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Abstract

In 1954, an important notion of reductive homogeneous spaces was introduced by K. Nomjzu in
[12]. For a differentiable manifold with an affine connection, we shall denote the torsion tensor field
and the curvature tensor field by T and R, and the covariant differentiation by v. As is well known,
Lie groups have the so-called (—)-connection (see E. Cartan and J. A. Schouten [2]), with the
properties that ¥ T=0, and R=0. Similarly, affine symmetric spaces are characterized locally by an
affine connection on them with the properties that T=0, and ¥ R=0 (see, for instance, [11], Theorem
4.9, p. 114). So, to consider such manifolds with an affine connection that v T=0, and Y R=0, is
natural. These manifolds are, precisely, locally reductive spaces in K. Nomizu [12].

Since the discovery of symmetric spaces by E. Cartan in [1], many investigations have been done.
Among them, the work (Dissertation) of 0. Loos in 1966 (see [11]) is epock-making, in the historical
view of geometry; axiomatic, differential geometric, and algebraic. 0. Loos has succeeded to
characterize symmetric spaces by a multiplication on them. Following 0. Loos’s idea, locally reductive
spaces and related spaces have been investigated by M. Kikkawa ([6], [7], [9], [10], and the other papers),
intensively, from the loop theoretic point of view. Our study owes very much to his investigation. A
slight generalization of the notion of differentiable homogeneous systems due to M. Kikkawa [7], is
tried (Definition 1), and can be shown that ¥ T=0, and ¥ R=0 for the canonical connection on these
spaces (Theorem 1). The key lemma (Lemma 3) in the proof of this result is also found by M. Kikkawa
in {10] independently.

The tangent algebra of locally reductive spaces (Lie triple algebra or general Lie triple system)
was constructed by K. Yamaguti in [13]. An important theorem that any Lie triple algebra can be
imbedded canonically into the corresponding Lie algebra has been shown essentially in K. Nomizu [12],
pp. 61—62 (see, also, K. Yamaguti [13], Proposition 2.1, p. 158, and M. Kikkawa [5], Proposition 1, p. 2).
This algebra has been studied by K. Yamaguti {14], and others, especially, recent Lie algebraic
approach by M. Kikkawa (for instance [8]) seems to show the mathematical reality of this algebra. Our
final aim is to find such a (triple) multiplication on manifolds that a simply connected manifold with this

multiplication corresponds, bijectively, to a Lie triple algebra up to isomorphism (cf. [4]).
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§1. Parallelizable spaces

In this paper, we will investigate the following spaces with a triple multiplication.

Definition 1. Let M be a finite dimensional differentiable manifold of class C™, and let 7 : MX M
X M— M be a differentiable triple multiplication of class C™. If 7 satisfies the following conditions
(Py), (Py), (P3), and (P4), then M is called a parallelizable space with an extensive constant k
(abbreviated as p-space or p-space with k).

(P1) 7(x 2 9=y,

P2) 7(x 270 % 2)=¢

(Pa) 7@z 37w v w)=7(7(x 3 w,7@ 5 0,7 % w),

(P4) for each x€ M, in local coordinates,

o 7i
EYY (%,

Y, 2)y=z, =2—kO; where k is a non-zero constant.

Remark 1. The condition (P,) is independent of the choice of local coordinates.
Remark 2. This definition is a slight extension of that of differentiable homogeneous systems
introduced by M. Kikkawa in [7] (see Example 1 below).

First of all, we shall note some notational conventions.

Notational conventions
i) In general we follow the notation and terminology of 0. Loos [11].

All manifolds are finite dimensional differentiable manifolds of class C, and all mappings
between these manifolds are C *-class.

For a manifold M, F (M) denotes the set of all real valued C*-functions on M, T, (M) denotes the
tangent space to Mat e€ M, and T (M) denotes the space of all higher order tangent vectors at e (see
p. 5).

ii) We use Einstein’s summation convention.

iii) A parallelizable space M with triple multiplication 7 and extensive constant k is denoted by
(M,7 k) or (M;7).

iv) For the triple multiplication 7 =7 (x, % 2) on a p-space (M,7,k), x is called the first
variable, y the second, and z the third. As notation of partial derivatives of 7, we always use x for the
first variable, for instance

%r’?ji(a’ b, o), %—x’q&

y for the second variable, and z for the third variable.

(4, v, w), ...,

In these calculations, also, we always use the same local coordinatate system for each M, when it
is possible.
v) We use freely calculations with local coordinates, when these meanings are clear from

contexts.
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The following is basic properties of p-spaces.
PROPOSITION 1. For a p-space (M, 7, k), we have

—’7—(x, % 0)=—ko} (1.1)
3 7; o

3y (%, x, )=kO | (1.2)
E

S mn =0 13)
_ %7 9%

%0 (x, z, y)= 5%,0% (x, x, 9) (1.4)
-;j%mawo (L5)

Definition 2. Let (M, 7 ,k) and (N, 7 ,k) be two p-spaces with the same extensive constant k. A
mapping $: M—N is called a homomorphism of M into N, if

H) (7% 5 2)=7(8(),%0)¢(2)
is satisfied for all «, vy, z€ M.

A homomorphism ¢ is called an isomorphism of M onto N, if ¢ is a diffeomorphism of M onto N.
In the case M=N, an isomorphism of M onto M is called an automorphismof M.

Remark 3. If O ¢;/0 x;(x)+0 for some i, j and for some x € M, then operating Y= 0/ 3 y; for (H),

we have

o $:
ox,

(16 3 DS 5 9= FLEF @O )G 0

therefore, putting y=2=ux, we see that the extensive constants of M and N are equal to each other
(withhout this assumption in the above defintion).

The following examples are a motivation for our definition of p-spaces.

Example 1. Differentiable homogeneous systems.

These spaces are the spaces with a triple multiplication 7, which satisfies the conditions (P,),
(P2), (P3), and

Hy)  7(x, 3 0=y

M. Kikkawa has studied these spaces and related spaces intensivly ([6], [7], [9], [10], and the other
papers).

Example 2. Lie groups.

Let M be a Lie group. If the triple multiplication 7 is defined on M by

7% y2=y x 'z (1.6)

then, M becomes a homogeneous system, therefore, a p-space. This p-space will be said to be the
parallelizable space of the Lie group M. This example is a typical example of homogeneous systems.
Example 3. Symmetric spaces.
A symmetric space is a manifold M with a multiplication x: MX M— M, written as u(x, ¥)=20 ¥,
which satisfies the following conditions (see [11], p. 63):



4 Bull. Fac. Educ., Kagoshima Univ.: Natural Science Vol. 38 (1986)

(S1) xO=x=g, (S2) 20(x0 )=y,

(S3) 20(yO2)=(x0» O (20 2),

(S4) every x has a neighborhood U such that xO y=y, y€ U imply y=x.

Let M be a symmetric space. If the triple multiplication 7 on M is defined by

7(x, 3, 2=20(y02), (1.7)

then, M becomes a p-space with —2, which will be said to be the parallelizable space of the symmetric
space M.

PROOF. The conditions (P;), (P3), and (P3) are easily checked. From Lemma 2 below, we see that
the mapping y—=>x O y has the Jacobian matrix (— ¢ /) at #, and the mapping y—=yO x has the Jacobian
matrix (2 8}) at x. Therefore, the mapping y— 7 (x, y, £)=xO (yO x) has the Jacobian matrix (—2 6})
at x.

Remark 4. In a normal coordinate system at x, we have 7; (x, y, )= — 24y, our assertion follows,
also, from this.

Definition 3. Let (M,7) be a p-space.

1) The mapping 7 (x, y): M—M defined by 7 (x, y)2=7(x, y, 2), is called displacement (of
direction from xz to y).

ii) The mapping H: M—M defined by H,y= 7 (x, y, x), is called homothety (with center ).

iii) The mapping S;; M—M defined by S,y= 17 (x, ¥, »), is called similarity (with center x).

Conditions (P3) and (P3) mean that any displacement 7 (x, ) is an automorphism of M. And, if M is
the p-space of a symmetric space S, the similarity S, is the symmetry around x on S ([11], p. 64).

The following interesting characterization of Lie groups dues to M. Kikkawa ([7], Prop. 2, p. 20):

PROPOSITION 2. Let (M,7) be a p-space. M is that of a Lie group, if and only if the following
conditions are salisfied.

i) H,=id (identity mapping), for all xe M

i) 705 27 »=7( 2), for all x,y,z€ M.

PROPOSITION 3. Let (M, ) be a p-space. M is that of a symmetric space, if and only if the following
conditions are satisfied.

i) S2=id (identity mapping), for all xe M

i) 7(x )7y, 2=7(x, 2), for all x,y2¢€ M.

LEMMA 1. For a p-space (M, ), the conditions i) and ii) in the above Proposition 3 are equivalent
lo

i) 7(x, =8, S, for all x,ye M.

PROOF. From 11), 7 (x, )7 (3 2)z= 7 (%, 2)2, i.e. 7 (x, »)S,=S,, so 7 (x, y)Szy= S. S,. Therefore,
from i) 7(x »=S,S,

Conversely, fromiii) id= 7 (x, ¥)=S,S,, and 7(x, 37 (5 2=8,5,5,5,=85:S;= 7 (, 2).

PROOF OF PROPOSITION 3. It is easily seen that a symmetric space satisfies the condition 1i1),
from (1.7).

Now, we assume that a p-space (M, 7 ) satisfies the conditions i), ii), and iii) above. Then M

becomes a symmetric space with respect to the natural multiplication xO y=S,y.
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The conditions (S;) and (S,) are obviously satisfied.
As to the condition (S3), we have
xO(yO 2)=5,; S5,2= 7 (%, y)z,

on the other hand, we have

(20O (x02)
=7(7(x 5% 7% 2 2,7(x 2 2)
=7(x D770 07 2 2,7 2)7(x, 2 2)
=7(x D737 2 2,71 2 2)
=7(x 3)S,Sy2
=7 (x,9)z,

therefore, they are equal to each other.
Finally, the following calculation shows that the local condition (S,) is satisfied. From ii1),we have
7(x 3 =77 2 2,70, 2 2),

therefore

o i o 7i
A e Tl CL IR TR -l U

+ 22: (x’V(y’ z, Z),?(y, 2, Z)) O x; (ys 2, 2),

evaluating at y=z=uz, and using (1.1), (1.2), and (1.3),
k8}=—-k2c3‘j"—k6f,
so, k=—2. Now, the mapping y¥>2O y= 9 (x, % y) has the elements of the Jacobian matrix at x,

o Lo
ayj azj

This means that the mapping y—x O y has, locally, no fixed points except y=x, by virtue of the mean

(x, x, x) (x, x, x)=— é‘J’

value theorem.

§2. The canonical connection

Let M be an m-dimensional manifold. A tangent vector X of order k at e€ M has, in local
coordinates (x1,...,%,), an expression of the following form (including the term for r = 0)

X:Zk 2 /iiI ...... ir (af/axil ...... axiy)e_

2 s s
These are called higher order tangent vectors at e, including that of order 1 and 0. And, the space
of all higher order tangent vectors at e is denoted by T3 (M).
Now, let N be also an n-dimensional manifold, and let ¢ : M— N be a mapping of M into N. For a
tangent vector X of order k at e € M, the corresponding higher order tangent vector T*¢ (X)at ¢ (¢) €
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N is induced by

T 8 (X)f=X(fo $) for fe€ F(N). 2.1)

In the sequel, we will simply write T¢ or ¢ instead of T*#, when there is no danger of
ambiguity.

If ¢ is expressed, in local coordinates, by
¥i= B (%1500 Xp) i=1,..,n (2.2)

then, for example, for X=(0/9 x;)e

) 2 $a

PO f=( S De=gy (@ F@,  for feFW)
so
Y
$((0/2x)e)= 31, (e) (2792 ¥s) o) (2.3)

The above idea is very useful, and in the case where a multiplication (%, yy==x - yis defined on M
and e * e=efor some e€ M, is also worked. Namely, for any higher order tangent vectors X and Yat e,
we can define their product (X, Y)=X+ Y by

X- V=X Yf(x-y), for fe F(M) (2.4)

here, the tensor product X® Y means that Xis operated for x, and Y for y(see [11], p. 48). This product
X Y is also a higher order tangent vector at e.

PROPOSITION 4. The above product (2.4) has the following properties.

1) if e* x=x then e+ X=X,

i) if x+ e=x then X* e=X,

i) if(xsy) 2=z (y*2) then(X* Y)* Z=X+ (Y Z), moreover, if f(x, y, z,...)=g&(x, ¥, 2,...)
then f(X, Y, Z..)=gX, Y, Z..), where f and g are some relations of x, y, z,...,

iv) if left inverese x~ 1= ¢ (2) of x with respect to e exists in the sense that $ (x) * x=e and ¢ (¢)=
e, and X+ e=kX, e* X=rX for X€ T(M) (k aod r are constants, k+0),then ¢ (X)=—1r/k X for
Xe T(M).

In these statements 1), ii), ii1), and iv), x, ¥, 2,... denote any poinis in a neighborhood of e, and X, Y,
Z,... denote any higher order tangent vectors at e, except X iniv).

PROOF. 1), 11), and 111) are obvious from definition.

As toiv), from x (¢ (x), x)=e we have

G Hi 2] ¢a o M _
ox, (x, e)x= He) axj (e)+ ay] (¢(e),y)y=e 0,

i.e.

a,ui a¢a a#l
EYS (e, € 2%, (et 2y,

(e, €=0.

So
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o ¢i i
ka—xj(e)-f‘ rd =0,

which shows the property iv).

Example 4. For a Lie group M with unit element e, from i), i1), and iv) of the above Proposition
4, we see ¢ (X)=—2X, for Xe€ T(M).

Example5. Let Mbe a Lie group with unit element e, and let X, Y be left invariant vector fields on
M. The tangent vectors X=X (e), and Y= Y (e) at e are related to X and Y in the relations X (x)=zx * X,
and Y(x)=x *+ Y. The composition [X, Y], in the Lie algebra of M, is defined by [X, YI=[X, Y](e),
therefore for fe F{M),

(X, YIf=XY-YX)/=X®Y fx* »—Y®X f(y- ),
i.e.
X, Y|I=X-Y-Y- X (2.5)

From the above Proposition 4 iii1), the Jacobi identity of the Lie algebra of M is reduced to the
associative law of M (see [11], p. 50).

For a triple multiplication on M, moreover an n-ple multiplication on M, similar products are
defined. They have many useful propertbies. For instance, for a p-space (M,7,k) we have,

corresponding to (1.1), (1.2), and (1.3) respectively

7(X, e, =—kX (2.6)
7(e, X, 9= kX @2.7)
7(e, e X)=X (2.8)

for all Xe T (M).
Another property is the following.
PROPOSITION 5. Let M be a manifold with an n-ple multiplication ¢ (%1,...,x,). If a triple

multiplication 9 (x, y, 2) on M is introduced from ¢ , by substituting x or y or z for each of these variables

X1,...,%,, concrelely (as n=6)
$(x, 3 9=¢( % 2 2 x ),
and this ¢ satisfies $ (e, e, ey=e for some e€ M, then we have

$(X, Y, Z)=¢(Y, X, e, Z, ¢, 9+ 9(Y, e, X, Z, ¢, 9+ ¢ (Y, ¢ ¢ Z, X, e

tdeX eZeY)td(eeX ZeY)+d(eeeZXY) (2.9)

for all X, Ye T{M) and Z€ T (M).
PROOF. For X=0/04%;, Y=0/0x;, and f€ F(M),
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$(X, Y, 2) [FXRY®Z f($(x v 2)

=Y®Z[——a%(¢(e, % 2) {%—f:(y, X, € 2 € Y=

+ aafla (y7 e x, z, 6 y)x=e+~@a__f_:—l_(y9 6 6 2, X% y)xze}]

=9¢Y, X e Z e V)f+¢(Y, e X, Z ¢ Y)f+¢(Y, ¢ ¢, Z, X, Y)f.
And similarly we have
Y, X e Z e Y)=¢(Y,X e Z ¢ e+ %, X, ¢ Z ¢ Y), ...

Remark 5. For any m-ple multiplication $ on M, introduced from ¢ similarly, we have the same
property.
COROLLARY. Let (M,7) be a p-space. Then

17X eY)=—7(e X Y) (2.10)

for all X€ T,(M) and Ye T (M).
PROOF. If ¢ is defined by ¢ (z, )= 7 (%, %, j), then

$(X, V)=7(X, e V)t 7(e X, Y).

On the other hand, ¢ (x, y)=y therefore ¢ (X, Y)=0.
Here, we shall mention some basic properties of differential geometry (see [11], p. 19).
In general, for an m-dimensional manifold M, an affine connection I' on M and a covariant

differentiation ¥ on M are related by the relation
VxY=XY+T(X, Y) (2.11)

where, X and Y are any vector fields on M.

In local coordinates (xi,...,%,), an affine connection I' on M is expressed by
l"(a/axi,a/axj)=—82/8xiaxj+l“fj(x)a/axk (2.12)

here, F{?j are the Christoffel symbols.
From (2.11) and (2.12), we also have

Vo5, 0/0%=T%(x) 8/0x (2.13)

Now, let (M, 7 ,k) be a p-space. For any fixed point e € M, we define the following multplication on
M

e(x, Y=171(e x, ) for all x, ye M, (2.14)

which has very important role in our investigation.
Definition 4. The multiplication (2.14) on a p-space (M, 7 ,k) is called the canonical multiplication
with base point e. This is usually denoted by x - y, i.e.
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x* y=e(x )= 7 (e x,3), : (2.14)

without the base point e, when there is no danger of confusion.

Remark 6. If a p-space M is that of a Lie group G, then the canonical multiplication e(x, y) gives a
Lie group structure on M, which is isomorphic to G by the left translation L,: G— G. Especially, if eis
unit element of G, then e(x, y)==x* y is identical to the multiplication as Lie group.

Definition 5. Let (M, 7 ,k) be a p-space. An affine connection I' on M can be defined by
1 1
T(X, Y) (=~ X(e) * Y(e)=—77 (e, X(¢), Y(e)) (2.15)

where X and Yare any vecter fields on M. This connection is called the canonical connection on M.

In local coordinates (#,...,x,) at e, this canonical connection I" has the following expression.

For X=0/02x; and Y=0/0 x;, we have for all fe F(M)

(X(e) - Y(e)) f=X(e) @ Y(e) f(7(e = )

=X (2= 5 95 5 9

% 3 74
= omon 9 ay

so, from (1.2), (1.3), and (2.15)

(e ¢ (e, e e),

3 7k of a%n
e 52 (e, ¢, Ot EY (e) EYEY

1 2
(0/8%,0/3%)=— 9% dmdx—r —— 1 (s, x 2)0/3 x.

k a yla Zj
Comparing this with (2.12), we see that the Christoffel symbols F{Fj of this connection are given by
1 a2
k()= —— 2 Tk
P ) (x) . k a yla zj (xy X, x) (216)

For Example 1, this connection is the canonical connection for differentiable homogeneous
systems (see [9], formula (4.3), p. 49).

For Example 2, this connection is the (—)-connection introduced by E. Cartan and J.A. Schouten
[2]. Let M be a Lie group with unit element e. For any left invariant vector fields X and ¥ on M, from

the relation (2.11), we have
ViY(e=XY+T (X, V)=XY—-X- Y=0,

where X=X (e) and Y= Y(e) (see Example 5 and Remark 6). Therefore, our connection is the
(—)-connection (see, for instance, [3], Prop. 1.4, p. 102 and p. 104).

For Example 3, this connection is the canonical connection for symmetric spaces.

LEMMA 2. Let M be a symmetric space. For any e€ M, and for all X€ T,(M),

1) eOX=—X%, i) XOe=2X. (2.17)

For a proof, see 0. Loos [11], p. 76.

Now, for any symmetric space M, from Example 3, (2.15), (S3), Proposition 4 ii1), and the above
Lemma 2,
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X Y=2T(X, Y)=eO(XOY)=(eOX)O(eOY)=(—X)O(—Y)=XOY,

for e€ M, and X, Y€ T,(M). Therefore, this connection is the canonical connection on the symmetric
space M, as is seen from the definition in 0. Loos [11], p. 83.

Example 6. Let M be a Lie group with unit element e, then the multiplication xO y=z*y '*x on
M gives the structure of a symmetric space on M (see [11], p. 65). The canonical connection on this M is
the (0)-connection introduced by E. Cartan and J. A. Schouten (2]

For any left invariant vector fields X and Y on M, from (2.11), Propositions 4 and 5, and Example
4,

- - 1 1
ViY(e=XY+T (X, Y)=X- Y+7(—X- Y-Y- X)=7[X, Y],

where X=X(e) and Y= Y(e). This shows the above assertion (see, also, [3], Prop. 1.4, p. 102, and p.
104).

The following key lemma is essentially the same to Lemma in M. Kikkawa [10].

LEMMA 3. Let (M, 1) be a p-space with canonical connection. If a tensor field S of type (r, s) on M
satisfies the following relation (2.18) for all points x € M, in local coordinates (x1,...,x,,) at x, where for

each x, y runs a neighborhood of x; then, the covariant differentiation of S is zero, i.e. 7 S=0.

2 peesas (7(’6’%")) 8 z, (x,y,x) """ szL(x,y,x)
gl iy O 97
Sjl ...... ]s (x) a l] (x?y’x) azir’ (x;y)x)- (2.18)

PROOF. Operate Y= 0/9 x; on both sides of (2.18) for variable y, and put y=x From the

following formula for covariant differentiation

veeene : e : S Joeenes 1 )
va/0m ST = =2 & ey + £ 8T e iy
]1 ...... JS a xk ]1 ...... ]s a=1 ]1 ------ ]S
—3 T @), (2.19)
b=1 J] ...... mee " ]s

this lemma follows immediately, if we consider the relations (1.2), (1.3) and (2.16).
Two fundamental tensor fields on a manifold M with an affine connection are the torsion tensor
field T and the curvature tensor field R. They are defined by

TX, Y)=vxY=VyX—[X, YI=T(X, Y)-T (Y, X), (2.20)

R(X,Y) Z=VvaZ_VyVXZ_V[X, lea (2.21)

where X, Y, and Z are any vector fields on M.
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Our main aim in this paper is to prove the following theorem, by virtue of the above Lemma 3.
THEOREM 1. Let M be a p-space with canonical connection. Then, the covariant differentiations of
the torsion tensor field T and the curvature tensor field R on M are zero, i.e. 7 T=0, V R=0. (M is locally

a so-called reductive homogeneous space in K. Nomizu [12].)
§3. A proof of Theorem 1

The heart of our proof is the Lemma 4 below, which has many important applications.

PROPOSITION 6 (see [11], Theorem 2.6 1) a), p. 84). Let (M, 7 ,k) and (N, 7 ,k) be two p-spaces with
the same k, and $ : M—N a homomorphism of M into N. Then ¢ is an affine map of M into N, for their
canonical connections.

PROOF. For any vector fields X and Y on M, we must show that
$(X(e): Y(e)=9¢(X(e)* ¢(Y(e) forallee M (3.1

(see [11], definition of affine map, p. 20). But, from our definition (2.15), this is a special case of the
Lemma 4 below.

COROLLARY (see [10], §3 Remark 2). Let (M, 7 ) be a p-space with canonical connection. Then any
displacement 7 (e, w): M—M is an affine transformation of M.

LEMMA 4 (see [11], p. 49). The homomorphism $ of Proposition 6 has the following commutativity.

$(n(X, Y, Z)=7(#(X),$(Y),$(2Z) forall X, Y, Ze T (M) 3.2)
PROOF. For fe F(N),

$(7(X, Y, Z)f=XQYRZ(fo$ o7(x, 3 2)
=XQ YR Z(fon($(2),% ()9 (2)
=3 (X)®(Y)®¢(Z) (fon(x, ¥y, 2)
=7(8(X),8(Y),8(2)}

in the above, x’, y’ 2" denote variables on N around ¢ (e).
Now, let (M, 7)) be a p-space. Then, 7 (x, x, x)=x for all x € M, therefore, for higher order vector
fields X, Y, and Z on M, we can define their product 7 (X, Y, Z) by

7(X, Y, Z) (2)= 1 (X (), Y (x),Z (x)), (x€ M) 3.3)

which is also a higher order vector field on M.

Especially, X - Y means
(X-Y)(@0=X@x)* Yo)=7(x X(x), Y(), | (x€ M) (3.4)

LEMMA 5. (see [11], p. 83). Let (M, 7 ) be a p-space. For any higher order vector fields X, Y, Z, and
any vector field W on M, we have

Wn (X, Y, Z)=n (WX, Y, Z)+ 7(X, WY, Z)+ 7 (X, ¥, W2). (3.5)
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PROOF. For any fe€ F(M),

(W (X, Y, Z) /)w)=W(Xw)® Y(w)® Z(w) f(7 (x, 3, 2)))
=(WX)(w)® Y(w)® Z(w) f(7 (x, y, 2))
+ X (w)® (WY )w) ® Z(w) f(7 (=, 3, 2))
+ X (w)® Y(w) ® (WZ)(w) f(7(x,52)
=7 (WX, Y, Z)+ (X, WY, Z)+ 7 (X, Y, WZ))f)(w).

By a similar calculation in [11], p. 84, we obtaih

PROPOSITION 7. Let (M, 9 ,k) be a p-space. For the canonical connection on M, the torsion tensor
field T and the curvature tensor field R can be expressed by

T(X, Y)=—%(X° Y-Y- X), (3.6)

1 1
RX YV)Z=77 (X (Y- Z2)-Y - (X- Z)—F (1 (X, Y, 2)— 7(Y, X, Z)), 3.7

where X, Y, and Z are any vector fields on M.
PROOF. (3.6) is obvious from the definition (2.20).

As to R, we first remark that, as a special case of (3.5),
X Y, Z)=9(X, Y, Z2)+9(x, XY, Z)+9(x, Y, XZ), (x€ M)
ie.
X(Y-Z2)=79X Y, 2)+(XY): Z+ Y- (XZ). (3.8)
From (2.21), (2.11), and the above (3.8),

R(X, Y)ZZVXVyZ_VyVXZ—V[X‘YIZ

1 1 1
=X(YZ__I: Y- Z)—_k X'(YZ——k Y-Z)
-Y(X 1 X'Z-i-—1 Y- XZ——IX-Z
(XZ—5 X+ Z)+ Y+ (X2~ X+ Z)

1
—(XY—- YX)Z+T(XY— YX)- Z

1 1 1 1
= X (Y 2)—5 Y (X 2)—p (X, ¥, Z)+, (Y, X Z).
Combining this Proposition 7 and LLemma 4, we gain a proof of the following
PROPOSITION 8. Let (M, 7 ,k) and (N, 7 ,k) be two p-spaces with the same k, and let $: M—N be a
homomorphism of M into N. Then, the torsion tensor fields T and the curvature tensor fields R on M and N

(here the same symbols are used) for their canonical connections, saiisfy the following relations.

$(T(X, Y)=T(#(X),#(Y)), 3.9)
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$(R(X, Y)Z)=R($(X), $(Y)) ¢ (Z), (3.10)

for any’vector fields X, Y, and Z on M.
Remark 7. The above Proposition 8 holds, generally, for any manifolds M and N with affine
connection and for any affine map ¢: M—N (see [11], p. 28). See, also, Remark 8 below.

T and R are expressed, in local coordinates (x1,...,x,) on M, by

T(8/81,0/8x)=T(2)3/3 x, (3.11)
R(3/0,0/31%)3/3 x=Rl;(x)0/3 xp, (3.12)

we have similar expressions for T and R on N, in local coordinates (,...,y,) on N.
Using these expressions, (3.9) and (3.10) can be written explicitly, on account of (2.3), in the

following forms.

¢y, 0% o ¢

Th(# (D)5, @ 5, @=Th@ 5, () (3.9
s o0¢,, . 09 98, 2 #s ’
Ripe (3 (@) 5 o 05,7 (05, - =Ry (95~ (@), (3.10)

Therefore, we have finally a proof of Theorem 1.

PROOF. The displacement $ = 7 (e, w): M—M is an automorphism of M, and
d¢i, . O

x)= (e, w, x).

axj ( ) 8zj
Putting x=e, the desired relations (2.18) follow, immediately, from (3.9)" and (3.10)".

Remark 8. For any tensor field S on M, which is expressed by 7, we can show that vV S=0. The

reason is that the heart of our proof is the Lemma 4, as already pointed out.
§4. The tangent algebra

Observing the tangent algebras of locally reductive spaces, K. Yamaguti has introduced in [13] an
algebraic system, called general Lie triple system (afterward Lie triple algebra by M. Kikkawa in [6]),
which has important and leading significance in our investigation.

Definition 6. Let V be a finite dimensional vector space (over a field). A bilinear composition
[X, Y], and a trilinear composition (X, Y, Z) are defined in V, and satisfy the following conditions,
then V is called a Lie triple algebra (or a general Lie triple system).

(Ty) X, X]=0,

(Ty) (X, X, Y)=0,

(Ts) [IX, Y], ZI+[Y, Z], X|+(Z, X, YI+(X, Y, Z)+(Y, Z, X)+(Z X, Y)=0,

(Ty) (X, Y], Z, W)+ (Y, Z], X, W)+(Z, X], Y, W)=0,

(Ts) (X, Y, [Z, WD=[X, Y, Z),W]+[Z, (X, Y, W)],

(Te) (X, YU, V, W))

=X, Y, U), V, \+U (X, Y, V), W)+, V, (X, Y, W)).
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Remark 9. If the trilinear composition in the above definition vanishes identically then this
definition becomes that of Lie algebra, and if the bilinear composition in the above definition vanishes
identically then this definition becomes that of Lie triple system. :

THEOREM 2 (K. Yamaguti [13] also see M.Kikkawa [5]). Let M be a manifold with an affine
connection. If the covariant differentiations of the torsion tensor field T and the curvature tensor field R
on M are zero, i.e. V T=0, and VR=0, then for any point e€ M, the tangent space T,(M) has the

structure of a Lie triple algebra by the following compositions.

(X, YI=—T(X Y), (4.1)

| (X,Y,Z)=—R(X, Y)Z. (4.2)

PROOF. (T3) and (T,) are Bianchi’'s identities, and (Ts) and (Tg) are Ricei’s identities.
PROPOSITION 9. Let (M, 7 ,k) be a p-space with canonical connection. The trilinear composition in
the tangent Lie triple algebra T.,(M) (e€ M), has the following expressions.

X Y, Z>=——;—2(X-(Y-Z)—Y-(X-Z))

(1 (X Y. 2)- 7(V. X, 2)), @3
(X, Y, Z)=75 (X (Y 2)~ ¥+ (X~ 2)

—%((X' Y-Y-X)- 2), (4.4)
(X, Y, 2)=5(1(X ¥, )= 1(¥, X, Z)

1
—W((X' Y=Y -X): Z). (4.5)
Remark 10. From the expression (4.4), we can directly show the condition (T'3) for the tangent Lie
triple algebra T,(M).

Remark 11. The expression (4.3) corresponds to the formula (3.6) in [10], and the expression (4.4)
corresponds to the formula (4.9) in [9].

PROOF. From (4.2), (4.3) is reduced to (3.7).

Now, consider the following triple multiplication ¢ on M.

$(x, 3 2=7(7(e €, %7 (e %, 2)
=7(e %7(e7(x, ¢ 3), 2).

For X, Y, Z€ T,(M), by virtue of Propositions 4 and 5

$(X, Y, 2)=7(7(e X, 0, Y,7(e, ¢ Z)t7(7(e ¢ @), V,7(e X, Z))
=kn(X, Y, Z)+Y- (X 2).

On the other hand, also using Corollary of Proposition 5
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$(X, Y, Z)=n(, X,7(en(e, & Y), Z))+ 7(e, (e (X, ¢ Y), Z))
=X-(Y-Z2)-(X-Y)- Z

Comparing these relations, and using (4.3), we obtain (4.4).

If (4.3) and (4.4) are added side by side, (4.5) follows immediately.

COROLLARY 1. If M denotes the p-space of a Lie group G, then the tangent Lie trible algebra T, (M)
is identical to the Lie algebra of G.

PROOF. From Example 2 and Corollary of Proposition 6, we may assume e to be unit element of G.
(X, Y, Z)=0 follows from (4.4) and Proposition 4 iii), and

X, YI=—TX, V)=X-Y-Y- X

from (3.6), therefore Example 5 shows Corollary 1. (see Remark 9 and Remark 12 below.)
COROLLARY 2. If (M, 7 ,—2) denotes the p-space of a symmetric space S, then the tangent Lie triple
algebra T,(M) is identical to the Lie triple system of S.
PROOF. For the multiplication on S, we have

x0y=8;y=17(x, 3 )
therefore, by virtue of Proposition 5
XOY=7(X, Y, 9+ 7(X ¢ Y) for X, Ye T, (M).
Also, we know XOY= X- Y (see p. 10), so using (2.10)
2X-Y=7(X Y, ¢ for X, Ye T, (M) (4.6)
For vector fields X, and Y on M, making use of Lemma 2, we see
7(x, Y, )=20O(YOn=-—2Y, (x€ M)
so, appling Lemma 5 we have
7(X, Y, 2)+ 7 (x, XY, 2+ 7 (2, Y, X)=—2XY. 4.7)

If X=0/0x; and Y=0/0 x; (locally), then XY=YX, therefore (4.7) and the similar relation
interchanged X and Y lead to the following commutativity, with the aid of (4.6)

X-Y=YX (4.8)

which holds for all vector fields X, and Y on M, by linearity. So, the torsion tensor field T on Mis zero
identically.
Finally, from (4.5) and the above (4.8)

1
X Y, Z)=—73 (X, Y, Z)= (Y, X, Z))

= _% (XO(YOZ)— YOXO2Z) for X, Y,Ze T (M), (4.9)
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which is equal to the trilinear composition [X, Y, Z] in 0. Loos [11], Lemma 2.4, p. 80.

Remark 12. The canonical connections on M and S, as p-space and symmetric space, are the same;

therefore, the above Corollary 2 is obvious from 0. Loos [11], Lemma 2.4, p. 80, and Prop. 2.5, p. 83.

Our above consideration gives another proof for this fact, from a general point of view of p-spaces (see
also Remark 11).

We wish to express our heartfelt gratitude to Prof. K. Yamaguti, and Prof. M. Kikkawa for their

valuable advices and informative discussions with us.
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