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Abstract.

In this paper we shall analyze behaviors of finite cellular automata CA-90 (n) with
boundary conditions of O-type and 1-type, respectively, by using iteration schemes Ko (zn) and
K; (n), introduced in [2].

1. Introduction

In [1] Fujino has developed a theory of finite cellular automata CA-90 (n) with
boundary conditions of O-type and 1-type, respectively. In this paper we shall analyze
behaviors of the automata CA-90 (n) of boundary conditions of both types, by using
techiques developed in the paper [2].

Finite cellular automaton CA-90 (n) with boundary condition of O-type is inter-
preted as a system Ko(n) =<X, f>, where X is a set of all n-tuples with elements in Z
={0, 1}, that is X=2Z5, and fis a mapping from X into X defined by

f(x) =Ax mod 2 xeEX),

where A4 is a matrix

------

and additions and multiplications for computing Ax are mod Z-operations, respectively.
And the same automata with boundary condition of 1-type is represented as a system
K1 (n) =<X, g>, where X is the set Z3, and g is a mapping from X into X defined by
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g(x) =Ax+d mod 2 xEX)
where A is the same matrix used in defining the mapping f, and d is a vector
1 A
0
0

0
!

mod 2-operations are also used in the definition of g.
We get immediately the following relation,

gw)=f(x) +d mod 2 xeX) (1.1)

In the following we shall show existence of fixed points of f and g, and behaviors of iter-
ated sequences {f?(x)} and {g?(x)} (p=0, 1, 2, -++), respectively.

2. Properties of schemes

We get the following propositions about schemes Ko () and K (n).
Proposition 2.1. The mapping f: X—X is additive mod 2, that is,
flx+y mod 2) =f(x) +£(y) mod 2
JSor each x and y in X.
Proof It follows quickly from the definition of the mapping f.

Proposition 2.2 The mapping f : X—X is bijective if and only if the number n is even.

Proof First we shall show the following result: The determinant detA mod 2, com-
puted by mod 2 operations, is not zero if and only if the number n is even. Let us write
the determinant detA mod 2 by detnA mod 2 in order to clearly express the number n.
So we have

01
101 0
101
det,A mod 2= mod 2

O 101

10
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01

001 0

0101
101

= N . mod 2

O 101
10

= deth—2A mod 2

By using the above relation successively we get
det,A mod 2 = det,—2A mod 2
= det,—4A mod 2

det;A mod 2 (if n is even )

detsA mod 2 (if nis odd)

So we have
0 1
=1 (if niseven)
1 0
det,A mod 2=
010
101 | =0 (ifnisodd)
010

and the above result holds.
By the definition of f, the mapping f: X—X is bijective if and only if detA mod 2 is not
zero. The conclusion follows from combining the above two results. 0]

Now we introduce a mapping, called ‘code’ from X into N (the set of all natural
numbers including zero) by
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X1
X2

code (x) = Zx; 2" for each x= D EeEX

j=1

Let us denote an arrow
code (x)
when f(x) =y for x and y in X.
We get a diagram over code (x) by writing all arrows

— code ( y)

code (x) — code( p) for each x and y in X when f(x) =y holds.
1 4 3 6
N\
Ko(3) : 2 7
N
5
l
0
Type of scheme : {1221277 (1) }
1 3
/\ /\

Type of scheme : {6(2), 3(1), 1(1)}
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3

l
/N /N

N E——

29-——>20,\ /5(——23 9——-?22\ 13<—38
8 28
16 24
Ko(5):
6
15
-7 N
/ \ 4§ —>10 17— 31
~~__~
11—»19\ 25 <126
3T0 14 -—>27Q 21—-—>0Q
12

Type of scheme : {4,(3), 25(1), 15(2) }
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4 1 6 3
7 2
Ki(3) \ /
0

!
5O

Type of scheme : {12[2[277 (1) }

| 5/1\1 4/3\14 0
o 1[ 1lo I J; 15/459 BQ
NV

Type of scheme : {6 (2),_3(1), 1(1)}

The diagram, thus constructed, is called a configuration diagram of scheme Ko (n).
The configuration diagram of scheme Kj (n) is constructed by using the mapping g in
place of the mapping f.

We shall show examples of configuration diagrams of Ko (n) and Ki (n) for n=3, 4
and 5.
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1 4
19 217
23*)20\ 30— 86 21-—}17’\ 10<—14
2 0
11 31
K; (5)
29

5
~—
/ \ 9—>17 28 <18
| N

28—-98\ 25<—186
15

12
Type of scheme : {4,(3), 25(1), 12(2) }

3———>22Q 24 -—>13Q

In the above diagrams we show type of schemes by using notations defined in [2].

Proposition 2.3 [f n is odd, then there exists a nonzero vector y in X such that
f(x+y mod 2) =f(x)
and
2 (x+y mod 2) =g (x)
Sor every x in X.
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Proof Let us take a vector

O R O

1
0
1

Then we have f(y) =Ay mod 2=0, So we get, by additivity of the mapping f,
f(x+y mod 2) =f(x) +£(y) mod 2
=f(x),
and, by the formula (1.1)
g(x+y mod 2) =f(x+y mod 2) +d mod 2,
=f(x)+f(y)+d mod 2,
=f(x) +d mod 2,
=g (x) mod 2,
The conclusion holds. O
Next we shall study fixed points of the mapping f and g.

Proposition 2.4  Fixed points of the mapping f, that is, the vector x in X satisfying the rela-
tion f(x) =x, are as follows:
(1) 0 (if n=0(mod 3)),
(ii) 0 (if n=1(mod 3)),
(ii1) 0 and

O H O

(if n=2(mod 3))

[y
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Proof The relation f(x) =x is written as follows:

X2=Xx1,
x1+x3 mod 2=xs,
xo+ x4 mod 2=x3,

xi—1F %41 mod 2=x; (2.1)

x,,_.z—f'x,l mod 2=x,,_1,

Xp—1— Xy

By the equation (2.1), the zero vector is a fixed point of the mapping f for every =,
and the fixed point the first element of which is 1 is a vector in which the second ele-
ment is 1, the third element is 0, and the last two elements are equal.

Such a fixed point appears only if n=2 (mod 3), and the form of the fixed point is

O O R

e e I i i
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Proposition 2.5  Fixed points of the mapping g are as follows:

17

0
1
17
0

(1) 1 if n=0(mod 3),
17
0

L1

0
1
1.
01
1

.. 1- )

(ii) . if n=1(mod 3),
0
1
1

L 0
and

17 01
0 1
1- 1.
17 01
0 1
1- 1.

(iii) . and . if n=2 (mod 3)
1 0
0 1
1 1
1 0
0 ! )
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Proof The relation g(x) =x is written as follows:

1+ x5 mod 2=1x,

x1+ x3 mod 2=xs,
x2+ x4 mod 2=x3,

x;i—1 1t x;+1 mod 2=x;, (2.2)

Xy—2tx, mod 2=x,—1,
Xy—11t1 mod 2=x,

From the equation (2.2), we get
' X1=x2,
where x2 is a mod 2-complement of xz, that is

[1 (if x=0),
X9 =

Finally we get
xn—lzim
and

X, (zf x,—1=0, that is, x,=1)
Xn—2—
Xy (if x,—1=1, that is, x,=0)

Combining these results, it follows that

(1) Fixed point the first and the last three elements of which are both 1, 0 and 1
appears only if =0 (mod 3). ,

(ii) Fixed point the first and the last three elements of which are 0, 1 and 1, and 1,
1 and 0, respectively, appears only if n=1 (mod 3).

(iii) Fixed point the first and the last three elements of which are 1, 0 and 1, and 1,
1and 0, or, 0,1 and 1 and 1, 0 and 1, respectively, appears only if 2=2 (mod 3).
So we get the conclusion. ]

3. Characterization number h(n)

The mappings f and g have the following property.
Proposition 3.1

g (x) =ft(x) +g2(0) for each xEXPp=1, 2,"*)
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Proof (by induction)
When p=1, g(x) =f(x) +d mod 2 (by definition)
=f(x) +g(0) mod 2 (x EX)

Assume that the relation holds for p-1, that is,

&7 () =271 (x) +g27(0) (xEX)
Then, for each x in X we have

2 =g ()

=flg¢ ' (x) +d mod 2

=£(f*" (x) +g#71(0)) +d  mod 2
By additivity of the mapping f,

n h(n) n h(n)
1 1 28 16383
2 2 29 61
3 X 30 31
4 3 31 X
5 4 32 62
6 7 33 30
7 X 34 4095
8 14 356 X
9 6 36 87381
10 31 37 1022
11 X 38 8190
12 63 39 X
13 14 40 1023
14 30 41 252
156 X 42 127
16 156 43 X
17 28 44 8190
18 511 45 4094
19 X 46 8388607
20 126 47 X
21 62 48 20971561
22 2047 49 2046
23 p.4 50 510
24 1023 51 X
25 126 52 67108863
26 1022 53 2044
27 X 54 1048575

55 X
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=72 (x) +f(g?1(0)) +d mod 2
=77 (x) +g (g1 (0)) mod 2
=/*(x) +¢(0)
. The induction holds. [

So we immediately get the following theorem.
Theorem 3.2. f?=g* if and only if g* (0) =0.

Let us denote the least positive number p such that g? (0) =0, if exists, by 4 (n) .

We call the number % (n), if exists, the characterization number of schemes Ko (n) and K
(n). By using computer we get the following table of #(n) (see p. 122.).
The table shows the following relation

(1) The number £ (n) exists if and only if n%3 (mod 4).

(2)  If n is even, then we have

E(2n+1) =2k (n)

the proofs of which are obtained in [3], using slightly changed form of CA-90 ().

4. Isomorphism between schemes Ky(n) and K,(n).

The schemes Ko (n) and K1 (n) have the following relation.

Theorem 4.1 For two schemes Ko (n) = <X, f> and Ky (n) =< X, g>>, there exists a
bijection ¢ from X onto X such that the following diagram commutes, and, if p is a fixed point of
the mapping f, then ¢ (p) is a fixed point of the mapping g

f
X ——X

g
X———— X

Proof Let us take a mapping ¢ as follows:
$ (x) =x+gq mod 2 xeX)
where q is a fixed point of the mapping g, which exists for each »n (proposition 2.5).
So we get for each x in X

(¢ - f) () =f(x) +q mod 2,
=/f(x) +g(q) mod 2,
=f(x) +1(¢q) +d mod 2,
=f(x+q mod 2) +d mod 2,
=g (x+q mod 2) mod 2,
=g(¢ (1))

=(g. $) (x)
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And, if p is a fixed point of the mapping f, that is f( p) =p, then we have

g($(p)=129 (fp)) (the commutavity),
=¢ (p)
So the vector ¢ (p) is a fixed point of the mapping g. ]

We can get similar results for schemes representing finite cellular automata
CA-150 (n) with both boundary conditions of O-type and 1-type, respectively.
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