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Abstract

Stabillity of Variable Step-size, Variable-Formula pseudo Runge-Kutta Methods. The
present paper deals with the stability of Variable-Stepsize Variable formula of pseudo
Runge-Kutta methods in the numerical solution of initial value problems.

1. Introduction

This paper deals with the variable step variable formula of solving the initial value
problem :

=y(x ), x) =y0. (1.1)

The methods based on variable step-size and variable order are widely used for the
numerical solution of ordinary initial value problem and it is proved that the variable
step variable formula is superior to the fix step method. However, in [1962] A Nor-
dieck has pointed out instability in his interpolation versions of Adams formula if the
step-size was varied too frequently. C.W. Gear and K.W. Tu [2] have also shown that
Nordsieck method is unstable unless some restrictions are imposed on the step-size
sequence. In general case, stability of variable step-size variable formula can be ascer-
tained if some restrictions are imposed on the step-size sequence.

We have proposed the following pseudo Runge-Kutta method [6, 9]:

i—1
&% Gy vt )= (14) 3= a1 +h 2 05/(¢” (o 3 31)),
iz
(a0=—1, &1=0, a;=a1;=0) (i=0,1,...,1),

Y
_yn+1=b-2,yn-l+b-1))n+ 2 bif(g(i) (xm Ins In-15 h) ) ,
i=0
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and studied the variable step variable formula [10, 11, 12]:
89 (i s ) = (1+a)y () = Ga—h) o Saif (6 e ni ).
(ao=—1, a1=0, ap;=a1;=0) (=0, 1,...,7), (1.2)
1= () ey =) +b-1 s )y )+ E b, (her) 16 Con i ).

providing 3-stage fourth order which is stable only for bounded step-size selection of
the grid, so the aim of this paper is to investigate the stability (zero stability) of (1.2)
in more detail and to give the numerical results showing the characters of the formula
(1.2).

The outline of this paper is as follows. In § 2, we derive the order conditions, the
derivation of order can be clearly by using the tree notations studied by J. C. Butcher
[1], E, Haire & G, Wanner [3] and many peoples, then we use the those notation for the
expression. In §3, we analyze the stability of (1.2) and give some sufficient conditions
for stable, in the last section, we shall give some numerical examples justifying the re-
sults.

2. Derivation of the formulae

We define the order as follows. The method (1.2) is of order p if

1=t G+ hys1) =0 (BFY),

where u(x) is the true solution to (1.1).

In the first place, we study the other condition of (1.2) with the help of a “tree model”.
Let us define @ (¢) as the number of the ways of labelling tree ¢ with a set of ordered
symbol such that along each outwardly directed arc labels increase and B () as the
number of the ways of labelling a tree with 7(¢) distinct labels on the condition that the
root is not labeled but every other vertex is labelled. We also define the the elementary
differential F(¢), corresponding to ¢, by

F(t)(»)=£(,
where T is the tree with a single vertex and by
FO) () =f0) (F(n), F(to)...., F(t)),

where t=[t,, to,. .., t,].
and the elementary weight ®;(¢) for stage t by
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®,(7)=¢,
§
,(t) = zai]'q)J'(tl) q)j(tZ) "'(I>j<ts)-
j=1

Then the expansions for y,+1 and u(x,+h,) are given by

_ B (1)@ () F ()
Iar1=y (x,) + yg,ﬂ @) —1)1

O 40 (™Y,

and the true solution

a(t)F(0)y(x:) »
7(0<p Y (6! hp+1t0 </l’,'z+1).

We see that the method (1.2) is of order p if

a(t) hn-}—l r(
®0=50 B0 ( h )

u (xn+hn+l> =y (-xn) +

9’

for all tree ¢ such that r(¢) <p.
From (1.2) we have

() @l hi=0=p (x,).

(g) Pl hu—o=c:f(x,),

() @ hmo=(a+2 Saig)f(x),

(&) ¥ h=o= 3 (—a+3 2a; 673 (f.f) O () +
;(—ai+3 §aijcj(ai+2 gajk ) ) f, (S () (p(x,).

Therefor we have the following order conditions listing up to order 4.

t
_b—2+ Eblz 6,“

b—2+2 Xbic;= 5n2,

\/ —b—3+3 b 2=67

(2.1)
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—b_2+3 Sb(—a+2 Sa;c) =180,
i J

b—st+d SheP=10,"

b—-2+4 2b,~(a,~+3 Zaijch:' 07141

|
N

\) b—ztd Tbi(—at2 ga,jcj)c,: 6.,
Y

[

b—zt4 Zbila+3 Ta;(—aj+2 Tay el =0
i J &

by
where ¢;-1=—1, a,0=0 and 6,= hﬂ :
Solving (2.1) with =2, we have the solutions, abbreviating 4,=4;(8,), as follows:
order 2:
b_, 6°
bo=—+6252———, 121= 0,,_ (—b—1+bo+bz>, (2.2)

2 2

as1=c2— (az+az), b-1=1—b-2,

b-g, ba, ¢, 8, az, azo; free parameters.

order 3:
— 10n2(3+20n)_b—2} _b—2 _ 07!2
be= 6y (1+¢2) bo=To e by
br=0,— {—batbotbs, b_1=1—b7, (2.3)
2
a c
azo= ——22‘——22“, az1=c2— (az+azo),
b-2, ¢z, 8,, az; free parameters.
order 4.
6.2(6,+1)2
by ( ) bo= (3c5+4c3) — (8,2+ 8, , (2.4)

T (26, (20241) (a4 1)}
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b-2= 0n2‘202b2+21)0, b_lzl_b-z, blz 6,,— (—b-1+bo+b2),
az=— (3c5+2¢3), ao=c5+¢3, as1=co— (az+az),

¢z, 0,; free parameters.

3. Stability properties of pseudo Runge-Kutta Method

We now turn to the stability problem.
Definition.
Consider

Ini1=b-pu1+b-put S0, (s 1) (¥ (o by ) + 70, (3.1)
where the function f (¢ (x,, 4, »,)) are same to that in (1.2).

The formula (3.1) is called zero-stability if there exist a constant u and for any € >0,
0 (€) such that

‘yn_y_ﬂ | ._<_.. € ’

whenever

3

| 7:1< 8 (e),
i=0

1

uniformly in £, < u.
Introducing the notations:

Yn+1=(yn.)’n+1)t, Yoi1= O ynt1)

ﬂm=®,§MMMﬂéNm%%W,

n@=m,gmﬁwwwmm@x

0 1
A"—( b-2 b-1 ))

the equation (1.2) and (3.1) can be written in the form
Yn+1=AnYn+F<Yn)v (3.2)
Y,1=4,Y,+F(Y,) + 0, 7,41, (3.3)

Subtracting (3.2) from (3.3), we have
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€n+1'—‘An€n+Bn€n+Cﬂ+1, (34)
where

eﬂ__-Yﬂ_?ﬂY

(5 o) am=lr,)

Bn—- p” qn an+1_ ’)/n+1 y
with

b= —azbaf, (0 ) +baazohf, (8 ) f, (a1t 11 (Pum1—90—1)),
7. =b2(1+az) £,(8) +b2azih, £,(8) f, (3t T2 (3—1a)),
0 =£" 00+ 73?0 =@ 0,) 0=71, 75, 75=1).

We call (3.4) as the stability equation and we want to know the behavior of & ,.
Using standard teandard techniques one obtain the following Lemmas.

Lemma 3.1. The solution of
6n+1:An 6n—*_lgn 6n-1+ Cn

is
8,= znls,,ij_laj_ﬁ jznls,,jc,-, (3.5)
p -
‘where
Sy=Ap—14,—2"""Aj, and S,,= 1.
From the result stated above we know that the behavior of &, is determined by the

norm of §,. The following conditions will be shown to be sufficient for &, to be
bounded.

Lemma 3.2. [f there exists constants Ky and Kz such that
(2) |Bj| = Kz for all n,j,
then

j=1

where K is some constant.
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Proof

We can prove the result by using the Bellman-Gronwell inequality. By assumptions
(1) and (2), we have

16, =KiKz 3| 8,1 +Ki 2C;. (3.6)
j=1 j=1
Solving this equation yields the result.

When the step size-ratio &, is constatnt, 4, is constant matrix with the eigenvalue of 1
and b-2, so it is easy to derive the condition for the boundedness of ;.

Lemma 3.3. When the step size-ratio 0, is constant and
b2 | =11-61] <1,
Then
|8, | =K.
From the result, we have the following Theorem.

Theorem 1. The method (1.2) with (2.4) is stable if the constant 8, satisfies.

0.2 —36,2+4(ay—1) 6,+6ay)
(202+1)

<1, (3.7)

which lead to

0<az=1(0<0,=8),
36044+4603—1
4603+660%2+2

<ar=1 (0 <az<1.5),

where @ is the positive root to 3x*+4x*—1=0.
We have plotted the region A (8, a2) satisfing (3.7) in Figure (I).

Noting that the coefficients #—z given by (2.2) and (2.3) are independent upon &, we
may say the following corollary.

Corollary. The method (2.2) given by (2.2) and (2.3) is Ao-stable under for any 0,.
when A; is the constant matrix, as we have seen, it is easy to study the stability
conditions. however for the variable matrix A, it is difficult to obtain the conditions

for stability. We [13] shall study these problem by using the spectral decomposition
notations.



38 Masaharu. NAKASHIMA

S

Stability region in the plane (@, az) for Theorem 1

4. Numerical Examples

In order to test the method (1.2), we wish to present some nimerical results to
show how our scheme compares with R-K method. The descrided method is program-
med in FORTRAN and run on the Personal Computer 9801RA (NEC). The computa-
tions are done in double precision.

The test problems, where (2) and (3) are considered from DETEST [14], are the
following :
1) y=—y++»(0)=3,
(2) y’=—i§—,y(0) =1,
3) »'=001-/20))/4,5(0)=14.
The true solutions to the problems (1), (2), and (3) are
(x) =exp (—x) +2—2x+4%,
2@ =1VGe+D),
y(x) =20/ (1+19. exp(—x/4)),

respectively. The initial value y; necessary for the method (1.2), is computed by
Runge-Kutta of order five.
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Table  Result usig the #,=1.1 and h=1/2"
Problem 1
Absolute error \
X 0.062.. 0.500.. 3.811..
(hy) (0.012..) (0.052..) (0.3535.)
R-K 3 0.666E-10 0.188E-7 0.177E-4
FN 18 63 123
R-K 4 0.173E-12 0.193E-9 0.142E-5
F N 24 84 164
R-K 5 0.642E-10 0.341E-9 0.909E-7
F N 36 126 246
(1.2)3 0.765E-8 0.182E-5 0.183E-3
FN 12 41 81
(1.2)4 0.275E-10 —0.269E-7 —0.353E-4
FN 12 41 81
Problem 2
Absolute error
X 0.062.. 0.500.. 3.811..
(hy) (0.012..) (0.052..) (0.3535.)
R-K 3 0.610E-10 0.549E-8 0.103E-6
R-K 4 0.463E-14 0.217E-11 0.175E-9
R-K 5 0.104E-10 0.529E-10 0.516E-10
(1.2)3 0.259E-7 0.254E-5 0.509E-4
(1.2)4 —0.246E-9 —0.728E-7 —0.381E-5
Problem 3
Absolute error
X 0.062.. 0.500.. 3.811..
(k) (0.012..) (0.052..) (0.3535.)
R-K 3 0.693E-13 0.246E-10 0.668E-7
R-K 4 0.463E-16 0.677E-13 0.133E-8
R-K 5 0.538E-11 0.490E-10 0.698E-9
(1.2)3 0.171E-10 0.636E-8 0.119E-4
(1.2)4 0.874E-14 0.114E-10 —0.664E-7

39
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FN : number of function evaluation.

P-K 3 : Heun third-order formulas.

P-K 4 : Heun fourth-order formulas.

P-K 5 : Heun fifth-order formulas.

(1.2)3 : Method (1.2) with (2.3) taking ¢2=0.5, a=0.01 and b_>=0.01,
(1.2)4 : Method (1.2) with (2.4) taking c;= (40.67)/52.
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