding to his third definition FI'=(1"y, N, I'*) we have

Theorem 5.4. The group % is expressed as

m d w - M a .« m m

T = (T, XZwc) XEyr = T X (Tyc X Tyr) -
Corresponding to these decompositions the following commutative diagram holds for every
tramsformation of metrical Finsler connections (A}, j-k, ;:k): (N, F, O)~(N, F, 0).

(N, F,C) %> (N,F%,C) —> (N, F",T)

8 \ Bl N\* B
l . *
(N,F2,0)—> (N,F,C) — (N,F,C)

A= t(Ak’ jk’ ) t(O B]k’ ;:k),
a=1(41,0,0),  B=t(0, Bjk,O), =10, 0, D%y)

§ 6. The group of transformations of semi-symmetric metrical Finsler
connections.

6.1. We apply the preceding considerations to the semi-symmetric case, and we
will determine some invariants [18].

Let N be a non-linear connection. Then any semi-symmetric metrical Finsler
connection FT' (N) is given by (4.7) with (4.12). Hence two semi-symmetric metrical
Finsler connections FI' (N), FI' (N) are related in the form

= N;z ’ F;k :F;k+2gi;ar ’ G;k = O;k +2*Q;z;77 (61)

for some uniquely determined Finsler vector fields o;, 7;. Conversely, given Finsler
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vector fields o;, 7;, the above (6.1) is thought to be a transformation of Finsler
connections preserving the non-linear connection. Then it transforms a semi-
symmetric metrical one to a semi-symmetric metrical one. We shall denote this

transformation by # (o;, 7;), Let %N be the set of all such transformations. Then it
holds

Ha;, 7,)olo}, 7j) = toj+ T}, 7+ 7))

and we have

Theorem 6.1. The set Sy of all transformations t (o}, ;) given by (6.1), together with
the mapping product, is an abelian group. This group acts on the set of all Finsler con-
nections effectively, and for each mnon-linear connection N it acts on the set of all semq-
symmetric metrical Finsler connections FI" (N) transitively.

And, %N 18 the direct product of its subgroups %ch{t (0/,0) € isN} and ‘i?'NF:{t(O,rj)
€§3N}1 %N=§NCX%NF .

6.2. In order to find invariants of the group Ty, let us consider the transforma-
tion formulas of the curvature tensor fields by a transformation of Finsler connections

Ni=Ni, Fju—=Fu—Bjr, 0j=0Chs—Dj. (6.2)
From Proposition 3.1 of [9] or directly from (1.9), (1.10), (1.11) we have

Proposition 6.1. By a transformation (6.2) of Finlser connections FT', FI" the curvature
tensor fields are transformed as follows:

Rj’kl = R;.'kl_D;le’enl_B;mTl’enl +91kz{—B;knz+BﬁBfnz} , (6.3)
P;‘kl = P;:kz—D;:mPZ‘t "‘B;"mol’e”l_B;"kll‘i‘D;llk““BﬁzDinl—D?l ks (6.4)
Sis = Sin—Dim St +Mu (— Dl 1+ DDyt - (6.5)

We can eliminate the torsion tensor fields Rj; and Pj; from (6.3), (6.4) and obtain
the Finsler tensor fields which have the transformation formulas similar to (6.5).
Proposition 6.2. The Finsler tensor fields defined by

Kjp = Riu—CiaRi (6.6)
PBir = Wt (Pju—CndN T [2y") (6.7)

are transformed by the transformation (6.2) as follows:
Ky =Kju—B;,Th +91kz{—B;:k|z+B}’7eBinz} ’ (6.8)

Piss = Bisi—BlmSH— Dl THs+ W {—Big|;—Dip + BliDiy+ DiBi} . (6.9)

6.3. Now, we shall treat the transformation (6.1) of semi-symmetric metrical
Finsler connections. Substituting in (6.8), (6.5), (6.9) from

By = —28i0,, =224, T = (T8} /(n—1),

Shi = Wt (Sa87}/(n—1),
we have
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Proposition 6.3. The Finsler tensor fields K;:k,, S;:k,, EB;:k, of a semi-symmetric
metrical Finsler connection FT' are transformed by the transformation (6.1) of FI' to FI'
as follows:

R =K+ (2i50,1) (6.10)
Sia =8Sia + 2 (L4570} (6.11)
Bin = Biar+2%e (Qi5001) (6.12)
where we put for the h- and v-torsion vector fields T;, S; of FI'
Oyl = 0y 11— 0,07 + %grl"”‘arTl/(/n_l) (0 =9"°as04), (6'13)
Tyl = Tyli—7ymi+ —;_grl"'_frsl/(n_l) (T :g'ST’TS) ’ (614)

Pyl = Oy |l+7r|l"(°'r7'l+77°'l)+ grlp—(TrTl+o'rSl)/(n_l) (P = g”qrfs) . (615)

If we pay attention to the type of the transformation formulas shown in the above
proposition, we have the following important invariants similar to the Weyl conformal
curvature tensor field by a well-known elimination method.

Theorem 6.2. For n>2 the following Finsler tensor fields H;:k,, M;:k,, N;:kl of

sema-symmetric metrical Finsler connections are invariants of the group Ey:

Hip = Kip+ 2 (235K ,1—Kg,1/2(n—1))} [ (n—2) (6.16)
M = Sha-+2%,{235(S,0 — 89,1 /2(n—1))} [ (n—2) , (6.17)
Nig = Bip+ 2 {255(B,1—Bgn/2(n—1))} (0 —2) (6.18)

where Kjp=Kini,  Spp=8ii, Bjp=Pjri, K =g"*K,
S=g"*Sjn, B=9"Pj.
6.4. In the following, let us assume the non-linear connection to be the Cartan one

N and consider some properties of the invariants H: ks M: i N ,'k, of semi-symmetric
metrical Finsler connections FTI' (N). Since H,kl—-H,k,, M,k,_ﬂcﬁk,, N;ﬁklzﬁ;k,, it 1is
sufficient to study the properties with respect to CT'.

The tagent space M, at xzeM is considered to be a Riemannian space with g;; (, ¥)
as the metric tensor field. Since é’;k 1s the Christoffel symbol from (1.16), Sc;:k; is the
curvature tensor field. Hence 1/ i# is nothing but the Weyl conformal curvature tensor
field of the Riemannian space M,. From the invariance of Mj; we have

Theorem 6.3. Let the Finsler connection be a semi-symmetric metrical one FI' (Z\; ).
If n=3, then M;z,=0. For n>3 M =0 if and only +f at each point xeM the tangent
Riemannian space M, 1s conformally flat.

Since bN HE —N i/oy* from (1.14), we have SB,'M*%IM{P]’M} for a Finsler connec-
tlon Fr (N) As is easily seen [7], we have ZBJM——S]M,O, which implies N,k;——
—M,k“o Hence we have
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Theorem 6.4. For a semi-symmetric metrical Finsler connection FT' (ZCV ) 4t holds

4

N;"kz = "'M;kllo s (6-19)
and Mju=0 implies Niy=0.

Next, with respect to CI" we have from (2.9), (2.12) Q*fgfiikl:—é’;mlc{,ﬁ, Ic{i:kzz
_dch;:;’ where é’mzé’ﬁm. On the other hand, Icfjkl is the curvature tensor field of the
Rund connection RI". Asone of the Bianchi identities we have S]-k;{lé;:k,} =0, from
which it follows ?lkl{lc{ 2} =Ca’chZ’,. As to fS’;:k,, ﬂ%;k, we have the simliar relations. Since
Cn=C}, and Ri, are invariants of Ty, we have from (2.3), (2.4)

~ Theorem 6.5. For semi-symmetric metrical Finsler connection FT' (ZCV ) the wnvariants
Hy, My, Njw have the following properties:

QT H = — c B, @¥UMy =0, 9%5N;u =0, (6.20)
Hiy = —CuR}y, Miy—=0, Niuy=0, =0, |
i=0, Niuy=0. (6.21)
S {H;:kl} = —CnSjn {8§Rﬁ}/(n~2) ) Sin {M;kz} =0,
SN} =0.  (6.22)

It is noted from (6.21) that a Berwald space satisfying H}; =0 is just the space
trgated by G. Sods [24]. We shall finally give an example of the space satisfying
H3,=0. .

Theorem 6.6. If the tensor field K 4; of a semi-symmetric metrical Finsler connection

c

FT' (N) has the isotropy property

Kiu = M@, y)(319;5—5191) » (6.23)
then H;klz()
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