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Abstract

The purpose of the present paper is to give two kinds of general expressions of Cartan
and Berwald types for any Finsler connection in a Finsler space or in a generalized Finsler
space, and to consider what kinds of Finsler tensor fields are essential in order to determine
a Finsler connection.

Introduction

Let (M, L) be a Finsler space, that is, a differentiable manifold M endowed with a
fundamental function L(x,y) (y*=x%. The fundamental tensor field &;; is given by
8:;=(8,0,L%)[2, where 9;= 9|9y’ We shall express a Finsler connection FI” in terms of
its coefficients as FI'=(N%, Fj% C,%).

In a Finsler space there are known two canonical Finsler connections, that is, the
Cartan one CI' and the Berwald one BI'. They are uniquely determined by the follow-
ing systems of axioms respectively :

CI’ (Matsumoto [7]) BI' (Okada [12])
(CD)  8uw=0, (B1) Lx=0,
(C2) D% (=y’F/x»—N'W=0, (B2) D%=0,
(C3) T/ (=F%—Fi'y)=0, (B3) T/\x=0,
(C4) S/ (=C/i—Ci)=0, (B4) P') (=9.N,—F')=0,
(C5)  8ulx=0, (B5) C,%=0,

where the short and long bars denote the respective h- and v-covariant differentiations,
D'y the deflection tensor field, and T,’x, S,’x and Pz the () h-, ) v- and @) hv-
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torsion tensor fields respectively. It is noted that the coefficients C,’x of FI” are also the
components of the (h)hv-torsion tensor field of FI.

If we omit some axioms from one of the above systems, we get various Finsler con-
nections of Cartan or Berwald type. For example, a Finsler connection satisfying (C 1),
(C2), (C4), (CH) is called a generalized Cartan connection (cf. Hashiguchi-Ichijyo
[6]), and one satisfying (B1), (B2), (B5) is called a generalized Berwald connection
(cf. Aikou-Hashiguchi [2]), and these have contributed to generalize the notion of Ber-
wald space. More generally, a Finsler connection satisfying (C1), (C5) is called metri-
cal (cf. Miron-Hashiguchi [10]), and one satisfying (B1), (B5) is called L-metrical (cf.
Aikou-Hashiguchi [3]) . On the other hand, from various standpoints, non-metrical
Finsler connections have been also studied.

For a better understanding of the above systems of axioms, in the present paper we
shall show that any Finsler connection FI' is uniquely determined by the tensor fields
appeared in each of the above systems. After the preliminary Section 1, in Section 2 the
coefficients of FI" are expressed in terms of its &ymw, D% Ti'x, Si'%x and 8&ulx
(Theorem 2.1), and in Section 3 the coefficients of FI" are expressed in terms of its Ly,
D%, T4 P%rand C,% (Theorem 3.1 and Theorem 3.3). These expressions are called
the Cartan and Berwald expressions of FI' respectively. The problems of arbitrariness of
the above tensor fields are discussed (Theorem 2.2, Theorem 3.2 and Theorem 3.4). In
the last Section 4 we shall treat the case of a generalized Finsler space (M, &) (cf.
Miron [ 9], Hashiguchi [ 5] and Watanabe-Ikeda [14]). Similar problems are found in
Schouten [13, pp.131-137], Atanasiu-Ghinea [ 4 ] and Miron-Hashiguchi [11], etc., too.

As to the terminology and notations we use those in [10] and [3], which are
essentially based on Matsumoto [8]. In reference to T, the components of the (v)uv-
torsion tensor field are denoted not by S’y but by S,

The authors wish to express their sincere gratitude to Professor Dr. C. Udriste and
Professor Dr. M. Matsumoto for the invaluable suggestions and encouragement. The au-
thors’ thanks are also due to Professor Dr. R. Miron and Professor Dr. Gh. Atanasiu; the
present research, together with the previous ones [1,2,3], was stimulated by Romanian-
Japanese Colloquium on Finsler Geometry (1984) organized by them and Kagoshima
Symposium on Finsler Geometry (1985) with their attendance.

1. The * -operation

Throughout the present paper we shall use the following abridged notations without
comment: Ko'x=y'K;%x, S;dK/'d=K;'x+ K5, A;dKi'd=K;'x— Kx';. The metric tensor
field & and its conjugate 8 will serve for lowering and raising indices, e.g., K
=8xs8"K,°,, where the position and order of indices are important.

For any Finsler tensor fields K;nx and K,’x we define the % -operation as follows:

(1 -1) K*Jhrcz(Kjkn+ Kkjh—Kkhj)/29
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(1 . 2) K*jik'__(Kjki+ Kkji_ Kkij)/z'

Then we have

Proposition 1.1. (1) If K;nx is symmetric (resp. alternate) with respect to j, k, then

(1.3) S;dK*;nd=Kikn  (resp. =0).
(2) If Ki'x is symmetric (resp. alternate) with vespect to §, k, then
(1.4) AdK* =0 (resp. =K.
Let us consider so-called Obata’s operators:
(1.5) =(0507—8:s8")[2, Q5=(0507+85:8")/2.
These operators act on a Finsler tensor field K,'x as
(1.6) QK =K/ x—K'l2,  QEK =K/ st K 2,
and if K;x, is symmetric with respect to 7, h, then K*, is expressed as
(1.7) K* =K[2— QQZK,.S.,:.
The * -operation is linear: if H;x=K,'x+ Lj . then H*/ =K* %+ L*;%,, and it acts
on a Finsler tensor field expressed as H,'%x =K, (resp. H/%x =Kx') as H*/%

=(K,s+ K¥';— Kx;")/2 (resp. H*;"x=(K%x+ K 'x;— K;x")/2) . Hence we have

Proposition 1.2. (1) Let K;xn be symmetric with respect to j, h. If H'x= A;iK;xY2, then
H j k—,Q Kr k-

(2 )Let K;xn be alternate with respect to §, h. If Hi'x= A;dK;xl, then H*'x= K.

(3) If H,”n—Amlfl?”sCXr o, then H*;'x= 1 G X%k

The last statement (3) follows directly from (2) by putting K;x' —Q B Xrk

2. The Cartan expression of a Finsler connection

In a Finsler space, a Finsler connection FI'=(N%, F,’%, Cj%) is expressed by the
s c . C ry
difference from the Cartan connection CI'=(G':, F,s, C,%) as follows:

(2.1) N%=G%— X",
(2 . 2) Fjikz Ic?jik+ éjimek_ Bjiks

(2 . 3) Cjikz Cjik— D.iik- :
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Then we have

Proposition 2.1. Let Uix;, Vix; and D%y be any Finsler tensor fields.
(1) gi_ﬂk: Uikj, g,:jl k= Vikj are eqm'valent to

(2.4) 5235 ~x= Un'l2, (2.4) 523@5 “x= Vix'2
respectively.
(2) Fo'x— N%= D' is equivalent to
(2.5) X'x=D'x+ By's.
Now, let FI'=(N%, F, C,%) be any given Finsler connection, and we put
(2.6) Wiks=(On&is) X ™x,
(2.7) Uiri=8ism. 2.7) Vier=8is| .

Since B satisfies (2,4), from the result about Obata’s operators (cf. [10]) it is
expressed in the form B x= U,k‘/2—.§12§§erk by some Finsler tensor field X,’%, and so
we have

(2 -8) thkz Fiik+(Wiki_ Ujki)/2+ * Zerm
from which we have
(2 . 9) Tjikz Ajk{( Wikt— Ujki)/2+ '?f?;erk}'

Paying attention to Proposition 1.2 and applying the % -operation to (2.9), we have
T*/= Qiﬁ(Wrsk— U,°x+ X,°x), by which we can eliminate 1 o X%k from (2.8). C,'x are
similarly treated, and we have from (1.7)

Proposition 2.2. In a Finsler space, let FI'=(N%, Fx, Cj') be any Finsler connec-
tion. Then if we define X'x, Wiy, Uy and Vi by (2.1), (2.6), (2.7) and (2,7") respec-
tively, we have

: c s . .
(2.10) Fi'=F s+ W*} — U* %+ T*

(2.11) Cix= 6.7':)6:_ V*iht 8* .

On the other hand, since X% and B, of FI satisfy (2.5), we have from (2.2)
and (2.10)

(2.12) X+ W*h=K",
where

(2.13) KikzDik"' U*Oik'— T*Oik-
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Since W*,'x= ék"mX'”o, we have from (2.12)
(2.14) X%=K"%— 8" (On8xrl2)K™.

Thus we have proved

Theorem 2.1. In a Finsler space, let FI'=(N%, F% C;%) be any Finsler connection.
If we construct Ui, Virs, K, X'k and Wik from (2.7), (2.7), (2.13), (2.14) and (2.6)
successively, then the coefficients of FI are expressed as (2.1), (2.10) and (2.11).

The expression of FI" stated in Theorem 2.1 is called the Cartan expression of FI'.
It is noted a Finsler connection is uniquely determined by its 8w, 8islx D' T
and S,’x. This shows an excellence of Matsumoto’s system of axioms for CI".

Conversely, the above tensor fields are arbitrarily given. In fact, we have

Theorem 2.2. In a Finsler space, let Uy; (=Ujn), Vies (=Viw), D% Ti'
(=—T,) and S;'x (=—S&';) be any Finsler tensor fields. Then there exists a unique Fins-
ler conmection FI'=(N*x, F;'x, Cj's), in which the h- and v-covariant derivatives of &:;, the
deflection tensor field, the (h)h- and (v)v-torsion tensor fields are the given Uiy, Vixs, D'y,
Ti'x and S;'x respectively. If we construct K'x, X'x and Wik, by (2.13), (2.14) and (2.6)
from the given tensor fields, then FI is given by (2.1), (2.10) and (2.11).

Proof. From (2.2) and (2.10) we have

(2.15) Bink=W;inl2— W* 5+ U* jnx— T* ik

Proposition 1.1 (1) yields S;u{Bsnd= Ujrn, i.e., (2.4), which is equivalent to &= Uix,.
Similarly &;|»= Vixs is obtained. Also using (2.15), and X’ =K', we have (2.5),
which is equivalent to Fo's—N*%=D%. Finally, F/%x—F¢;=T;x (resp. C;x —Ci;
= S,%) follows directly by applying Proposition 1.1 (2) to (2.10) (resp. (2.11)).

3. The Berwald expression of a Finsler connection

In a Finsler space (M, L), a Finsler connection FI'=(N?%, F)% C,%) is expressed
by the difference from the Berwald connection BI'=(G’;, G,’, 0) as follows:

(3.1) N%=G%— X',
(3.2) = Gi'v— 9, X x— P'y,.

The coefficients C,;%% of FI' coincide with the components of the (&) hv-torsion tensor
field of FI'. Then we have

Proposition 3.1. Let Ly, D%, T'xand P be any Finsler tensor fields, and we put
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(3.3) Fyr=LL,,

(3.4) Qs'x=T,'x—(P';x— P'xy),

(3.5) H'x=D"s+ Ti's+ Plo.
(1) Lx= Ly is equivalent to

(3.6) YnX "= Fr,

which is also equivalent to

(3.6") Xo'=F".
(2) Fo'x— Nix=D'x is equivalent to

(3.7) Xi—y 0, Xx=D%+ P'x.
(3) F)'x— Fity=T;'x is equivalent to

(3.8) X4 —0; X %= Q'x.
Under the assumption (3.8), the condition (3.7) is equivalent to

(3.7) X'x—y oxX'»=H'y,

which is also expressed as

(3.7”) 2Xik‘— ékX"(,:Hik.

Now, let FI'=(N%, F,, C,% be any given Finsler connection, and we put

(3.9) Ly= Ly, Fk=<L2/2)lk (=LLk)9

(310) Ek=yT9kF¢—Fk (=3kFo—2Fk).

Since X satisfies (3.6), operating 87y*9, to the both-sides of (3.6), we have
from (3.6")

(3.11) X'o— X'+ 8"y yno-X"=E".
On the other hand, since X’ satisfies (3.7"), we have

(3.12) Xo'— 8"y ynoxX™r=H,'.

Hence we have from (3.11)

(3.13) X'v=H'+E’,

and from (3.7”) and (3.13)
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(3.14) Xhe=(H+ o Hs'+ EY)/2.

Thus we have proved

Theorem 3.1. In a Finsler space, let FI'=(N*x, F;'% Cj') be any Finsler connection.
If we construct Fy, E., H'and X' from (3.9), (3.10), (3.5) and (3.14) successively, then
the coefficients N'x and F;'x of FI' are expressed as (3.1) and (3.2).

The expression of FI stated in Theorem 3.1 is called the Berwald expression of FI .
It is noted a Finsler connection is uniquely determined by its L, D%, T'x, P%x and
C,' This shows an excellence of Okada’s system of axioms for BI".

Contrary to the Cartan expression, the above tensor fields are not arbitrarily given.
In fact, from Proposition 3.1 we have

Theorem 3.2. In a Finsler space (M, L), let Ly, D%, T;'x (=—Tx;) and P%;x be any
Finsler tensor fields, and we construct Fy, E, Q,'x, H'% and X' by (3.3), (3.10), (3.4),
(3.5) and (3.14) from the given tensor fields. Then there exists a unique Finsler connection
FI'=(N%, Fj% C;%), in which the h-covariant derivative of L, the deflection tensor field,
the (h)h- and (v)hv-torsion tensor fields are the given Ly, D%, Tj'x and P respectively, if
and only if X'y satisfies the conditions (3.6), (3.7) and (3.8). The coefficients C,'x are arbi-
trarily given.

It is noted that X given by (3.14) satisfies (3.7) and (3.8) if and only if X%
satisfies (3.7) and
(3. 15) yrar(akxtj_ anik)z yr(aijtr_ ankir)-

If we assume a Finsler connection is positively homogeneous, the conditions (3.7)
and (3.15) become

(3.16) D'+ P'%=0,

(3.17) yr(aijir_ 8ijir)=0
respectively, and H% and X’ are given by

(3 . 18) Hik= Qkio,

(3.19) Xilcz(Qki0+ ak(Qioo‘f‘Ei))/z

respectively. Hence Theorem 3.1 and Theorem 3.2 are stated as follows.

Theorem 3.3. In a Finsler space, let FI'=(N’, Fj% C;% be any positively
homogeneous Finsler conmection. If we construct Fy, Ex, Q,'x and X'x from (3.9), (3.10),
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(3.4) and (3.19) successively, then the coefficients N'x and F;'x of FI" are expressed as (3.1)
and (3.2).

Theorem 3.4. In a Finsler space (M, L), let Ly, D%, T'x (=—T¥,), Pk and C,'%
be any positively homogeneous Finsler tensor fields of respective degrees 1, 1, 0, 0, —1,
and satisfy the conditions (3.16) and (3.17), where Q;'x is constructed by (3.4) from the given
Ts', Pk Then there exists a unique positively homogeneous Finsler connection FI' =(N?,
Fi', Cj%), in which the h-covariant derivative of L, the deflection tensor field, the (h)h-,
()hv- and (h)hv-torsion tensor fields are the given Ly, D%, Tk, Pk and C;'x respective-
. If we construct Fr, Exand X'x by (3.3), (3.10) and (3.19) from the given tensor fields,
then the coefficients N'x and F;'x are expressed as (3.1) and (3.2).

For the proof it suffices to show (3.6), which follows from (3.16) and
(320) yiakEi=2Fk.

4. The case of a generalized Finsler space

Let (M, 8&:;) be a generalized Finsler space, where &;; is a generalized Finsler met-
ric tensor field defined as a symmetric and non-degenerate Finsler tensor field of type
(0,2). We assume that &;; is regular in the sense of Miron [9] :

4.1) (akgij)yiyj=0,

(4.2) det (A'%)#0,

where A%=0%L+8"(0x8rs)y", (87)=(8:,)"". Since the condition (4.1) yields
00K &rs Y Y)2=8n+(Ox&rs)Y", we have A;x=Ax;. (Or8r;)y" is symmetric with respect
to j, k.

Since (A%) has the inverse, (B%), we can put G'=B%%"/2, where ¥;‘x denote the
Christoffel symbols with respect to 8. Then G'x=0xG" define a non-linear connection.
Two canonical Finsler connections MCI" and MBI™ have been known by Miron [9].

The one MCI'=(G%, ﬁn' i 8 ;%) called the Miron-Cartan connection is given by

(4.3) S x=8"(0%8ir+ 038kr— 0+&:x)2,

(4.4) C,x=8"(0x8r+ O:s8kr— Or&in)2,

where 9y=9/9x*, 0x=09x— G"xOr. This is uniquely determined by Matsumoto’s system
of axioms for CI” in which (C2) is replaced by (C2*) N=G".

For any Finsler tensor field X’; we have the expression C,5rX"x=(W;s'+ K;x')2,
where Wikn=(0,8n) X x, Kitn=A,nl (0,81 X"}, and Wjun (resp. Kjxn) is symmetric
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(resp. alternate) with respect to j, h.
If we express any Finsler connection FI' by the difference from the Miron-Cartan

c | c m .
connection MCI™ as (2.1), (2.2) and (2.3), where F % and C,’ are replaced by F
m

and C,' respectively, then by the similar way as the proof of Proposition 2.2 we have

Theorem 4.1. In a generalized Finsler space (M, &), let FI'=(N*, F;% C,') be
any Finsler connection. Then if we define X'x, Wixs;, Uik and Vi by (2.1), (2.6), (2.7) and
(2.7") respectively, the coefficients Fi'x, Cj'x of FI' are expressed as

. m . . . .
(4 . 5) Fjlkz thk+ W*jbk_ U*ka+ T*jtm

(4 -6) Cjikz Cjik_ V*jik+ S*jik-

Conversely, the tensor fields Uiy, Vies, X%, Ts'x and S,k appeared in Theorem
4.1 are arbitrarily given. In fact, we have

Theorem 4.2. In a generalized Finsler space (M, &), let Uy (=Usn), Viks (= Virs),
X%, T (=—T,) and S;’x (=—S¥;) be any Finsler tensor fields. Then there exists a
unique Finsler connection FI'=(N'x, Fj% Cj'%), in which the h- and v-covariant deriva-
tives of 8, the difference of the non-linear connections of FI' from MCI', the (h)h- and (v)v-
torsion tensor fields are the given U, Vi, X% Ti'x and S;'x respectively. FI” is given
by (2.1), (4.5) and (4.6) constructed from the given tensor fields.

We shall here consider whether the role of X’ in the above theorems is replaced
by the deflection tensor field D%. Let FI'=(N*%, F;% C,%) be any Finsler connection.
Instead we define K% for a Finsler space by (2.13), we define K% by

4.7) Kix=D'—Dix+ U*ohe— T*oh,

where D% is the deflection tensor field of MCI'. Then it is shown in the same way as
for a Finsler space that the difference X’ given by (2.1) satisfies (2.12).
Contracting (2.12) by ¥* we have from (4.1)

(4.8) X%=B"K",.
Hence if we put
(4.9) = Q5+ QuxA”s,
we can rewrite (2.12) as
(4.10) Q5 X°r=K'x— 8" (On&kr/2)B" K *.

Conversely, we can show Fo'yr—N*%=D' from (2.1), (4.5), (4.7), (4.8) and
(4.10). Thus we have proved
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Theorem 4.3. In a generalized Finsler space (M, &), let FI'=(N%, Fj% Cj%) be
any Finsler connection. The difference tensor field X'y (=G'x—N"*y) in Theorem 4.1 satisfies
(4.8) and (4.10), where Ky is given by (4.7).

Conversely, let FI'=(N*,, Fj%, Cj%) be the Finsler connection given by Theorem 4.2
from any Finsler tensor fields Uy (=Ujri), Vi (=Vin), X% Ti (=—Tx,) and S,
(=—Sx%). Let D' be any Finsler tensor field, and we define K'x by (4.7) from the given D%,
Ui; and Tj'x. If X'k satisfies (4.8) and (4.10), then the deflection tensor field of FI is the
given D'

We shall consider a case the equation (4.10) with the unknown X% has solutions.
If the m*X n® -matrix (Q%), with Q% as the (ik), (s7) component, is regular, that is, if
there exists a Finsler tensor field @4 satisfying

(4.11) Q5= Q0 P%=046%,
then @5 is uniquely determined by Q%, and (4.10) has the unique solution
(4.12) Xi= 05 K?— 8" (On8ar|2) B" K %).

Since Q% is given by &;; only, the regularity for (Q2%) imposes on &;; a regularity
condition. The tensor field

(4.13) =20%:88"°

is just the one given by (3.1) of Watanabe-Ikeda [14]. Hence the above regularity con-
dition is the one in their sense. They introduced this condition in order to assure the ex-
istence and uniqueness of the Cartan-like connection, i.e., the Finsler connection satisfying
the same system of axioms as Matsumoto’s one for CI". Thus we have

Theorem 4.4. In a generalized Finsler space (M, 8:;) satisfying the regularity condition
in the sense of Watanabe-Ikeda, let FI'=(N"*;, Fj%, C,%) be any Finsler connection. Defin-
ing X' by (4.12) the coefficients of FI" are expressed as (2.1), (4.5) and (4.6) in terms of its
8isws 8islw D' Ti'xand Siw

The above tensor fields Uys=8isx, Vies=8iilxs D% Ti'x and Sj'x are arbitrarily
given, under the assumption (4.8).

In the following we shall assume that &;; is positively homogeneous of degree O :
m s Py
&:x,Ay)=8:(x,y) for A>0. Then calculating from (4.3) we can show Fo%=G", ie.,
m .
DL():O. n
In Theorem 4.4, if we put U= Vix;=D%= T;'»=S,’»=0, we have K‘'y=—D%.
Since K'=0, the condition (4.8) becomes X',=0, and X'; given by (4.12) becomes

Xo=—05D",. X' satisfies QiX°,=—D% whose contraction by %* yields
X'+ A X%=0. Hence, if the matrix (A%) does not have the eigenvalue —1, we have
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X%=0. Since A’xy*=1y’ the matrix (A%) has the eigenvalue 1. By Theorem 3 of [14]
the sum of two eigenvalues of (A%) is not equal to zero if and only if the matrix (Q%) is
regular. Thus (A4%) does not have the eigenvalue —1. This shows the existence of the
Cartan-like connection in a generalized Finsler space.

The other canonical Finsler connection MBI'=(G%, G, 0) called the Miron-
Berwald commection is given by G;'x= 0,G'x Putting L=(&,¥'y’)'/?, we have &; =
9:04L%2)=g8:+A";. Since L is positively homogeneous of degree 1, and satisfies det (&:;)
+0, we have a Finsler space (M, L). Hence Theorem 3.3 and Theorem 3.4 hold also in
the case of a generalized Finsler space (M, &), if the rowering and raising of indices
are made by &;; and &”
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