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Abstract

Using a sequence of independent random variables which take on one of the values 0 and 1
with prescribed probabilities, we give probabilistic proofs of two expressions of Stirling numbers of
the first kind.

1. Introduction and Summary

Some theorems that can be stated without reference to probability nonetheless have
simple probabilistic proofs. Bernstein’s approach to the Weierstrass approximation
theorem is based on' the binomial distribution. (See Billingsley [1], p.72.) Some
combinatorial identities have also probabilistic proofs. This work gives probabilistic
proofs of two expressions of Stirling numbers of the first kind.

Stirling numbers of the first kind are the numbers s(n, k) such that

X)p= D sn, kx* for n=1,2,..,
k=0
where (x), = x(x — 1)---(x — n + 1). By convention, we take s(n, 0) = 0 for n > 0, s(0, 0)
=1, and s(n, k) =0 for k > n. Its absolute value |s(n, K)| is equal to (—1)"**s(n, k).
Stirling numbers of the first kind s(n, k) has the following well-known expressions:

+ . .
|S(n’ k)' = z 1 ly—ks
1<5i1<''<ip-k<n-1
where the summation X'* takes place over all positive integers iy,..., i,_, satisfying
1<i; < <i,_,En-—1

sl ="y L (L1)

k! i+ Tpe=n Py 1y
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where the summation X%+ takes places over all positive integers rq,..., r, satisfying
ryt e =0

n!

b
Zkj=k, Zjkj=n ijj.kj!
j

s(n, k)| = (1.2)

where the summation takes over all nonnegative integers ki, ..., k, satisfying k; + ---
+ k, =k and k; + 2k, + --- + nk, = n. (See for example Charalambides and Singh [2]
and Comtet [3].)

Using a sequence of independent random variables which take on one of the values
zero and one with prescribed probabilities, Yamato [8] presents a probabilistic proof of
the first expression. By making use of Dirichlet process Yamato [7] gives a probabilistic
proof of the expression (1.2).

Our aim is to yield probabilistic proofs of expressions of Stirling numbers of the first
kind given by (1.1) and (1.2) using the sequence of independent and discrete random
variables.

2. Proofs of expressions of Stirling numbers

Let B,, B,,... be a sequence of discrete random variables as follows: B,, B,, ... are -
independent and for M >0 and j =1, 2,... B; take on one of the values 1 and 0 with
probabilities (j — 1)/(M +j — 1), and M /(M + j — 1), respectively. That is

PB;=0=(j—1)/M+j—1), PB;=0)=M/M+j—1) for j=1,2,... (2.1

The above sequences of random variables are for example given by an urn model
(Yamato [8]) and the sequence of new observations from a distribution having Dirichlet
process (Korwar and Hollander [4]).

Let us put B(n)=B, + --- + B, for n=1, 2,..., which is a random variable taking
on one of the values 1,...,n. B(l) is equal to one with probability one. Since
B, B,, ... are independent and take on one of the values 0 and 1, B(n) satisfies the
following recursive relation.

Lemma 2.1. For k=1,...,n,
PB(n+ 1)=k)= P(B(n) =k)P(B,,; =0)+ P(B(n)=k — 1)P(B,., = 1), (2.2)
PBn+1)=n+1)=P(B(n)=n)PB,.; =1). (2.3)

The random variable B(n) has the probability distribution related to Stirling numbers of
the first kind as follows (Sibuya [5] and Yamato [8]).
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Lemma 2.2.
P(B(n) = k) = |s(n, k)| M*/{M >, for k=1,...,n and n=12,..., (2.4
where (M >, =M(M + 1)---(M +n—1).

Proof of expression (1.1). We prove this by induction using the probabilistic
relations (2.2) and (2.3). Since P(B(1)=1)=1, by Lemma 2.2 we have, |s(1, 1)]
= 1. On the other hand the right-hand side of (1.1) with n = k = 1 is equal to 1. Thus
the expression (1.1) holds for n = 1.

Now we assume the expression (1.1) holds for k=1,...,n with n > 1. We shall
show that (1.1) holds for k=1,...,n+ 1 with n + 1.
For k=1,...,n, by (2.2) and (2.4) we have

P(B(n+1)=k) (2.5)
n! 1 1 M*
= ~{n Z + + k Z+ } N
kUL mi ™ eme=n Py Ty it Freeg=n P ) KM Dy
where the summation 2 *’s takes places over all positive integers ry,..., r, and ry,..., F—

satisfying r;, + - + r,=n and r; + --- + r,_,; = n, respectively.
On the other hand, for n=1,2,... and k= 1,..., n we have

; 1 k . .
m+1) Y =y ¥ i (2.6)

it Fre=n+1 PV j=1 i+ Fre=n+1 Vo Ty

Separating the cases of r;=1 and =22 for j=1,..., k,

% *
Fi¥teodnt=n P17 o Ty

RHS. of (2.6)=ﬁ{ v

j=1
1
+
_+..
riterio et bme=n Py i Fipg ooy
1 1
+ +
rit o tne=n Pyt Ty riteFne-g=n Fpool—g

By applying the above relation to the right-hand side of (2.5),
(n+ 1)! + 1 MF*

PBm+1)=k) = ' :
(B(n ) ) k! ritTrme=n+1 Pyt KM D4

Thus by Lemma 2.2, for k=1,..., n we
(n+ 1)! + 1

k' it Fre=n+1 Pyt ¥y

Is(n + 1, k)| =
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Since |s(n, n)| = 1, by (2.3) and (2.4) we have for k=n+ 1

Mn ‘ M 3 Mn+1
(M>, M+n ‘<M>n+1'

PBn+1)=n+1)=

Therefore by Lemma 2.2, we have |s(n + 1, n + 1)] = 1. Thus the expression (1.1) holds
for k=1,...,n+1 with n+ 1 >0 and is proved by the induction.

Before proving the expression (1.2) we quote the following lemma, which is shown in
the proof of Corollary of Theorem 4 of Sibuya, Kawai and Shida [6].

Lemma 23. Forn=12,...and k=1,...,n,

Slky, kayoosn+ 1) 2.7)

Tkj=k, Sjkj=n+1

= Z fky, kyy.ooi5n) + 1 Z flky, ky,y.o5m)

Zkj=k—1, Zjkj=n Zkj=k, Zjkj=n

where f(kl,kz,...;n)=n!/[]_[j"f-kj!] for ky,k,,...=20 and n=1,2,... and the
j

summation X’s take over all nonnegative integers k,, k,, ... satisfying k, + k, + k5 + -
=k and k, + 2k, + 3k; + - =n+ 1 and so on.

Proof of expression (1.2). We prove this by induction using the probabilistic
relations (2.2) and (2.3). As stated at the beginning of the proof of (1.1), |s(1, 1)|
= 1. On the other hand the right-hand side of (1.2) with n = k = 1 is equal to 1. Thus
the expression (1.2) holds for n = 1.

Now we assume the expression (1.2) holds for k=1,...,n with n > 1. We shall
show that (1.2) holds for k=1,...,n+ 1 with n + 1.
For k=1,...,n, by (2.2) and (2.4) we have

P(B(n + 1) = k)

f(kls kz,---;”)

{ij=k—1. Zjkj=n

+n Z f(klakza---;n)}Mk/<M>n+1-

Zkj=k, Zjkj=n
By applying Lemma 2.3 to the right-hand side of the above,
Mk
PBn+1)=k)= . szkj=n+1 fky, kyy..o5n + 1)<M>,,+1'

Thus by Lemma 2.2, for k=1,...,n we
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(n+ 1)!

Skj=k, Sjkj=n+1 kil
J J H] kj,
Jj

Is(n + 1, k)| =

Since |s(n, n)] = 1 with |s(n, k)| given by (1.2), using (2.3) and (2.4) we have |s(n + 1,
n + 1)| = 1 by the similar discussion to the last of the proof of (1.1). Thus the expression
(1.2) holds for k=1,...,n+ 1 with n+ 1 =2 and is proved by the induction.
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