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Abstract

In the present paper we discuss the condition that an (a, 6, /)-manifold be a

Berwald space and give an example of a nearly Kaehlerian Finsler manifold.
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1Introduction

Illourpreviouspaper[8]wediscussed(a,6,/)-manifoldsandgaveanexampleofa

KaehlerianFinslermanifold(cf.Ichijyo[3,4,5】.Let(M,α)beaRiemannianmanifold

ofevendimensionm-2n(n≧2).WedenoteapointofMandatangentvectoratthe

pointbyx-(xl)andy-(yl)respectively.Givenanon-zerocovariantvectorfield&,�"(#)

andanalmostHermitianstructure/*�"(#)on(A/,α):

(1.1)pfr.-∂1nfcS
j->Q>rsJiJj-:ftiji

wlα(x,y)-(aij(x)yiyi)1/weput

(1.2bij-bibj+fifj.

lvhere

1.3
/.�"- <>r.r.

Since rank(6^) - 2, we have a singular Riemannian metric β(x, y) - {biAxW)1/2

on M. Thus, putting L-α+β we have a generalized Randers space (M, L) which was

named an (a, 6, /)-manifold by Ichijyo 【31 (cf. Ichijyo-Hashiguchi [71).
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With respect to the Levi-Civita connection F - {{jlk}) of the Riemannia･n manifold

(M, α) we denote the covariant differentiation by ∇k. We have shown

Theorem 1.1 ([81 Theorem 2.1) An (a, 6, f)-manifold (M, α+β) is a Berwald

space if and only if ∇kbu - 0.

It is noted that in an (a, &, /)-manifold satisfying Vfc6?:j- - 0 the linear Finsler con-

nection BF- ({/*.}, j/r{r!J, 0) is just the Berwald connection.
If an (a, b, n-manifold is normal:

1.4　　　　　　　　　　　∇kbi-0, ∇kPj-0,

we have ∇たfi - 0, and so ∇kbij - 0. Thus we have

Theorem 1.2 ([8], Theorem 3.1) A normal(a, b, f)-manifoldis aBerwald space.

In the second section we sha.ll consider the converse problem and give the condition
●

that an (a, 6, /)-manifold be a Berwald space in terms of the given structures aij,&*? /**

(Theorem 2.1).

Now, corresponding to a Riemannian manifold with an almost Hermitian structure,

we have a Finsler manifold (M, L, /) with an almost complex structure / such that the

metric function L satisfies

(1.5)　　　　　　　　L(x, 亭oy)-L(x, y) (0≦0≦ 2tt),

where ¢e%. - (cos#)81j + (sin^)f*j. This was named a Rizza manifold by Ichijyo [4]. An

(a, 6, /)-manifold gives a typical example of a Rizza manifold.

A Rizza manifold (M, L, /) is called a Kaehlerian Finsler manifold if

1.6)　　　　　　　　　　　　　∇V¥- = o

is satisfied, where V*fc denotes the /i-covariant differentiation with respect to the

Cartan connection CF. This is a Finsler manifold corresponding to a Kaehlerian manifold

in Riemannian geometry (cf. Ic的y6 【4, 51). We have shown

Theorem 1.3 (【8】, Theorem 3.3) A normal (a, 6, f)-manifold is a Kaehlerian

Finsler manifold.

In his recent paper 【91, H. S. Park generalized the notion of Iくaehlerian Finsler mani-

fold and discussed the Finsler manifold called the nearly Kaehlerian Finsler manifold. In

the third section, based on the discussion of the second section, we shall give an example
●

of a nearly Iくaehlerian Finsler manifold (Theorem 3.1).

The present paper continues from the series of our recent papers 【6, 7, 81 and the

terminology and notation are also followed.
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2　Condition that an (a, 6, /)-manifold be Berwald

We shall obtain the condition that an (a, 6, /)-manifold (M, a+(3) be a Berwald

space. We put v - airbr, /�"" - olV/r, and b- {brbrf12. Then we have

(2.1)　　　　　　　　brfr -O, frfri - -bi, frfT -bl

It is noted that at each point the vector fields 6t- and fc are orthogonal and have the same

length.

Now, let us assume that Vjfe&y - 0. Then we have

(2.2)　　　　　　∇kbi)bj +bi(∇kbj) + (∇たfi)fi + fi(∇:/i - 0.

Contracting (2.2) by bJ and bl successively, we have (∇kbr)br - 0, from which we have

(2.3)　　　　　　　　　　n∇た&<) + (∇kfrW.fi - 0.

Putting入k - -(1/b2)(∇たfr)br we have ∇kbi -A,fi.

Then from /t- - brfri we have

(2.4)　　　　　　　　　　∇ ,fi - -Xkbi + 6r(∇蝣Ti)-

Substituting from (2.4) into (2.2) we have

(2.5)　　　　　　　　Mvfc/r,:)/J + Mvfcrj)/i = o.

Contracting (2.5) by ft and /* successively, we have br(¥7kfvi) - 0. Thus from (2.4) we

have ∇,fi -一入たbi.

Conversely, it is directly shown that ∇たbi -入Ji and ∇kfi -一入kbi imply ∇kbii - 0,

Thus we have been lead to the following definition and theorem.
●

Definition 2.1 Two vector fields 6f; and fa given on a Riemannian manifold (M, α)
●

are called cross-recurrent if there exists a vector field A*, satisfying

∇M-A:Ji-> ∇,fi-一入たbi.

Theorem 2.1 An (a, 6, f)-manifold (M, α+β) is a Berwald space if and only if the

vector月elds b{ and /,- are cross-recurrent. Then 6, and fa are orthogonal and have the

same constant length.

It is noted that in an (a, 6, /)-manifold the condition (2.6) is equivalent to

(2.7)　　　　　　　　　∇kk - hfi, K(∇kfi) -0,

and as a special case we have the condition

(2.8)　　　　　　　　　　　Vfcfc,- - 0, Vjfe/j - 0,

or equivalently

●

(2.9) Vkbi -0, br(Vkfr) =0.
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3　Nearly normal (a, 6, /)-metrics

A Rizza manifold (M, L, /) is called a nearly Kaehlerian Finsler manifold if

∇｡/'i+∇if*-0

is satis鮎d. This is a Finsler mani玩)ld corresponding to a Riemannian mani玩)ld called a

nearly Iくaehlerian manifold (an almost TachilDana manifold or a /C-space) (cf. Pa-rk 【9],

Yano-Iくon 【111). By using Theorem 2.1 we shall give an example of a nearly Iくaehlerian

Finsler manifold.

De丘nition 3.1 An (a, 6, /)-manifold (M, α+β) is called nearly m･ormalifthe vector

fields bi and /t- are cross-recurrent and the condition

3.2　　　　　　　　　　　　∇たn+∇ifk-0

issatisfied.

Since a nearly normal (a, 6, /)-manifold (M, a+/?) is a Berwald space, the h-

covariant differentiator! with respect to CT coincides with the one with respect to BF-

{{j¥}, yr{r¥}i 0), an(i the /i-covariant derivative of flAx) with respect to BF becomes

the covariant derivative with respect to r - ({ -*fc}) of the associated Riemannian mani-

fold(M, α), sowe have ∇< ft -- ∇kfly Thus we have

Theorem 3.1 A nearly normal (a, 6, f)-manifold is a nearly Kaehlerian Finsler

manifold.

Now, let (M, α, /) be a nearly Kaehlerian Riemannian manifold. Can we find a

vector field 6,- such that the corresponding (a, 6, /)-manifold (M, a+p) becomes a nearly

Kaehlerian Finsler manifold? This is an interesting open problem. It is noted that a 4-

dimensional nearly Kaehlerian Riemannian manifold is nothing but a Kaehlerian manifold

(cf. Gray 【2】 Takamatsu 【101) and there exists a concrete example of a 6-dimensional non-

Kaehlerian nearly Kaehlerian Riemannian manifold (cf. Fukami-Ishihara
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