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Abstract

In a Finsler space the Finsler connections compatible with the given Finsler metric g;; are
the metrical Finsler connections, which are characterized as ones preserving the length of a
vector under parallel displacements. If we consider the conformal Finsler structure e¢?*g,;,
the compatible Finsler connections are the conformal Finsler connections, which are charac-
terized as ones preserving the angle between vectors under parallel displacements. The
authors [3, 4] have recently investigated these connections in detail.

On the other hand, continued from them, the authors [5] have treated an almost symplec-
tic Finsler structure g,;, which is defined as an alternate, non-degenerate Finsler tensor field
of type (0, 2), and have especially considered the problem of its integrability, in terms of the
compatible Finsler connections.

The purpose of the present paper is to discuss a conformal almost symplectic Finsler
structure ¢2%g;;. We first introduce such a structure (§ 1) and define the compatible Finsler
connections (§ 2). And the structure of the set of all such connections is discussed (§ 3), and
it is shown that the group of their transformations preserving a non-linear connection gives
various important invariants (§ 4). Finally, by lifting a conformal almost symplectic Finsler
structure to the tangent bundle (§ 5), we solve the problem of integrability of the structure
(§ 6).

As to the terminology and notations we retain those in our previous joint papers [4, 5],
which are based on Matsumoto [1, 2]. And all the theorems are proved applying the methods
given in [4, 5] ; so the proofs and the detailed references are almost omitted.

§1. The notion of c.a.s-Finsler structure.

Let M be a differentiable manifold of dimension 2%. x=(x‘) and y=(y*) denote a
point of M and a supporting element respectively. Let %,(M ) be the set of all alternate
Finsler tensor fields of type (0, 2) on M. The relation for a;;, b:; € (M ) defined by

(1.1) aij'\“bij<::>30'(x, y)'dijZQZGbij
is an equivalent relation of %,(M ). Since the property det(a.;)*+0 is preserved by the
relation, we can define as follows.

Definition 1.1. An equivalence class g of U,(M ) is called a conformal almost symplec-
tic (abbreviated to c.a.s-) Finsler structure, if q;;€ g is non-degenerate : det(a.;)+0.
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Every «4';;€ a;; is expressed by
(1.2) aii=e*a,
and defines an almost symplectic (abbreviated to a.s-) Finsler structure. An example of a
c.a.s-Finsler structure is given by Z,; from an example of an a.s-Finsler structure g;;
[5].

Given a c.a.s-Finsler structure 7, we can associate Obata’s operators :

(1.3) =88]~ aua’), @°G=(358]+assa’™),
where a;; € @, and (¢%) is the inverse matrix of (a;):

(14) aijajk=8f.
Since the relation (1.2) implies

(1.5) av=e %",

Obata’s operators do not depend on the representative of 7.

§2. C.a.s-Finsler connections.

On the analogy of the conformal Finsler connections for a conformal Finsler structure,
we shall define the Finsler connections which seem to be compatible with a given c.a.s-
Finsler structure as follows.

Definition 2.1. Let 7 be a c.a.s-Finsler structure. A Finsler connection is called
conformal almost symplectic with respect to g, if for g,;€ @ there exists a 1-form w=
@rdx*+ @rdy* € A*(T(M)) such that

(2.1) Aisin=20ra:j, dijlkZZC!)kdij.

This definition is well-defined, because we have

Theorem 2.1. Let a Finsler connection satisfy (2.1) for a;; € a. Then for a';;=e*%a;;
it yields

(2.2) @ =20 20 i, @ il =20 ra i;,
where @' = w+ do.

A c.a.s-Finsler connection with respect to 7 determines an equivalence class @ of
AN T(M)), classified by the equivalent relation defined by

(2.3) W' ~we=w — w is exact.
When we want to express explicitly that a c.a.s-Finsler connection FI" satisfies (2.1) for
a fixed g,; € @, we shall say a c.a.s-Finsler connection with respect to &,;, corresponding
to w, and denote FI'(w).

Let X, Y be two Finsler vector fields. Then ¢,; € @ defines a Finsler scalar field

(2.4) a(X, YV)=a,;X'Y’.
Given a c.a.s-Finsler connection FI'(w) with respect to G, if X, Y are parallel along a
curve C(x%(¢)) in M, with respect to a curve C(x(¢), y*(¢)) in T(M ) mapped on C by the
canonical projection of T(M ), the above a(X, Y) satisfies the property

(2.5) da(X, Y)/dt=(@x(dx*/dt)+ @x(0y*/dt))a(X, V)
along C with respect to C. Since (1.2) implies

(2.6) a(X, Y)=e* (X, Y),
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the property (2.5) has the meaning depending on 7, and we can also define a c.a.s-Finsler
connection as a Finsler connection satisfying the property (2.5) for arbitrary parallel X, Y
along arbitrary C with respect to arbitrary C.

If we consider the case @ =0 in Theorem 2.1, we have the following definition and
theorem.

Definition 2.2. A c.a.s-Finsler connection FI" with respect to g is called almost
symplectic if there exists a representative ¢';; € @ such that 4';;,=0, ¢i;/»=0.

Theorem 2.2. A c.a.s-Finsler connection FI"'(w) with respect to G; is almost symplec-
tic if and only if the 1-form w is exact.

If we apply the Ricci identities to g,;, we have similarly to Proposition 3.1 in [4]

Theorem 2.3. A c.a.s-Finsler connection is almost symplectic if and only if
(2.7) ngz:(), Psskl:(), S8k =0.
Furthermore, if we put generally

. 4 1 .
* — S
,;'kl - Rjz'kl - zn 3}Rsk1,

(2.8) 9 *ﬁsz:Psz“iafPssu,

*j'kz:S}:kz“—Zlizsfsgkt,
paying attention that Obata’s operators are h- and yp-covariantly constant, we have
similarly to Theorem 3.4 in [4]

Theorem 2.4. The Finsler tensor fields @*5R*3w, O*P*$u, O*5S*S,, and their h-
and v-covariant derivatives of every ovder vanish, for every c.a.s-Finsler conmection.

§3. The set of all c.a.s-Finsler connections.
The set of all c.a.s-Finsler connections is determined in the same way as in our paper

[4].

Theorem 3.1. Let F 1" be a fixed Finsler commection. The set of all c.a.s-Finsler
connections FI' with respect to G;; is given by

Ni=Ni—Xi,
(3.1) Fjik:;?;:k"_ oCémX;?‘f‘—;“aim(dijk—ZCT)kdmri—dmjleg)‘f“ @;;X?k,

Cia= c;ik+%afm(amlk—2cokamj)+ OIS,

where @ is an arbitrary 1-form in T(M ), and X}, Xix, Y. ave arbitrary Finsler tensor
fields.

Putting Xi=Xi.=Y/%=0 in Theorem 3.1, we have an example of a c.a.s-Finsler
connection F['(w) with respect to 7., which corresponds to the Kawaguchi metrical

Finsler connection derived from F[ in a Finsler space.

Theorem 3.2. Let FIO“ be a fixed Finsler connection, and let @ be a given 1-form in
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T(M). Then the following Finsler connection is a c.a.s-Finsler connection with respect to
aij, corresponding to w :

(3.2) .iik:F;'ka‘%aim(aijk_Z(Dkamj),

Jl:k: C§k+%aim(amj|k—2wkamj )

If we take a c.a.s-Finsler connection F}(w) as F} in Theorem 3.1, we have

Theorem 3.3. Let F ;“(a)) be a fixed c.a.s-Finsler commections with respect to a.;.
Then the set of all c.a.s-Finsler connection FI'(w) with respect to a.; is given by

o

Ni=Ni—Xi,
(3.3) Fio=F x4 (Clint 8iom) X T+ OU X,

= Clat O V4,
where X4, Xir, Y ave arbitravy Finsler tensor fields.
Let N be a fixed non-linear connection. We denote by FI'(N, w) a c.a.s-Finsler
connection, corresponding to @ and having N as the non-linear connection. The set in

Theorem 3.1 has the following subset.
Theorem 3.4. Let F]oﬂ be a fixed Finsler connection. Then the set of all c.a.s-Finsler
connection FI” (]o\/, ) with respect to @.; is given by
=N,
(3.4) jik:%§k+%dim(dmj?k‘2(5kamj)+ O X T,

= C§k+‘%_dim(amj|k—“2d)kamj)+ O Y S,

wheve Xi., Y arve arbitrary Finsler tensor fields.

§4. The group of transformations of c.a.s-Finsler connections.

Let us consider the transformation FI'(N, w)- FI'(N, ') of c.a.s-Finsler connec-
tions, which preserves the non-linear connection. Owing to Theorem 3.4 we have
Theorem 4.1. Two c.a.s-Finsler connections FI'(N, w), FI'(N, ) with respect to
ai; ave velated as follows :
Vi=Nj,
(4.1) Fiu=Fh—0ip s+ 05 X5,
_}k:C}k—3;ﬁk+ @éf Yrsk,
where p=w' —w, and X, Y. are some Finsler tensor fields.
Conversely, if Finsler tensor fields Xi., Y. and a 1-form p on T (M) are given, then
(4.1) is thought to be a transformation of a c.a.s-Finsler connection FI'(N, w) with respect
to Gi; to a c.a.s-Finsler connection FI'(N, w+p) with respect to G.;.
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Theorem 4.2. The set €S of all transformations of c.a.s-Finsler connections with
respect to @ .; given by (4.1) and mapping product is an abelian group, which acts transitively
on the set of all c.a.s-Finsler connections FI'(N, w) with respect to G ;.

A transformation given by (4.1) is expressed by the product of the following two
transformations :

(4.2) Ni=Ni Fio=Fp—08ips, Cir=Ch—08ps,

(4.3) Ni=Ni, Fe=Fh+ 04 X%, Cix=Cixt O Y
The former is a so-called co-parallel transformation, and the latter is a transformation of
a.s-Finsler connections. Thus we have

Theorem 4.3. The group CS is the divect product of the group of all co-parallel
transformations and the group of all transformations of a.s-Finsler connections.

It is noted that the invariants of €& are the invariants of each of these subgroups, and
reciprocally. Therefore, in order to obtain the invariants of €& we shall pay attention to

the invariants ¢, R, t*ijz, R*ijx, T*ijx, S*ijx and ;lfijk(azl, 2, 3, 4) of the latter subgroup,
which have been defined in [5] as follows:
tie=U;{ON}/0y*},
(4.4) Rix=U;n{0N;j/Sx*}, Ph=0Nj/oy*— Fi;,
The=We{Fi}, Sie=We{Cir},

(4.5) { 1*ie=Cuelamtt}, R*:x=Cix{amR}},
’ T*ijk:@ijk{dim Tjﬁ}, S*z‘jk:@ijk{aimsﬁi}y
and
ilfijk: am TH+ i {amPRY, :fijk: ainShi+Usn{armCh},
(4.6) § 4
xije=Wjn{awm P}, xin=Wi{ainClL},
where U,;{----} and &,;.{- - - -} denote, for example, ;. {A;.}=A;e— Ar; and G;;u{A e} =

Aiiet Ajwit+ Arij-

Calculating the transformations of these tensor fields by a co-parallel transformation
(4.2), we have

Proposition 4.1. By a transformation (4.1) of c.a.s-Finsler connections the above
tensor fields are transformed as follows:

(4.7) tie=tir, Rix=Rir, t*56=1* 50, R*i;a=R*ijn,
(4.8) T*ijk: T*ijk_Z@ijk{aijp k}, g*ijk: S*ijk—Z@ijk{dijp k},
1 1 2 2 .
(4.9) Xije=Xise—2Wi{amb i}, xisn= Kiju—2Use{@isDn),
’ 3 3 - ) 4 .
Kije= Kije— 2D i, Xijk = Xije— 2Qi;D k.
We can easily eliminate p,, p. from (4.8), (4.9). Putting
1 1 2 2
Xr= Clpq)quk, X = dpq?fipq,
3 3 4 4
(4.10) Xe= a”qquk, Xi= dpq%ipq,

3* » 3 4* 5 4
Xi=a Kipq, X '2=a" xpqn,
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we have from (4.9)
- 1 1 3 3 3 3
pk:%(Xk_xk):%(}fk_;ﬁz):ﬁ(x*k—}f*k),
(4.11)
1 1
4

2 2 4 s I* 4*
(Zi_}fi)—7(7fi_ﬁfi)—@( i T X i)-

As is easily shown from (4.6) it holds

1 3 2 4
(412) Xe=2Xn, X:i=2X.
We can recognize from (4.11) that the following tensor fields are invariants of €& :
1 1 3 2 2 4
(4.13) Or=nxrt K e, 0i=nxitx":.
If we substitute from (4.11) into (4.8), (4.9), we have the following invariants of €& :
1 1 2 2
(4.14) Tijr— T*ijk_%@ijk{aijxk}y Tije— S*ijk_é“gijk{diﬂfk},
1 1 1 1 2 2 1 2
Gijk:]fijk—_z'%ij{ajlz}fi}, O-ijk:}fz‘jk_"?mjk{aijxk},
(4.15)
3 3 3 4 4 4
Oijr = Xijr — QjrXi, Oije = Xije— QijXr.

Thus we have proved

Theorem 4.4. The Finsler tensor fields tin, Rir, t*ijr, R* ijx, ;k (a=1, 2), ;ijk (a=1,2)

a
and oi;x (a=1, 2, 3, 4), constructed for a c.a.s-Finsler connection with respect to a c.a.s-
Finsler structure a.;, ave invariants of the transformation group €S. They are uniquely
determined by a given g.; and a given non-linear connection N.

§5. C.a.s-structures in the tangent bundle.

If a non-linear connection is given on the tangent bundle, a 2-form Q € A*(T(M)) is
expressed as

(5.1) Q=5 dusdx' N+ B udx* N8y +5Cusdy NSV,
where G,,=— dj, Cij=— Cji. We say that Q is non-degenerate, if the matrix
(5.2) A= d:‘j liz‘j]
- bjz' Cij

is non-singular. In this case { determines a c.a.s-structure A on T(M).
Definition 5.1. A non-degenerate 2-form Q € A2 (T(M)) is called conformally inte-
grable, if there exists a 1-form A€ A*(T(M)) such that
(5.3) dQ=2ANQ.
Especially, if dQ =0, then Q is called integrable.
If @, Q€ A*(T(M)) have the relation

(5.4) Q' =e¥Q
for some scalar field ¥ in 7(M), (5.3) implies
(5.5) dQ =2 N8,

where A'=1+dX. Therefore, the above definition has the meaning depending on the c.a.s-
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structure A, and we have ,

Theorem 5.1. Let a non-degenerate 2-form Q € N*(T(M)) be conformally integrable.
Theve exists an integrable 2-form Q' such that Q =e**Q, if and only if the form
appearing in (5.3) is exact.

Let us express the exterior differential 4@ of 2 € A%2(T (M )) given by (5.1) in the form

1 2
(5.6) dQZ%a)mdxi/\dx”\dx"%—%wmdxi/\dxj/\ayk

3 4
+%a),-jk dx NSy’ N\ 8yk+%wijk8y" A Sy’ N\ Sy*.

Since G, b 7, Cq; in(5.1) are considered as Finsler tensor fields on the base manifold M,
we have

Proposition 5.1. If a Finsler connection is given on M, @i (a=1, 2, 3, 4) in (5.6)
have the expressions
1 ~
wijk:@ijk{ﬁij|k+ aim TJ"Z“‘ b imR}’llz y
2 ~ ~ ~
5.7) Wiir= G il bma TR+ CamRTE+Ni5{bsui+ @imCH+ bimPHR),

* 3 ~ ~ ~

Wise=bimSh+ Cinti ¥ W,;u{0 i1+ 0 n;ChA Ems PR},
4
a)ijk:@ijk{gijlk‘f‘ 6imS}’llz}.

Theorem 5.2. A non-degenerate 2-form Q € N*(T(M)) given by (5.1) is conformally
integrable, if and only if theve exists a 1-form A= A; dx'+ A:0yi € A(T(M)) such that the

A

Finsler tensor fields Z)Uk (a=1, 2, 3, 4) given by (5.7) are expressed as

1 ~
Wiir=28i;:{d i A v},
Wy

2 ~ .

i = 2Wij b jaAi} 28 1A 1,
(5.8) | @ =2slbadd +240,

wijk:25jk/1i+22(jk{bij/lk},

4

Wije— Z@ijk{gij/{k}.

§6. Conformal integrabilities of a c.a.s-Finsler structure.

Assume that a non-linear connection N be given in the tangent bundle 7°(# ). Then
a c.a.s-Finsler structure g;; is lifted to a 2-form Q € A*(T(M)) in various ways. We
consider the lifted forms Q of the types II, I+1I, I+1II and II+1II given by (5.1) with the
following coefficients.

d‘u bl] C~IJ

II 0 aij 0

I+ 11 aij aij 0
[+111 aij 0 aij
IT+I111 0 aij aij

Proposition 6.1. Each 2-form Q of the types 11, 1+11, 1+I1II and I1+1II s non-
degenerate, and defines a c.a.s-structure on T(M ).
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Proposition 6.2. Let FI'(N, w) be a c.a.s-Finsler connection with respect to a c.a.s-

Finsler structure @.;. The coefficients Z)ijk (a=1, 2, 3, 4) of the exterior differential dQ of

the 2-form Q given in Proposition 6.1 are expressed as follows:
1

I1: wijr=R*i, C()ka x;Jk—i-Z%Iu{aka 1,
Csl)ijkzﬂzfijk+22(jk{dijd)k}, ;)ijk:() ;
I+ 112 o= R* st T is0 Oisn= Ko+ Kisn+ 25 {a3000)
+28e{aiide}, +2a:i0,
a)uk x”k+2%k{a”a)k} :Uijk_—-o;
[+1I1: o= Tt 98 (), Wisn= e+ QrnRE+ 2055008,
cauuk - Kiie 2060, 2),,;2~S*”k+2@z,k{aua)k}'
II+111 ; w”k—R*”k, Wesn= Xisn+ QamRE+2Ui{asns),
ci)zm ;cuk+xuk+2ajka), wijk=S*ijk+2©ijk{aija)k}.
+2U e {ai04),

Definition 6.1. A c.a.s-Finsler structure g,; is called conformally integrable of the
type II, I+1I, I+III or II+III, if there exists a non-linear connection such that the
corresponding lifted 2-form of 7°(M ) is conformally integrable.

If ¢';;=e%%a.;, then the lifted 2-forms have the relation 2 =¢%?°Q. Hence, from the
remark followed by Definition 5.1 the above definition has the meaning depending on the
c.a.s-Finsler structure g,;. Then, from Theorem 5.2 and Proposition 6.2 we have

Theorem 6.1. A c.a.s-Finsler structure @.; is conformally integrable of the type of 11,
[+11, I+111 or I1+111, ¢f and only if there exists c.a.s-Finsler connection FI'(N, w) with
respect to a;; and a 1-form A on T (M) satisfying the following conditions :

II: R*;;»=0,

;fijk+22{ij{djk(aji_/fi)}:(),
szijk"f-zujk{dij(a')k—/fk)}:
[+ 1I: R*;jnt+ T*uk+2@uk{au( )] “/1~ )}:

sz,)k_l_)fuk—l_zg{u{a.;k(ah )}+201J( A.k):O,

;fzjk+2u.;k{au(wk A )}:0
[+ 7%+ 28 0l{a(@e— An)} =

;fuk"‘dka +241J(0)k A k):O,

xi,-k+2ajk(w~i—/1i)20,
S*ixt+28i{aii(@r— A1)} =0;
IT+111: R*ijk:(),

1 ~
xijk+aka,’§+2%[,~j{a,~k(cD-—A;-)}ZO,

2 3

Xijk+}(ijk+26ljk((1)z /1 )+22{;k{au We— k)} 0
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S*ijk+2@ijk{aij(a)k— A'k)}:().
~ Now, let a c.a.s-Finsler structure 7,; be conformally integrable of the type II. From
Theorem 6.1 we have

(6-1) R*ijk:(),
(62) %ijk+2?/[ij{djk(65i_ /Ti)}:O,
2 .

(63) Kijk+2%{jk{aij(d)k_Ak)}:O.

We can eliminate @;— A;, @»— A from (6.2), (6.3) respectively, we have
1 2

(6.4) O‘ijk:(), O'ijk:().
Conversely, if (6.4) holds for some FI'(N, w), then (6.2), (6.3) are satisfied by A;=w;
+%Jla, A.k:a.)k‘f‘%}sz. The other types can be solved in the same manner, and we have

Theorem 6.2. A c.a.s-Finsler structurve @;; is conformally integrable of the type 11, 1
+1I, 14+111 or 11+111, if and only if therve exists a non-linear commection satisfying the
Jfollowing invariant conditions of €S :

1 2
IT: R*ijk:(), Gijk:O, Gijkzo;

1 2
I+ I1: R*ijn+ Tijk_%@ijk{dijpk}zoy

1 4 1 2 2
Oijr+ Oijn "’Q’QIU {ajkpz' } =0, 0:.=0;

1

4

I+1II1: 7:52=0, 0i5e— aiiRim+ aemRT:=0,
3 2
0:i;:=0, Tijk_@ijk{ainznm}:O;

1
II+1I1: R*:x=0, al,-k+akaZ;'-—ia""Ré”q%Iu{ajkam}=0,

2

2 3 1
Oijrt+ Oijr _%wjk {aij(pk + naqu[%akm )} _%dﬁngf]ajkaim =0,

2 1
Z'ijk—%@ijk{aij(pk +nawma®R3y)}=0.
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