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Abstract

In this paper we consider adaptive meshes for the Galerkin’s method to solve
a two point boundary value problem. The interval is partitioned so that errors
under the L?-energy norm and the L*-norm are less than a wishful value. Some numeri-
cal results are given.

1. Introduction

Recently, many reseachers study the method of adaptive meshes for various
approximate solutions of two point boundary value problems ([1], [2], [3], [4], [5], [6]).
For example, Babuska and Rheinboldt published a posteriori error estimates which
gave bases of adaptive meshes for the Galerkin’s method and, using their estimates,
they calculated examples of adaptive meshes ([1], [2], [3], [4]). Also the studies of
adaptive meshes have been doing for the difference method and the collocation
method ([5], [6]).

We shall consider adaptive meshes for the Galerkin’s method to solve two point
boundary value problem (3.1) in §3. Babuska and Rheinboldt considered adaptive
meshes on condition that number of intervals used in the partition is fixed. In this
paper, for a positive constant §, we shall consider approach to optimal meshes which
satisfy conditions

ly—Ylem <8
and
ly—Y | Loy <3,

where ¥ is a genuine solution of (3.1) and Y is its Galerkin’s approximation.

The examples are shown in §4. The actual errors are very small at the nodes
against the wished errors. Also it isn’t mentioned in this paper how we partition the
interval at first. If the studies for these and the improvements of error estimates in §3
make progress in futuer, adaptive meshes mentioned in this paper will turn out to more
significant meaning.
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2. Notation

Given real o« and g with a<p, let I be the open interval {zc R!|a<z<p} and I
its closure. :

For an integer k>0 let C*(I) be the space of k-times continuously differentiable
functions on I.

Also let L*(I) and L (I) be the spaces of measurable functions f such that

I flz2n = (Jlf(w)zdx>1/2 < 400

and
I flzeon = esis}lplf(w)l <+oo,

respectively. Further more let (-,-) be the inner product in L2*(I) and H}(I) be the
space. of locally integrable functions » such that w,u’ e L¥(I) and u(a)=u(f)=0. For
each w e Hi(I), define

lulazn = (ulPeecn + w2 )2,

which is the norm on H}(I).
Assume that functions @ and b are in C°(J) and there are constants a, @ and  such
that

a>ax)=a>0, b=b(x)=0, Veel.
For these @ and b, define for w and v in H}(I)
Bi(u, v) = J (au'v" +buv)dz ,

I
and

luleny = (Br(w, w) Y1/

Then Bj(u, v) is a bilinear form on HY(I)XHI(I). Also || is a norm equivalent
to the norm ||| g:(;) on H(I).
On the interval I consider a partition

A a=20<®i< <Xy 1< =, m=m(A)=>1,

and introduce the notations

Ii(A) = (251, #3) ,

hi(A) =w‘;—m?_1, j=1 ., m

WA) = max hi(A).

1<j<m
Let P,(J) denote the space of polynomials of degree not greater than k restricted to
a set J(JcR'). For the partition A and an integer r>1, define
L= (weCI)| vlja) € PIi(A)),j=1, -+, m;v(x) =v(8) =0} .

Obviously the relation . cH}(I) holds.
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3. A Boundary value Problem and its Error Estimates

In this paper we consider the following two point boundary value problem:

d d
Lyl = — 7 (a0) 55 ) +b@ly =f@),  @el=(0,1),
(3.1)
y(0) =y(1) =0,
where a ¢ C"(I), b, fe C"-1(I) and, as before, assume that there are constants @, ¢ and
b such that

a>ax)=a>0, b>bx) >0, Vrel. (3.2)
From now on assume that (3.1) has a unique solution y e C"+1(I) for each fe C7-1(I).

Also for a partition A, let Ya be the Galerkin’s approximation to y determined by
the relation

(@Y, )+ (0Yas,v)=(f,v), Yoe L. (3.3)
Then the following result is known by Babugka and Rheinboldt ([1]).

TueorEM 1. Let y be the solution of (3.1). Also, for a partition A, let Y, be the
Galerkin’s approximation to y determined by (3.3). Then the inequality

m k]' A 2 ? 1/2
ly=Yalew <( L ) (3.4)
J= TT*Qmin

holds, where

A

=" rerde,

xj_l
ri(@) = L[Ya]—f, weI(A) | J=1m.
@hin = min la(z)|

xjA_lsxijA

Using theorem 1, we shall show the following
THEOREM 2. For the same assumptions tn Theorem 1, there are positive constants C" and
C" such that

m k-(A)z,u,"’- 1/2
Jy—Yall Looricay < C'<Z ]—_L) +0"y " Loz, (ap hi( A) (3.5)

=1 mRahy

for each interval I,(A).
Proof. Let {=y-Y,, then

(aé",v')+(b§‘,v)=0, veLh.
Let G(x, £) be the Green’s function for (3.1); i.e.,

o) = (L1 6(a,)) = (o', 5 (@) + by, 66z, )
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In particuler, this representation holds for Y, ¢ Hi(I). Thus

(o) =(at', 5 w3, ) + (o, 63, ),

— <a§' ,Z—? (@5, -)—v’) + <b§, G2, - )-—v) , vet (3.6
and '
IE@)I<||E llE(I)vci;;f/,llG(w?a )—vlEw - (3.7)
Also, since
| G(a?, ) € H™((0,2%) )NH( (23, 1)),
then

inf |G(a3, )~z <( 35 (@0, hi(A)
vz} j=1
1/2

+507,2k,-(A)2<’+1>)|lG(’+1)(w?,-)I]i-u,-(A))) ’

where, for example, it is found by [7] that
C,1=4/(r!)?,

Cpa=4/((r+1) 2.

Thus '
m hi(A)ui\Y?
lc(xeng(jgl—ﬁ%in )
1/2

X ( 2 @C, ahi( A" +5C, 5 B AP GE (@3, Yzaicon )
p2

=1

X(L+O(h(A))) . (3.8)

From now on, for simplicity, denote the right-hand side of (3.8) by (. -
Now, let function o(z) be the linear function on the interval I;(A) such that

a(®}-1) = E(@3-1)
a(z3) = £(x3) .
Also define _
- PUI(A)) = weP(L(A) ) [9(@3-y) = v(x3) = 0},
and let z ¢ P,(I;,(A)) satisfy the relations z(x}-;)=y(z{-1), 2(#})=y(x}) and
Bri(s)(2,w) = Bri(s)(y, w) we PYI(A)).

Then it follows from Peano’s theorem ([8;P 108]) that there is a positive constant C,
such that

2=l eocricay <Colly ") Loocrican hi( A) . (3.9)
Set '
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Yra—z+o, zel;,

v(x) = :
0, zelINI;.
Then
171l Zzicay) = Bricay(v, ),

= Briay(Y s, v)—Bri(a)(y, )+ Bri(a)(x, ) ,

= B[,'(A)(OL, v) ,

=|lallecrican |7 ecricay) -
Thus

Il Ecricay < llolleriay) -
Moreover by Markoff’s inequality ([9; §I.3]) we have
Nl Ecricay) < (@) 22 ricay) +bll ol 32 cricay )2,
47 . 31 \1/2
< <HA4) 01 +b01 k,(A)> R
4a - 1/2
- 01<;7_(A3 +Bh(A)) ",
le.
4a - 1/2
Pl icn < O (a5 +EmA) "

It follows frbm [10; P845] and Poincare’s inequality ([11; P57]) that there is a positive
constant Cy such that

12l zooczicayy < C1C5(4@+bh(A)?) 2. (3.10)
Since {=y—z—v-ta, the estimates (3.9) and (3.10) show that the inequality
19— Y sl zeoricary < Cy(1+Cs (48 + bR B))12) + Colly | Loo(rican o A)+* - (3.11)

holds. Q.E.D.
Now the problem (3.1) is replaced by
Lyl = y"—a(@)y —b(z)y = — f (%), wel,
y(0) =y(1) =0, |

where a,b,feC"Y(]).

Similar results to Theorem 2 can be found without using Theorem 1 ([12]). But,
compared with previous problem, it must be generally difficult to compute the
constants of this problem.

4. Adaptive Meshes and their Examples

In this section, we consider the methods of partition in accordance with the error
estimates in §3.
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First define
m hi(A)u%\1/2
O(A):<J§1 ﬂza{;in ) '
Then it follows from Theorem 1 that

ly—Yalzm < C(A) (1+0(K(A))) .

Babuska and Rheinboldt considered adaptive meshes on condition that number
of intervals used in the partition is fixed. But we consider the partition such that
CA)<$ (4.1)

with a few number of intervals used in the partition and less computational time.
There are various methods to get (4.1).
In this paper we use the method (Method I) which bisects all intervals such that

hi(A) p3
2ahin
till the inequality (4.1) holds. We compare this method with the method (Method II)
which bisects the only intervals I;,(A) such that
hi(A) u? hi(A) u?
& — max M > 52, (4.2)

T2 hin j=leeem 240450

> 82

Generally speaking, Method I takes more number of intervals used in the partition than
Method II, but on the other hand Method I takes less computational time than Method
II. The computational results by each method are summarized in Table 1 and Table
4.

Next we consider the partition in accordance with Theorem 2. Then it is the
important problem that the value ||y*+1| o0 s;(s), isn’t generally known. Using (3.1),
we get the representation such that |

y" = A(2)y’ + B(x)y+C(x) .

Also, using the same way as in [12],

lyP—Y D)oo < lel?/('+1’||Lm(1)k(A)'+i_j (7=0,1).
Thus we substitute the norm .
|AY s+ BY a+C| oocrica)) (4.3)
for |y zeo(ricay) -
Define
C(A, T(A) = O(8) (£, (30,1 B A)+5,. (AP0 |G (a2, Prren)

X (Co(4a+8 hi(8)) 2+ 1)+ Co| AY i+ BY s+ Cll rootican b Ay + - (4.4)
Obviously
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ly—Y sl zeocricayy < C(A, I(A) ) (1+0(h(A) ) ) -
Using this inequality, we consider the partition such that
C(A, I(A)) < $ (4.5)

for each interval I;(A).
In this paper the following methods are introduced.
(I) Designate the first partition. Next bisect all intervals such:that

CA, I,(A)) >3

till the inequality (4.5) holds.
(II) Designate the first partition. Next seek the partition satisfied (4.1) and bisect all

intervals such that
C(A, I;(A))>3

till the inequality (4.5) holds.
The following are examples in case of r=2.
Example 1.

&y'—y=1, (€>0)),
¥(0) =y(1)=0,

eIV T ¥V T

with the genuine solution y =

The results used the methods in accordance with Theorem 1 are summarized in
Table 1 and the results used the methods in accordance with Theorem 2 are summarized
in Table 2. Also the interval (0, 1) is divided into four equal parts at first in either table
and the computations are done for the constants

15¢ 15%;(A)?
AT0E+hi(AY2) T T6(106+h(A)) * |
C, = (15/8)1/2

02-—:' 1+

in Table 2.

Example 2.
y"=m(m—1)z"-2, (m=3),
y(0) =y(1)=0,

with the genuine solution y=xz"—z.

The Green’s function for this problem is a linear function for each variables.
Thus, according to the error estimate in §3, the errors at the nodes vanish. Con-
sequently, the partition used Theorem 2 is done in accordance with the values

Coll AY i+ BY a+ O Loo(zican hi(A)+1.

. 2
The results in case of C, = -Z— + 3k’3(2A—)— are summarized in Table 3. Also the results
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used the methods in accordance with Theorem 1 are summarized in Table 4. In this
case the first partition is the same as in Example 1. |
The notations in each table are as follows;
k: number of equal intervals used in the first partition
kF: number of intervals used in the last partition
E: maximum error at the nodes
T: computational time (s)

TaBLE 1
& Method C(A) )4 B T
0.1(+0) 0.1(+0) I 0.23(—1) 4 0.16(—3) 2
II 0.23(—1) 4 0.16(—3) 2
0.1(—1) I 0.85(—2) 6 0.60(—4) 2
II 0.85(—2) 6 0.60(—4) 2
0.1(—2) I 0.57(—3) 24 0. 36 (—6) 5
II 0.89(—3) 20 0.45(—5) 7
0.1(—1) 0.1(40) I 0.41(—-1) 6 0.12(-2) 2
II 0.41(—1) 6 0.12(—2) 2
0.1(—1) I 0.48(—2) 16 0.54(—4) 4
II 0.66(—2) 14 0.55(—4) 4
0.1(—2) I 0.72(—3) 42 0.13(—5) 19
11 0.96(—3) 40 0.23(—4) 36
TABLE 2
£ b) Method & E T
0.1(+0) 0.1(4+0) I 8 0.98(—5) 2
I 8 0.98(—5) 2
0.1(—1) I 16 0.62(—6) 4
II 14 0.42(—5) 4
0.1(-2) " I 32 0.44(=7) 7
II 24 0.36(—6) 6
TABLE 3
m ) k k’ E T
5 0.1(+0) 4 11 0.86(—5) 3
5 10 0. 10(—4) 2
0.1(—1) 4 22 0.95(—6) 4
7 20 0.19(—5) 4
0.1(—2) 4 44 0.15(—6) 9
11 41 0.19(—6) 8
10 0.1(+0) 4 13 0.21(—4) 3
R 3 11 0.16(—4) 3
0.1(—1) 4 25 0.90(—6) 5
0.1(—2) 4 50 0.18(—6) 11
5 51 0.97(—1) 12
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TasLe 4
m b Method k’ E T
5 0.1(+0) I 16 0.92(—4) 4
II 14 0.92(—4) 6

All the computations were carried out using the OKITAC system 50/40 disk
oriented system.

References

[11 I. Babuska & W.C. Rheinboldt, A-Posteriori Error Estimates for the Finite Element
Method, Inter. J. Numer. Methods Engrg. 12 (1978), 1597-1615.
[2] I. Babuska & W.C. Rheinboldt, Analysis of Optimal Finite-Element Meshes in RY, Math.
Comp. 33 (1979), 435-463.
[3] I. Babuska & W.C. Rheinboldt, 4 Posteriori Error Analysis of Finite Element Solutions for
One-dimentional Problems, STAM J. Numer. Anal. 18 (1981), 565-589.
[4] W.C. Rheinboldt, Adaptive Mesh Refinement Processes for Finite Element Solutions, Inter.
J. Numer. Methods Engrg. 17 (1981), 649-662.
[6] B. Kreiss & H.O. Kreiss, Numerical Methods for Singuler Perturbation Problems, SIAM
J. Numer. Anal. 18 (1981), 262-276.
[6] J. Gary, The Multigrid Iteration Applied to the Collocation Method, SIAM J. Numer.
Anal. 18 (1981), 211-224.
[7] T. Dupont & R. Scott, Constructive Polynomial Approximation in Sobolev Spaces, Recent
Advances in Numerical Analysis, May 22-24, 1978, 31-44.
[8] J. Davis & Rabinowitz, Numerical Integration. Blaisdell Pub. Com., 1967.
[9] C. Coatnelec, Approximation et Interpolation des Fonctions Differentiables de Plusieurs
Variables, Ann. Sci. Ecole Norm. Sup. (3) 83 (1966), 271-341.
[10] J.C. Diaz, 4 Collocation-Galerkin Method for the Two Point Boundary Value Problem Using
Continuous Piecewise Polynomial Spaces, SIAM J. Numer. Anal. 14 (1977), 844-858.
[11] D. Kinderlehrer & G. Stampacchia, An Introduction to Variational Inequalities and their
Applications, Academic Press, 1980.
[12] J. Douglas, Jr., & T. Dupont, Galerkin Approximations for the Two Point Boundary Problem
Using Continuous Piecewise Polynomial Spaces, Numer. Math. 22 (1974), 99-109.



