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Abstract

In this note, we construct the Vassiliev complex for contact singularity classes of
real smooth map-germs, and then we discuss on the Thom polynomial theorem which
describes relationships between the cohomology group of our complex and characteris-
tic classes associated to contact singularities of smooth mappings.
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0. Introduction

Let N, P be two smooth manifolds of dimension #, p respectively, and XCJ*(n, p) a
singularity type (a right-left invariant locally closed submanifold). For a smooth mapping
f: N— P, consider the subset X (f) of N consisting of points at which fis of type 2. If fis
appropriately generic and X satisfies a certain good condition, a cohomology class of N dual to

2—(1—’5 is well defined, and the class constitutes a homotopy invariant of /. In particular, if the
dual class does not vanish, any generic map homotopic to f has singularities of type 2. Thus
such dual classes are considered as topological obstructions to the existence of singularities of
corresponding types. Furthermore, these classes can be expressed as polynomials of stan-
dard characteristic classes of bundles TN and f* TP, that are usually called Thom polyno-
mials (for the detail, see §3).

As the condition on X, we claim that its topological closure X carries a fundamental class:
there exists a unique class of the closed supported homology group Hn,(Z; Z,) (m=dim %)

such that for any point €Y the image of the class generates H,, (2, £—{x}). In general, X
are semialgebraic sets and contains singular loci with dimension less by one, so the condition
is not always satisfied. Hence it is a problem in local geometry of real singularities to
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determine which kinds of singularity types satisfy the condition and admit Thom polynomial
expressions.

In this note, we will treat with this problem in a formal frame work, according to a
method introduced by V.A. Vassiliev in [16]. In the case of function-singularities, Vassiliev
constructed an abstract cochain complex which represents the combinatorics of adjacency
relations between various singularity classes, see [17], [2]. We will carry out a similar
construction for contact singularity classes of smooth map-germs.

Consider a stratification of J* (%, p) whose strata are invariant under contact equivalence.
Roughly speaking, associated to the stratification we can define a cochain complex as follows:
cochains of the complex are formal sums of strata of the stratification and are graded by the
codimension of the corresponding strata; the value of the coboundary operator evaluated on a

generator X is given by the formal sum of stata X; to which X is adjacent (ie. X;CX—X)
with suitable coefficients. The universal Vassiliev complex is defined as a inductive limit of
such complexes in a certain sense, see §1, §2. Then for each cocycle of our complex, the
closure of its support in J*(#n, p) carries a fundamental class (see Remark 1.6). Hence, for
any generic map f: N — P we can define a cohomology class of N dual to the singularity set
of f corresponding to each cocycle (Lemma 3.2). In particular, we can know from our
complex the coexistence of singularities of smooth mappings: the singularity set of generic f
corresponding to each coboundary cocycle of our complex is always homologous to zero, in
other words, its Thom polynomial is trivial.

In the final section §4, we will give some concrete results on some computations of
cohomology groups of our Vassiliev complex. This is based on author’s master thesis of
Tokyo Inst. Tech. in 1990 [10].

Throughout this note, manifolds and maps are assumed to be of class C*, and we will

consider only coefficients in Z, for the simplicity. As usual, we let 4%, (or simply #*) denote
the Lie group of k-jets of contact equivalence acting on J*(n, p).

1. A*-classification of J*(n, p) and Vassiliev complex

This section is devoted to introduce abstract cochain complexes accosiated to stratifica-
tions of J*(n, p), according to [17].

Definition 1.1. Let 7 be a stratification of /*(#u, p) such that each stratum of 7 is a
semialgebraic set. 7 is said to be a K*-classification of J*¥(m, p) if 7 satisfies the following
properties.

(1) Each stratum of 7 is A*-invariant.



Vassiliev Complex for Contact Classes of Real Smooth Map-Germs 3

(2) If a stratum of 7 has connected components L, and L,, then there are two points z;€L;
(i=1, 2) such that z, is #*-equivalent to z,.
(3) 7 satisfies the Whitney regularity condition.

Let y be a K *-classification of J*(n, p). Then, it is straghtforward from the definition to
see the following properties.

Lemma 1.2.
(1) 7 is a finite set.
Q) If X, YE7 and XNY+ @, then X is locally topologically trivial along Y.

Proof.
(1) It follows from the locally finiteness of y and that the closure of each stratum of 7
contains {0}.
(2) From (3) of Definition 1.1, we can see by using Thom's isotopy lemma (cf. [3]) that X is
locally topologically trivial along each connected component of Y. On the other hand, for any
two connected components L, and L, of Y, it follows from (2) of 1.1 that there are an element
He A* sending a point of L; to a point of L,. Since H induces a local diffeomorphism which
preserves X and Y, X is locally topologically trivial of X along L;UL,. Thus we have the
assertion (2).

Proposition 1.3. Let 1 be a locally finite partition of J* (n, p) into semialgebraic H*-
invariant subsets. Then, there is a K*-classification of J*(n, p), any stratum of which belongs
to some element of 1.

In fact, for any locally finite partition into semialgebraic subsets, there is a canonical
Whitney stratification which refines the partition (cf. Gibson et al. [3]). This is proved by
using set theoretical operations on semialgebraic sets: Boolean operations, taking the topologi-
cal closure, partition into families of connected components, and removing the singular locus
and bad point sets. These operations can be used also in our equivariant situation.

1.4 Assume that we are given a H*-classification 7 of J¥(#n, p). Associated with the
classification 7 we introduce a cochain complex as follows. First, we set in a formal mannar

C*(r):=Zymodule generated by elements of 7y with codim=s (s=0),
C(y):=@®C%(y), ie, Zrmodule generated by all elements of 7.

Second, let us define the boundary operator d,: C*(y) — C**'(7) as follows. Let X be a
strata of 7 with codim s. From the frontier condition of 7 ((2) of Lemma 1.2), there is a

filtration {Vi},>, of the topological closure X where V; is the union of the strata included in X
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with® codimension >s+i (Here Vo=X). Set m=dim J*(n, p), and let
0: Hu—s(Vy, Vi; Zo) = Hpyos1(Vi, Vo, Zs)

‘denote the connection homomorphism of relative homology groups with closed supports. Let
tx denote the fundarmental class of H,—s(V,, V1), i.e, for any point € V,— V;, the image of ux
generates H,,_s—1(V,, Vo—x). Choose any stratum Y of y contained in V;— V. and any point
y€Y. Then we define [X; Y] by the value of jx°0(ux) where jx: Hpu—s1(Vi, Vo, Zy) —
Hy—s—y (i, Vi—y; Z,) =Z,. Note that the value [X; Y] does not depend on the choice of y,
since X is topologically trivial along Y. For any Y<7 such that Y&V, —V,, we set [X; Y]:=

0. Now we define 6,(X):= 2 [X; YIYEC* (7).

Yer
Lemma 1.5; 0,°0,=0.

Proof. 1t suffices to see the value on the above X€ 7. Let V; be the filtration as above.
By definition, [X, Y] is the coefficient of dux on the component of Y in H,_s_1(Vi, Va).
Considering the exact sequence

Hys(Vo, V) 2 Hpeses (Vi, Vi) 2> Hyposo (Va, Vi),
it is easy to see that 0,°0,(X)=0. O
We will call the complex (C(y), 6,) the Vassiliev complex for 7.

Remark 1.6. Let ¢=2 X; be a cochain of C°(y) and 2. the union of X;. Then the
topological closure X, is a Whitney stratified closed subset of J*(», p) which is invariant
under the #* action.. Note that Hy.. (3., 35.—3.) = ® H,_(X;, Xi—X). If cis ‘cocycle, ie,

0,(¢) =0, then 22 dux,=0 and hence there is a unique lift of the class 2 ¢, via the exactness
of the following

Hm—s (Z) - Hm—s‘(Em Z_Z‘c) s Hm——s—l (_ZTc_Zc)

The lift is the fundamental class of H,_;(3,). According to the terminology of RM. Goresdy
(5], 2. is @ Whitney stratified (m—s)-cycle in J*(n, p).

1.7 Let I” denote the set of A *-classifications of J*(#%, p). For 7, v/ in I, we define y<7y’
if any strutum of 7’ is contained in some strata of 7. For 7, €T set YNy ={XNX'| X7,
X’€ 7'}, which is a locally finite partition of J* (%, p) whose elements are #* invariant semial-
gebraic sets, and hence through the procedure in Lemma 1.2 we can obtain a # *-classification
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7" such that y<7” and 7'<7”. Thus (I, <) is a directed set.

If y<7’, then there is a natural homomorphism (o}): C(y) — C(y’) defined by assigning
XE 7 to the linear combination 2 X; of all X;€7" with X;CX. It is easy to see that

(p}) commutes with 6, and J,, and hence ({C(7)}, {(0})}) ,er forms an inductive system of
cochain complices.

Definition 1.8. A cochain complex C(X%,) is defined by lim C(y).

The map (pl) induces a homomorphism H*(C(7); Z,) — H*(C(y); Z), and it is easy
to see H*(C(H%,);Zy) =lim H*(C(7); Z»). '

2. The universal Vassiliev complex

The complex C (4% ;) defined in the previous section depends on positive intgers #, p and
k. In this section, we are going to construct an universal cochain complex depending only on

an integer /, as the inductive limit of {C(4%,)};=p—». In what follows in this section, we fix
an intger /, and a positive intger #» is always assumed n+/>0.

J*(n, n+1) is simply denoted by J¥. For intgers m, n such that m=>n, let id,-, be the
identity-germ. of R”™" at the origin, and ¢: /¥ — J& a natural inclusion defined by j* f —
7¥(fXidu-n). For each z=j* fE L, set corank (z):=min(n, n+I) —rank df. For a subset X
of J, we also set corank (X):=min{corank (z), zE X}, and we define a subset X (m) of ] to
be H*(in(X)) (={Hip(2) €]k | 2€ X, HEH fyms1)).

Lemma 2.1.
(1) The map i} is transverse to every H*-orbit in Jk. ;
(2) Let X be a semialgebraic smooth submanifold of | invariant under the K*-action, then

X(m) in a X*-invariant semialgebraic submanifold of ] such that codim X (m) =codim X and
corank X (m) =corank X. '

() Let Y be a subset of Jk invariant under the K *-action. Then, (i%) 'Y= 0 if and only if
corank (Y) is greater than min(n, n+1).

(4) Let Y be a semialgebraic subset of Jk. If corank (Y) is greater than min(n, n+1), then
codim Y= (n+1) (n+14+1). '

Proof.
(1): As usual, let 8(f) denote the &,-module of C* vector field-germs along map-germs f: R”,
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0— R™' 0. Let z=j*fin Ji£. The tangent spaces at z of the jet space J£ and the K *-orbit
of z are written as

T, Jw=my 6(f) /mit* 6(f),
T, #* z={tf(mp 0 (idp) +f* () 0()}/mi 6(f)

where tf: 0(id,) — 6(f) is defined by the differential of f ¢ (v):=Tfv (see e.g. [3], [8]).

Now assume that f is written as g X id,—, for some g: R*, 0 — R"*, 0. Set w=j* gEJ}.
We can naturally identify 6(f) with the direct sum 6(g°p,) ® 0(p;) where p; and p, denote

the projections from R”=R" X R™™™" to the first and second fuctors respectively. It is easy to
see that the subspace

(1) s T Jf=mp 0 (gop) / {p5 (p-n) +mi*'} 0 (gopy).

Furthermore, p5 (my_,) 0 (gep) Cf* (mp+) 6(f) and m,, 6(p,) Ctf(my 6(idyn)). It hence fol-
lows that T, Ja= (ip) s« Tu Ji+ T, A" 2

(2): Let 7 denote the map H% m+i X J¥ — Jk defined by ¢(H, z) =H-i%(z), and then X (m) is
the image of 7. Since 7 is an algebraic map, X (m) is semialgebraic by using Tarski-
Seidenberg Theorem. It follows from (1) that the map 7 is submersive, hence X(m) is a
smooth submanifold with the same codim and corank as X.

(3) and (4): Let X! be the set of /% consisting of jets of kernel rank n+1. Note that
corank 2"*'>min (s, n+1) and codim 2"*'= (n+1) (n+1+1), and if Y is A *invariant, then

(i)'Y=0 © YCI"™! These yield (3) and (4). O

2.2 Let 7 be a H*-classification of J,¥ and let m=n. We will construct a A *-classification

of /% induced from 7 via i as follows. Set A:={z€J} | corank (z) <min(n, n+1)}. Then J

=AU X" (disjoint). From (2), (3) in Lemma 2.1, it follows that /X has a #*-invariant

semialgebraic partition consisting of X"*' and all X(m) for X€y. Using Lemma 1.3, we

obtain a A*-classification (i};)« 7 subordinate the semialgebraic partition. Note that in this

process, we need only to decompose the subset X"*! by set theoretical operations, since all
X(m) form a A*-classification of the set A. Since the codimension of X is the same as of

X(m), we can define a cochain map C*(y) — C*((i%) 1) by X = X(m). When we take
the inductive limit of such cochain maps over all X *-classifications 7 of /¥, we obtain a cochain
map (in)s: C(Hhns) = C(Hbmsr).

2.3 Let 7,* be a A*-classification of J¥, and =}: J; — J¥ (k<r) the natural projection.



Vassiliev Complex for Contact Classes of Real Smooth Map-Germs 7

Then, J,/ has a #’-classification which consists of all (z}) ™' X where X€7#, which is denoted
by (i) * rX. A cochain map C(y¥) — C((xw))* r¥) is defined by X = (x}) ' X, and hence
we obtain (7))*: C(HE,r) — C(HLn+0).

Lemma 2.4. (7))* commutes with (i) .
This can be easily verified from the constructions in 2.2 and 2.3.

Definition 2.5. For an intger /, a cochain complex C(# (1)) is defined by the inductive

limit of C (4% ,.,) tending n, k — oo, which is called the universal Vassiliev complex for contact
classes with difference dimension .

Proposition 2.6. For an arbitrary integer t>0, there are two integers k=k(t), n=n(t) such
that the natural homomorphism HS(C(HE,.)) — HS(C(H (1)) is isomorphic for 0<s<¢t

Proof. The proof is divided by two steps. We first claim that

(i) For any integers ¢ and k, there exists an integer »# such that for VYm>n, Vs<{,

(i) e: CS(Hfnr) = CS(Hkm+r) is a cochain isomorphism.

We take an integer » satisfying (n+1) (n+[+1) >¢ and in what follows we write i, by ¢
simply. Now let 7 be a X *-classification of J£. Since ¢ is transverse to each element of 7, the

pull buck of y via ¢ becomes a #*-classification of /¥, which we will write by i*7. If Xis a
strata of 7 with codim=s less than ¢, then by using Lemma 2.1 corank X<min (%, n+1), and

X"'=i'X# @. Then X' (m) coincides with X off the semialgebraic proper subset XN X"+,
Thus we have CS(i*y)=C®(ixi*y)=C*(y) for s<t. Throughout formal arguments, we
have ().

Next we claim that
(i) For any integers t and #, there exists an integer k such that for V7>k, Vs<t
(7R e: CS(HEps) = CS(HE 44 is a cochain isomorphism.

Set W, to be the set of all k-jets j* f€ J,¥ such that fis not k-#-determined. Namely, for any
rjet z (r>k) such that 7(z) is not in W, (here 7 denotes x}), it holds that ™! 7 (z) CAH* 2.
It is known (e.g. [3]) that W, is a semialgebraic set and codim W,* tends to © where k — .
Thus, for given t we take an interger k to satisfy codim W,* greater than £ Let 7 be a A’-
classification of J; which refines the partition consisting of two elements 7~! W,f and J; —n!
W,k. Then for each strata X of y with codimension less than ¢ it holds that 7~! #X=X, hence

X becomes smooth and A *-invariant. Let 7" be a A *-classification of /¥ subordinate to the
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semialgebraic partition consisting of all zX and W} (Lemma 1.3), then it holds that CS(y") =
Cs(x* y)=C*(y) for s<t Taking the inductive limits, (i) follows. This completes the
proof. O

3. Thom polynomials

In this section, we shall describe relations between the abstract Vassiliev complex
constructed in the previous sections and Thom polynomials of contact singularities.

3.1 For any cocyle c€CS(H (1)), ie, 0x c=0, we take intergers » and k which satisfy

Proposition 2.6, and then there is some #*-classification 7 of J*(n, n+1[) and {X;} €y whose
linear combination represents c. Set X to be the union of X;. Given smooth manifolds N
and P of dimension # and n+! respectively, we have the subbundle 2. (N, P) of J*(N, P)

with fibre 2.. Since Jdx ¢c=0, we can see that 2. (N, P) is a Whithey stratified cycle in J* (N,
P) as well X, in J*(n, n+I), see Remark L6.

Lemma 3.2 [6], [5]. If the extension j* f is transverse to 2. (N, P), then X.(f) also becomes

a Whitney stratified cycle in N and Dual [2.(f)]1= (j*f)* Dual [X.(N,P)I€H*(N; Z,)
(here Dual means the Poincaré dual).

These classes constitute homotopy invariants of f Furthermore these classes are
universally represented by standard topological invariants of N, P and f, which we will explain
bellow.

3.3 Let Gun+q be the Grassmanian of n-dimensional subspaces in R"*% The Lie group L*
(n) of invertible k-jets in J*(n, n) is isomorphic to the product of O(x) and some affine
spaces, hence by the action of L*(#n) on J*(n, n+1) from right, we define the associated
bundle p: H, — Gnn+q with fibre J*(n, n+1). Note that p is a homotopy equivalence, because
the fibre is contractible. In the same way as 3.1, each cocycle ¢ of C*(#%,+,) determines a
Whitney stratified cycle 2. (H,) in H,, and it defines a cohomology class of G+, via px and
the Poincaré dual. We write the cohomology class by P,(¢). Assume that m, » and s are as
in Proposition 2.6, and consider a natural inclusion ¢: Gun+q — Gmm+q. Then it is easily seen
that P,(c)=(¢)* P, (c) (by using a similar argument as in Lemma 3.2). Consequently,
taking n, k, ¢g— oo, we have a graded group homomorphism of degree 0

P: H*(C(A (D)) — H*(Bo; Z,).

Here Bo is the inductive limit of Bo(#n), and we note that for any s>0, H*(Bo; Z,) is
generated by homogeneous polynomials of wy, **+, ws (cf. [9]).
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Definition 3.4 cf. [15], [12]. For [¢c]1€HS(C(A (l))), we will call the image P. of the
above homomorphism the Thom polynomial for singularity type c. (In particular, for each
coboundary ¢ C(K (I)), we say the Thom polynomial for ¢ is zero.)

More generally, let #* be the reduced graded group of the direct sum of H*(C (X (1))
over all / by identifying all generators 1€ H°(C (4 (1))) with the same element. Then we
extend P as a homomorphism #* — H*(Bo; Z,).

Theorem 3.5 ef. [6], [15]. (The universal Thom polynomial theorem)
Let [¢c1€HS(C(K(1))). For any n and k satisfving Proposition 2.6, and for any smooth map

f: N"— P! satisfying the transversality as just described in 3.1, the Poincaré dual to [2.(f)]

is expressed by the polynomial P. replaced generators w; by the Stiefel-Whitney classes of the
difference bundle TN—f* TP:

Dual [2.()1=P.(w;(TN—f* TP)) EH*(N; Z,).

Proof. First, by using Whitney’s immersion theorem (e.g. see [4]), we choose a immer-

sion P"! — R™* for some large m. Let us consider the orthonormal bundle v of the
immersion and its pull buck bundle f* v via £ The total space of f* v is denoted by M, and
we let 1y: N — M be the natural inclusion to the zero section. Then M becomes a smooth m-

manifold and there is a smooth map F from M to R™*' given by the composition of f and the
exponential map associated to the normal vectors. Then for each point xE€ N, the germs of F
at i(x) is written as suspension of the germ of f at x (here the fibre v, is the suspension

parameter space), hence X, (f) is the transeverse intersection NN 2. (F). In particular, we

may assume that over M, j* F is transverse to the Whitney stratified cycle X. (M, R™*)
(otherwise, we take a sufficiently small neighbourhood of iy (N) instead of M). Consider the
classifying map of the m-bundle TM into G,.+, for sufficiently large ¢ and the following
diagram:

]k (M, R") — H,
#F 1 »

M Gm,m+q .

Hence it follows that

Dual [2.(F)]= (j*F)* Dual [X.(M, R™")]
=(j*F)*i* Dual [2.(Hy)]=p* P.(w;) =P, (w;(TM)).



10 Toru OHMOTO

Since iy TM=TN®f* v and v® TP=TR"*, we have
Dual [X.(f)]1=i%¥ Dual [2,(F)]
=P, (ix wi(TM)) =P (w; (TN®f* v)) =P, (w; (TN—f* TP)).

This completes the proof. O

Remark 3.6. We shall consider #* as the set of all “definable” Thom polynomials for
contact singularities. The author expects that #* would admit some hidden algebraic
stractures, as V. I. Arnol'd mentioned in [1], §5.2. Also see [10].

4. Caleculation of C (4 (0))

In this section, we consider the case of /=0 (this is the equidimensional case), and we
give the intial part of H*(C (4 (0))) without the detail
From Mather [8], we have the following proposition.

Proposition 4.1. Let k be sufficient large (k=9) and n=2. Then there exists K*-invariant-
semialgebraic subset AL of J*(n, n) which satisfies the following properties:
1) codim Af=9

2) J*(n, n) — Ak contains finitely many K*-orbits with the associated algebras Q,~8,,/I+m**!
listed in Table 1 below.

Table 1
H-class Ideal 1 Restriction TB-symbol codim
A, L, 0<¢<8 31 p
Ins {x®+y°, 2y 2<a<b, a+b<8 520 2+b
1, =y, x> a<b, a+b<8; a b: even a+tb
v (g, 2% _ )
I; <.Z‘2, y3> —_ X2 7
Iy (2 +yd, xy® — 3

Thus we have a partition n of J¥(2, 2) where elements are 45 and A *-orbits in J*(2, 2)

listed above. Let 7¥ be the #*-classification obtained from n by Lemma 1.3. From Lemma

26 we see

C(rH)=Cs(HE,) =C(H(0)) for s<8,n=2.

In the following theorem, we determine the value of the differential 6 on generators of

Cs(H(0)) (s<8).
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Theorem 4.2. The differential operator of (CS(H (0)), 8) for s<8 are described by the
following formulae:

1) 0A;=0 (0<s<38), 2) 0L,,=01L,=1,3,

3) 01,3=0, 4) 0L,=0I1l4=15+ 1,
5) 0l;3=0IVs=1,, 6) 0L,s=01,=0,

7) 5I7=0.

This result is obtained from direct computations of [ X; Y] using normal forms culculus
(see Ohmoto [11] and Lander [7]).

Corollary 4.3. Cohomology groups H*(C (K (0)); Z;) (s<7) are given in Table 2 bellow.
In particular, coboundaries of CS(H (0)) for s<8 are L3 (s=5), Ls+ L, (s=7) and I,
(s=7).

Table 2
\dim 1 2 3 4 5 6 7
H*(C(#(0)) Z, Z, Z, (Z,)? Z, (Z,)® (Z,)*
generators A A A Ay As A A,
Ly+1L, La+11L, Ls (=L
I;+1V;
coboundaries Is Ls+1s
I;

44 If c€C(K (1)) is a cobundary, then the Thom polynomial Py, is always trivial
Hence it follows immediately from the Table 2 in Corollary (4.3) that

Proposition 4.5. In the case of n=p,
(1) the Thom polynomials of type I,s and I, are trivial.
(2) the Thom polynomial of type I,s coincides with one of type Is,.

Remark 4.6. For generators of H'(C (4 (0))) listed in Table 2, we have not well known
concrete froms of corresponding Thom polynomials in the case of dimension i=6. Known
results are only as follows.

P(A) =w,, P(A;)=wi+w, P(As)=wi+iw,w, (Porteous [12]),
P(Ay) =wi+iw, w; (Gaffney, see [2]),

P(As) =wi+wfw; (Ohmoto [10] and Turnbull [16]),

P (I, +11,,) =wi+w, ws ([12]),

P(Ly+ I+ Lyt IVs) = (i w,) (05+ i, iw,) +wi+iw, ws ([13]).
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For Thom polynomials for Boardman singularities X'/ and X'/, the readers are refered to

(121, [14].
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