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Abstract

In the present paper we evaluate the effective significance level when AIC is
employed in pre-test estimation. Numerical values of the significance level are
presented in Table 1-3.

1. Introduction

The estimation after preliminary test of significance has been studied by various
authors. The earlier works include, among others, Bancroft [3], Asano [2] and
Kitagawa [6]. The central issue in this type of problem is how to determine the
significance level of the preliminary test. We cite the works of Sawa and Hiromatsu
[7]. Hirano [5] applied AIC (Akaike’s information criterion [1]) to determine when to
pool and when not to pool. AIC is equal to —2log, L(4)+2k, where L(a) is the
maximum likelihood and %k is the number of unknown parameters.

Assume we have two models H, and H;, which we ought to determine before the
esimator is numerically calculated, and we ought to select the model which has smaller
value of AIC, and upon selecting the model we compute the maximum likelihood
estimate assuming this model. When this principle is employed, it is clear we will arrive
the maximum likelihood estimate under the model chosen, out of two, by the preliminary
likelihood ratio test. The consideration on distribution does not determine the
critical value but the likelihood function and the difference in the numbers of
parameters determine it, and thus the effective significance level of the preliminary
test is determined automatically.

The purpose of this paper is to evaluate the effective significance level. Assuming
that the correlation is known, we consider in §2 estimation of mean vector and in §3
that of one component of the means, upon introducing certain types of pair of model.
In §4, estimation of correlation coefficient is considered.

* Department of Mathematics, Faculty of Science, Kagoshima University, Kagoshima, Japan.
** National Cardiovascular Center Research Institute, Osaka, Japan.
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2. Estimation of bivariate normal mean
Let <)§1> , (%gz) y e ,@g") be a random samples from a bivariate normal distri-
1 2 "
bution N(u, A) with the mean vector M=<Z1> and the covariance matrix A=az<l1) f)
2

2.1 One sided case

From the nature of the data it is known that u;=u,=0 or (4,=0 and u,=0) where
the inequality is strict for at least one.

Here we have two alternative models about means;

Model Hy:  uy=p,=0,

Model H,: p,=0 and u,=0 where the inequality is strict for at least one.

Then we would determine to use the procedure minimizing AIC as the test criterion
of the preference between Model H, and Model H,. We denote AIC under H, and under
H, as AIC (H,) and AIC (H,) respectively.

Case 1. When o? and p are known parameters, we make use of the following relation.
AIC(H,)—AIC(H,)<0
nxt<4, X=0,Y =0
n -

or—— (Y —pX)2<4, X<0, Y—pX

1—p 0

v

Ol‘i‘f—pz(x—p?)z<4, ?<0, X—-p?zo

or X—p¥ <0, Y—pX<0

where 762=—1—_1—Pz()?2—2p)? ?-{-f’z) and (X,Y) is the sample mean

vector. That is to say, if (1) is satisfied we would accept Model H,, and the estimator of
w is the zero vector. On the other hand if (1) is not satisfied, the estimator f of u is as
follows; v

i.f) if X=>0 and Y>>0,
0 o o e s
> if X<0 and Y —pX=0,

> if X—pY=>0 and ¥ <0,

< O) if X—p?<0 and P—pX<0.
When H, is true, the significance level o of the test criterion stated above is exactly

3) o = 1—Pr{AIC(H,)—AIC(H,)<0|Hy)

e ¥mw—cosp) L™ g
= 5 + W J.z e dx .
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In Table 1 values of o are tabulated for varicus values of p.
Case 2. When o? is an unknown parameter and p is a known parameter, after some
calculations, we arrive at the simple result as follows; '

ATC(H,)—ATC(H,) <0
(X, Y) oYX, YY)
(X, Y) =YX, Y,
1

<l—e2" X=0, Y=0

N

1

or 1n(0,Y —pX) 3%(0,Y —pX)’
@) o 3 (X5, Y5) X HX,, Y

i=1

<l—e2" X<0, Y—pX=>0

or ME—pT,0) ZYX—0p¥,0)
S (X, V) XX, Y

i=1

or X—pY <0, Y—pX<0

where Zr—(i ’i’)

As the estimation procedure of u is similar to Case 1, we can also obtain the significance
level o as follows;

<l—e2" X—p¥>0, Y<0

1 1 1 2n—1 1
0 a=1-— ~2-7—T—cos*1p-— ~2—11_e--/n(»~2~, —2——> —_ -ﬁcos*%—p)ll_g—n/n(l, n—1)
where I,(n, m)= 1 Ja " (1—z)"1dx
@ B(n, m) .
1
and B(n, m) =J. 2" Yl—z)"1dx .

0

2.2 Two sided case

In this section we would discuss the two sided case.
MOdel .Ho: Iu1=ll't2=0’
Model H,": (p;=0 and u,=>0) or (4;=0 and u,<0)
where at least one of the inequalities are strict in both cases.
Case 1. When o? and p are known parameters, we have the following relation.

AIC(H,)—AIC(H,')<0
nxt<4, X>0, Y>0

4 . - o o
or e (X—pP)>—2, X<0, ¥>0, |X|=|7]
VI—p?
Vn oo o - - oo
or —= (T—pX)<2, X<0, T>0, |X| <7
—p
(6) < lor nx2<4, X<0, ¥Y<0
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Vno oo o - _ o
or —(P—pX)>—2, X>0, 7<0, |X|<|7P|

1/1—102

Vo o o > - - o

1/1—p2

A

Therefore our estimator

if (2) is satisfied,

(0):

if (2) is not satisfied,

of u is as follows;

(7) = (%) when X and Y are of the same sign,
(*s
0

pY) when X and Y are of the different sign and |X|=|Y|,

(?gp X‘) when X and Y are of the different sign and | X|<|Y|.

The significance level o is given by

oo

O [ (- S e

1 0 1
[ T (2 2
P e ’[2 L exp{ 51— (22—2pzy+y )] d:cdy]
Values of o are also tabulated in Table 1.

Case 2. When o¢? is an unknown parameter and p is a known parameter, we have the
following relation.

AIC(H,) — AIC(H,')<0
nXY) Y, 7y
z: (X,,Y3) 24X, Y

i=1

—~

or <l—e2" and {(X+7 =0, ¥<0)

n(0,F —pX) £-H0,7 —p X
X, Y;

5 (X, Y; _

El( ) E7H 4 or (X+Y<0,Y=0)}
(n X,0) £7H0.¥ —pXY <l—e2"* and {(X+Y <0, X=0)

% (X5, Y) 7YX Y)

or (X+Y=0, X<0)}.

i

As the estimation procedure of u is similar to Case 1, we can also get the significance

level o as follows;

2n—1
2

1 1
(10) a=1-— = cos—lpII_e—a/n<_2_ ’ >+cos-1(—p) I, "1, n—1)} .
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TaBLE 1
P a(one-sided) a(two-sided) P a(one-sided) a(two-sided)

0.9 . 0325 . 0650 0.0 . 0566 . 1122
—0.8 . 0366 .0732 0.1 . 0588 . 1158
—-0.7 . 0399 ~0798 0.2 . 0609 . 1190
—0.6 . 0427 . 0854 0.3 . 0631 . 1222
—0.5 . 0453 . 0906 0.4 . 0654 . 1250
—0.4 . 0477 . 0954 0.5 . 0679 . 1276
—0.3 . 0500 . 0998 0.6 . 0704 . 1298
—0.2 . 0522 . 1042 0.7 .0733 .1318
—0.1 . 0544 . 1082 0.8 . 0767 . 1336

0.9 . 0807 . 1346

3. Estimation of one component of the bivariate normal mean
In this section we would consider the estimation of u,. If we can known the value
of u,, it is natural that we should use this knowledge to estimate u,.

3.1 One sided case

Our aim is to estimate u, where two alternative models are given as follows;
Model H,: p,=0,
Model H,: p;>0.

Then the estimator @, of u, is as follows;

Y—pX if H, is accepted,
(11) fia = _ : :
Y if H, is accepted.

Case 1. When o¢? and p are known parameters, whether Model H, is accepted or not
is judged through AIC similary as §2.
Then we have the following relation.
AICH,) — AIC(H,)<0
Vo X S
(12) o YnX <V 2

Therefore the significance level o of this test criterion is exactly

(13) o= 1—P¢(ja—X— < 1/_2_)

=0.07864 - .- .

Case 2. When o¢? is an unknown parameter and p is a known parameter, we have
the following relation.

AICH,)—AICH,)<0
Vn X
(14) © ly(n—1) =

_ 1
V1—p?
<V 2(n—1) Ve"—1,

[ % (X Xp—2(X— %) (Y= D)+ (Y= 7)?)
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where t,, is distributed according to the t-distribution with m degrees of freedom.
The estimator @, of u, is the same as (11) and the significance level o is exactly

(15) = 1—Pr {tyn-y < V2(n—1) Ve'/"—1 }
1 1 :
j = “—2'*‘{1—11—3-1/ <—2‘, %—-1) ] .

Values of a are tabulated in Table 2 for various values of n. It should be noted
that under H,

y — lim Pr{AIC(H,)—AIC(H,) = 0|H,}

n—>o0
=0.07864 --- .
TABLE 2

n e NM2m-1) v ein—1 n a N/ 2m—1)V ein-1

5 .1100 1. 3309 30 . 0831 1. 4021
10 .0929 1. 3759 35  .0825 1. 4039
15 .0878 1. 3894 40 . 0820 1. 4052
20  .0854 1. 3958 50  .0813 1. 4070
25 .0840 1. 3996 100 .0800 1. 4106

3.2 Two sided case

Our aim is to estimate u, where two alternative models are given as follows;
Model H,: u,;=0,
Model H,': p,%0,

When o2 is an unknown parameter and p is a known parameter, we have the following
relation.

(16) AIC(H,)—AIC(H,')<0
& |ty | < V2n—T)Vel"—1.

Therefore the significance level « is exactly

(17) o = 1—Pr{|tyu-y | < V2(n—1) Ve —1}

=1—Il_,—1/”( ; ,n-—l).

4., Estimation of correlation coefficient

Let the random samples G(,i) , ,Gg:) be taken from a bivariate normal dis-

. . 2
tribution N[(L‘l) (;‘17 3 PU};’%):], where p;, pg, oy and o, are unknown prameters. Our
2 1v2 2

alm is to estimate the correlation coefficient p.
Model H,: p=0,
Model H;: p=0.
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Then the preliminary test estimator g of p is

0 if H, is accepted,
oo [0
r if H, is accepted,
where
33 (@—X) (YY)
r= - .
/ Ex-xp 1 & (7
By simple computations, we have
(19) AIC(H,)—AIC(H,)<0

& |r|<V1—em

When H, is true, the significance level « is exactly

(20) o =1—Pr(|t,| <V n—2 Ver"—1)
1 n—2
= 1_11—82/’1(—_2“‘ ’ 9 ) .

Next when two models are given as follows;

Model Hy': p=p,

Model H,': p=p, where p, (=+0) is the known constant,
the preliminary test estimator p of p is

po if Hy' is accepted,
21) = [ o
r if H," is accepted.
By tedious computations we get the following relation.
(22) AICHy)—AICH,')<0

& p<r<pu
where

1 —_——
L= "+ (1—e2™)pg2 {oo—(1—pg2) €/" Ve2in 1 }

1 -
pU = 62/”+(1—32/”)p02 {po‘l‘(l—poz) 61/” Ve2/”_]_ } .

When H, is true, the significance level  is
o= 1—Pr(pp<r<py).

We can get values of o by referring to the table by David [4]. These are shown in
Table 3, including the case of pp=0. It should be noted that under H, in both cases
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(23) o =lim Pr{dIC(H,)—AIC(H,)=0|H,)
n—>00
— lim Pr{4IC(H,)—AIC(H,')=0|H,')
Nn—>»00
=0.1572 ... .
TAaBLE 3
n
Po 4 6 8 10 15 20 25 50 100
0.0 . 373 .21 240 .220 .196 . 186 .180 .168 .163
0.2 . 372 .276 .239 . 220 .196 . 186 .180 .168 .163
0.4 . 370 .75 .238 .219 .196 .185 .179 . 168 .163
0.6 . 366 . 273 . 237 .218 .195 .185 .179 .168  .163
0.8 . 359 . 268 .234 .216 194 184 .178 . 167 .162
0.9 .354 . 266 .232 .14 .191 .182 1T .167 . 162

The authors are deeply indebted to Professor A. Kud6 of Kyushu University for
his helpful advices and encouragements.
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