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Abstract

In 1954, an important notion of reductive homogeneous spaces was introduced by K. Nomizu in

【121. For a differentiable manifold with an affine connection, we shall denote the torsion tensor field

and the curvature tensor field by Tand R, and the covariant differentiation by ▽. As is well known,

Lie groups have the so-called (-)-connection (see虫. Cartan and J. A. Schouten [2】), with the

properties that ▽ T-0, and /?-0. Similarly, affine symmetric spaces are characterized locally by an

affine connection on them with the properties that T-0, and ▽R-0 (see, for instance, 【　Theorem

4.9, p. 114). So, to consider such manifolds with an affine connection that▽T-0, and▽R-0, is

natural. These manifolds are, precisely, locally reductive spaces in K. Nomizu 【12】.
′

Since the discovery of symmetric spaces by E. Cartan in 【1】, many investigations have been done.

Among them, the work (Dissertation) of 0. Loos in 1966 (see 【111) is epock-making, in the historical

view of geometry; axiomatic, differential geometric, and algebraic. 0. Loos has succeeded to

characterize symmetric spaces by a multiplication on them. Following 0. Loos's idea, locally reductive

spaces and related spaces have been investigated by M. Kikkawa (【61, (7】, 【9】, 【101, and the other papers),

intensively, from the loop theoretic point of view. Our study owes very much to his investigation. A

slight generalization of the notion of differentiable homogeneous systems due to M. Kikkawa 【7], is

tried (Definition 1), and can be shown that ▽T-0, and ▽R-0 for the canonical connection on these

spaces (Theorem 1). The key lemma (Lemma 3) in the proof of this result is also found by M. Kikkawa

in 【101 independently.

The tangent algebra of locally reductive spaces (Lie triple algebra or general Lie triple system)

was constructed by K. Yamaguti in 【13]. An important theorem that any Lie triple algebra can be

imbedded canonically into the corresponding Lie algebra has been shown essentially in K. Nomizu 【12】,

pp. 61-62 (see, also, K. Yamaguti 【131, Proposition 2.1, p. 158, and M. Kikkawa 【5】, Proposition 1, p. 2).

This algebra has been studied by K. Yamaguti 【14】 and others, especially, recent Lie algebraic

approach by M. Kikkawa (for instance 【81) seems to show the mathematical reality of this algebra. Our

final aim is to find such a (triple) multiplication on manifolds that a simply connected manifold with this

multiplication corresponds, bijectively, to a Lie triple algebra up to isomorphism (cf. 【4】).
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ァ1. Parallelizable spaces

In this paper, we will investigate the following spaces with a triple multiplication.

Definition 1. Let Mbe a finite dimensional differentiable manifold of class C∞, and letヮ: MXM

XM-+Mbe a differentiable triple multiplication of class C∞･ Ifヮsatisfies the following conditions

(Pi), (P2), (P3), and (P4), then M is called a parallelizable space with an extensive constant k

(abbreviated as p-space or p-space with k).

Pi　ワ(*,x9y)-y,

p2　7(*, y,v(y> x> *))-z>

p3　ワ(*, y>ワ(u, v, w))-ワ(V(x, y, u),rjfa y, v),ワ(x, y, w))9

(P4) for each x牀M, in local coordinates,

署(#> y> z)y-x, z-x-kSj where A: is a non-zero constant.
Remark 1. The condition (P4) is independent of the choice of local coordinates.

Remark 2. This definition is a slight extension of that of differentiate homogeneous systems

introduced by M. Kikkawa in 【7】 (see Example 1 below).

First of all, we shall note some notational conventions.

Notationalconventions

i)Ingeneralwefollowthenotationandterminologyof0.Loos【111.

AllmanifoldsarefinitedimensionaldifferentiablemanifoldsofclassC∞andallmappings

betweenthesemanifoldsareC∞-class.

ForamanifoldM,F(M)denotesthesetofallrealvaluedC∞-functionsonM,Te(M)denotesthe

tangentspacetoMate牀M,andTe(M)denotesthespaceofallhigherordertangentvectorsate(see

p.5.

ii)WeuseEinstein'ssummationconvention.

iii)AparallelizablespaceMwithtriplemultiplicationワandextensiveconstantkisdenotedby

(M,rj,k)or(M,7).

iv)Forthetriplemultiplicationワ-7(x9y,z)onap-space(M,?,k),xiscalledthefirst

variable,ythesecond,andzthethird.Asnotationofpartialderivativesof?,wealwaysusexforthe

firstvariable,forinstance

dxj(a,b,c),9vp

dxa(u,v,w¥

yforthesecondvariable,andzforthethirdvariable.

Inthesecalculations,also,wealwaysusethesamelocalcoordinatatesystemforeachM,whenit

ispossible.

v)Weusefreelycalculationswithlocalcoordinates,whenthesemeaningsareclearfrom

contexts.
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The following is basic properties of p-spaces.

Proposition 1. For a p-space (M, 7, k), we have

dxj (x,x,x)=-kdj

dyj (x,x,x)=kdj

dzj (x,x,y)=8j

盈(x, x,y)-一盈(*, x,y)
盈(x, x, y)-O

(1.1

1.2

1.3

1.4

1.5

3

Definition 2. Let (Af,V ,k) and (N,rj ,k) be two p-spaces with the same extensive constant A;. A

mapping ≠: M-+N is called a homomorphism of M into N, if

(H) ≠(ワ(x, y, z))-ワ(≠(*),≠(y),≠(*))

is satisfied for all x, y, ZJM.

A homomorphism ≠ is called an isomorphismof Monto N, if ≠ is a diffeomorphism of Monto N.

In the case M-N, an isomorphism of M onto M is called an automorphismof M

Remark3. If ∂ ≠i/∂xj(x)≠O forsome i,jandforsome x牀M, thenoperating Y- ∂/∂^for(H),

wehave

豊(拍y, z))普(x, y, z)-忠(柚*(y),*(*))普(y),
therefore, putting y-z-x, we see that the extensive constants of M and Afare equal to each other

(withhout this assumption in the above defintion).

The following examples are a motivation for our definition of p-spaces.

Example 1. Differentiable homogeneous systems.

These spaces are the spaces with a triple multiplication rj , which satisfies the conditions (Pi),

P2, (P3), and

H4　ワ(x, v, x)-y.

M. Kikkawa has studied these spaces and related spaces intensivly (【61, 【71, 【91, 【101, and the other

papers).

Example 2. Lie groups.

Let M be a Lie group. If the triple multiplicationワis defined on M by

ヮー-..-1(x,y,z)-yx 1.6

then, 〟 becomes a homogeneous system, therefore, a p-space. This p-space will be said to be the

parallelizable space of the Lie group M. This example is a typical example of homogeneous systems.

Example 3. Symmetric spaces.

A symmetric space is a manifold Mwith a multiplication ju : MXM-*M, written as ju (x> y)-xO y,

which satisfies the following conditions (see 【111, p. 63):
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(Si) xOx-x,　　　　　　　　　　　(S2) xO(xOy)-y,

S3) xO(yO*)-(*Oy)○(xOz),

(S4) every x has a neighborhood U such that xOy-y, yJ U imply y-x.

Let M be a symmetric space. If the triple multiplication　7　0n M is defined by

ワ(x, y, z)-xO(yOz), 1.7

then, 〟becomes a p-space with -2, which will be said to be the parallelizable space of the symmetric

space M.

PROOF. The conditions (PA (P2), and (P3) are easily checked. From Lemma 2 below, we see that

the mapping y-+xOyhas the Jacobian matrix (- dj) at x, and the mapping y-*yO x has the Jacobian

matrix (2 aj) at x. Therefore, the mapping y-+ rj (x, y, x)=xO (yO x) has the Jacobian matrix (-2dj)

EWE?

Remark 4. In a normal coordinate system at x, we have rjt (x, y, x)- -2yi9 our assertion follows,

also, from this.

Definition 3. Let (M,7) be a p-space.

i ) The mapping rj(x, y): M-+M defined by 7(x, y)z- rj(x, y, z), is called displacement (of

direction from x to y).

ii) The mapping Hx: M-*M defined by Hxy- rj (x, y, x), is called homothety (with center x).

iii) The mapping Sx: M-+M defined by Sxy-ワ(*> y> y)> is called similarity (with center x).

Conditions (P2) and (P3) mean that any displacement v (x, y) is an automorphism of M And, if Mis

the p-space of a symmetric space S, the similarity Sx is the symmetry around x on S ([11], p. 64).

The following interesting characterization of Lie groups dues to M. Kikkawa (【7】, Prop. 2, p. 20):

PROPOSITION 2. Let (M,y ) be a p-space. M is that of a Lie group,びand only if the following

conditions are satisfied.

i ) Hx-id (identity mapping),　　　for all x^ M

ii) v(y, z)y(x, y)-y(x, z),　　　　for all x,y,zeM.

Proposition 3. Let (M,ワ) be a p-space. M is that ofa symmetric space, if and only if the following

conditions are satisfied.

) Sx-id (identity mapping),　　　for all x｣ M

ii) 7ta y)v(y> *)-7(ォサ*)>　　　　　for all x,y,z牀M

LEMMA 1. For a p-space (M, 7 ), the conditions i ) and ii ) in the above Proposition 3 are equivalent

ね

･ll)ワ(x, y)-SxSy,　　　for all x,y牀M.

PROOF. From ii), rj (x, y)rj (y, z)z- rj (x, z)z, i.e. tj (x, y)Sy-Sx, so 7 (x, y)S2y-SxSr Therefore,

from i ) r)(x, y)-SxSy

Conversely, from iii) id- 7(x, x)-SxSx, and rj(x, y)ij (y, z)=SxSySySg-SxSz- y(x, x).

PROOF OF PROPOSITION 3. It is easily seen that a symmetric space satisfies the condition iii),

from (1.7).

Now, we assume that a p-space (Af,7 ) satisfies the conditions i ), ii), and iii) above. Then M

becomes a symmetric space with respect to the natural multiplication xOy-Sxy.
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The conditions (Si) and (S2) are obviously satisfied.

As to the condition (S3), we have

xO(yOz)=SxSyz=ワ(*, y)z,

on the other hand, we have

(xOy)○(xOz)

-ワ(ワ(x, y, y),ワ(x, z, z),ワ(x, z, zj)

-ワ(x, y)ワ(y,ワ(y, x)ワ(*,.*, z),ワ(* *)ワ(x, z, zj)

-ワ(x, y)ワ(y,ワ(y, z, z),V(y, z, z))

-ワ(x, y)SySyz

-ワ(x,y)z,

therefore, they are equal to each other.

Finally, the following calculation shows that the local condition (S4) is satisfied. From iii),we have

ワ(x, y, z)-ワ(x,ワ{y, z, *)サワ(# *> z)h

therefore

一語(s, y, z)-豊{*,V(y, Z, z),V(y9 Z,初,普(% z, z)ヽ

･豊(x,V(# z> *)>V(# z> z))普(y, z, z),
evaluating at y-zz-x, and using (1.1), (1.2), and (1.3),

kd]--kzd'-kd>,

so, k--2. Now, the mapping r◆xOy= 7(x, y, y) has the elementsoftheJacobianmatrixatx,

dyj-U x, x)+-^L(x, x, x)--8j.
This means that the mapping r◆∬○ y has, locally, no fixed points except γ-∬, by virtue of the mean

value theorem.

ァ2. The canonical connection

LetMbeanra-dimensionalmanifold.AtangentvectorXoforderA;ate牀Mhas,inlocal

coordinates(xi,.:.,xm),anexpressionofthefollowingform(includingthetermforr-0)

kx-s

r-o≦2≦蝣Ir(∂r/∂*ォ,'∂*ir)e-

Thesearecalledhigherordertangentvectorsate,includingthatoforder1and0.And,thespace

ofallhigherordertangentvectorsateisdenotedbyTe(M).

Now,letNbealsoanw-dimensionalmanifold,andlet≠:M-*NbeamappingofMintoN.Fora

tangentvectorXoiorderkate牀M,thecorrespondinghigherordertangentvectorT空≠(Z)at≠(c)ォ
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N is induced by

T空≠ (x)f-X(fo ≠　　　　for fc FIN).　　　　　　(2.1)

In the sequel, we will simply write T≠ or ≠ instead of T空≠　when there is no danger of

ambiguity.

If ≠ is expressed, in local coordinates, by

yi- 9i(*i,->xJ f-l,...,n

then, for example, for X-(d/dxt)e

･(x)f-(去/(*(*)))e-去f(佃豊(e),　for feF{N)
SO

頼∂/∂xt)e)-普(e)(∂/∂y^Key

(2.2

(2.3

The above idea is very useful, and in the case where a multiplication ju(x, y)-x�"yis defined on M

and e 'e-efor some e牀M, is also worked. Namely, for any higher order tangent vectors Zand Yat e,

we can define their product f*(X, Y)-X'Y by

(X- Y)f-XョYf(x- y),　　　for feF{M) 2.4)

here, the tensor product XョYmeans that Zis operated for x, and 7for y(see [11], p. 48). This product

X�"Yis also a higher order tangent vector at e.

PROPOSITION 4. The above product (2.4) has the following properties.

i) ife*x-x then e�"X-zX,

ii) ifx�"e-x then X�"e-X,

iii) if(x�"y)�"z-x'(y'z) then(X�"Y)�"Z-X�"(7�"Z), moreover, iff(x, y, z,…)-ォ(*> y> *>-)

then f(X, Y, Z...)-衰X, Y, Z...), wheref and g are some relations of x, y, z,‥.,

iv) ifleftinveresex　== ≠ (x) ofxwithrespecttoeexists in thesense that ≠(x)�"x-eand ≠(e)-

c, and X'e-kX, e* X-rXfor X^ TIM) (k aod r are constants, k≠O),then ≠(X)--r/k X for

le TIM).

In thesestatements i ), ii ), iii), and iv), x, y, z,.‥denote anypoints in a neighborhood ofe, and X, Y,

Z,... denote any higher order tangent vectors at e, except X in iv).

PROOF, i ), ii), andiii) are obvious from definition.

As toiv), from ju(≠(x), x)-e we have

豊u e)x-如豊(e)+普(棉カツ-ォ-0,
i.e.

-^7(e> e)"^r(e)+^r(e- e)=0-
So
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^(e)+rsJ-O>
which shows the property iv).

Example4. For a Lie group Mwith unit element e, from i ), ii ), and iv) of the above Proposition

4, we see ≠(X)--X,ior le Te(M).
■■′       ■■■

Example5. Let Mbe a Lie group with unit element e, and let X, Ybe left invariant vector fields on
■-                                                                                                                                                  ■■′

M. The tangent vectors X-X(e), and Y- Y(e) at eare related to Xand Yin the relations X(x)-x�"X,

and Y(x)-x�"Y. The composition [X, Y], in the Lie algebra of M, is defined by [X, Y}-【X, Y](e),

■一

therefore for fe F(M),

[X, Y}f-(XY-YX)f-X⑦ Y f(x- y)-Y④Xfiy x),

i.e.

[X, Y]-X- Y-Y-X. 2.5

From the above Proposition 4 iii), the Jacobi identity of the Lie algebra of 〟 is reduced to the

associative law of 〟 (see 【11], p. 50).

For a triple multiplication on M, moreover an n-ple multiplication on M, similar products are

defined. They have many useful properties. For instance, for a p-space (M,?,k) we have,

corresponding to (1.1), (1.2), and (1.3) respectively

n (X, e, e)=-kX

ワ(e, a, e)-kX

ワ(e,e,X)-X

2.6)

(2.7

2.8

for all Xe Te(M).

Another property is the following.

PROPOSITION 5. Let M be a manifold with an n-ple multiplication ¢(*i,...,*n). // a triple

multiplication ≠ (x, v, z) on M is introducedfrom少, by substituting x ory or zfor each of these variables

#!,...,xn, concretely (as n-6)

≠(x, y, z)-¢(y, x, x, z, x, y),

and this ≠ satisfies ≠(c, e, e)-e for some e牀M, f/icnォ;e Aave

≠(X, Y, Z)-¢(Y, X, e, Z, e, e)+¢(Y, e, X, Z, e, e)+¢(Y, c, e, Z, X, e)

+ ¢(e,X,e,Z,e, Y)+¢(e,e,X,Z,e, Y)+ ¢(e,e,e,Z,X, Y),　　(2.9)

for all X, Ye Te(M) and Ze T7(M),

PROOF. For X-d/dxi, Y-d/dxj, and /eF(M),
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≠(X, Y, Z)f-X④Y④Zf(≠(*> y> *))

-Y⑪Z[霊(柏外z))普(y, x, e, z, e,y)x

･豊(v, e, x, z, e, y)x-e+普(y, e, e, z, x, y)x-e¥]
-¢(Y, X, e, Z, e, Y)f+¢(Y, e, X, Z, e, Y)f+¢(Y, e, e, Z, X, Y)f.

And similarly we have

¢(Y, X, e, Z, e, Y)-¢(Y, X, e, Z, e, e)+¢(e, X, e, Z, e, Y),....

Remark 5. For any m-ple multiplication ≠ on M, introduced from ¢ similarly, we have the same

property.

Corollary. Let (M,ワ) be a ㌢space. Then

ri(X,e, Y)-- r,(e,X, Y) 2.10

for all Xe Te(M) and Ye T?(M).

Proof. If ≠ is defined by ≠(*サy)-ワ(x, x, y), then

≠(X, Y)-v(X, e, Y)+ヮ(e, X, Y).

On the other hand, ≠(x, y)-y therefore　≠(X, Y)-0.

Here, we shall mention some basic properties of differential geometry (see 【111, P- 19.

In general, for an m-dimensional manifold M, an affine connection F on M and a covariant

differentiation ▽ on 〟 are related by the relation

▽XY-XY+ F(X, Y)

where, X and Yare any vector fields on M

In local coordinates (xi,...,xm), an affine connection T on M is expressed by

r(∂/∂xi, ∂/∂*t)--∂2/∂xi∂xj+r^x)∂/∂xk

here, Tもare the Christoffel symbols.

From (2.ll) and (2.12), we also have

▽∂/dx, ∂/∂*,--r&(ォ) ∂/∂xk

〟

2.ll

(2.12

2.13

Now, let (M,? ,k) be a p-space. For any fixed point e牀M, we define the following multplication on

e(x, y)-ワ(e, x, y)　　　for all x, yeM, 2.14

which has very important role in our investigation.

Definition 4. The multiplication (2.14) on a p-space (M,? ,k) is called the canonical multiplication

with base point e. This is usually denoted by x�"y, i.e.
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x�"y=e(x,y)-ワ(e,x,y), (2.14)∫

without the base point e, when there is no danger of confusion.

Remark 6. If a p-space Mis that of a Lie group G, then the canonical multiplication e(x, y) gives a

Lie group structure on 〟, which is isomorphic to Gby the left translationエe: α-G. Especially, if eis

unit element of G, then e(x9 y)-x'y is identical to the multiplication as Lie group.

Definition 5. Let (M,7,k) be a p-space. An affine connection T on M can be defined by

･(X, Y)(e)-言X(e) - Y(e)--iv(e,X(e), Y(e))　　(2.15)
where A and Yare any vecter fields on M. This connection is called thecanonicalconnection on M

In local coordinates (∬lv　∬ t) at e, this canonical connection F has the following expression.

For X-d/dxt and Y-d/dxj, we have for all feF(M)

(X(e) - Y(e))/-X(e) ㊨ Y(e) /(ワ(e, x, y))

-x(e) (霊(7(e, x, e))普(e, x, e))
a7

axhdxk ･e,普(e, e, e)普(e, e, e)+霊(e,蕊(e, e, e),
so, from (1.2), (1.3), and (2.15)

r(∂/∂x-3/∂*>)--∂2/∂xidxj-r盈(x, x, x)∂/∂xk･
Comparing this with (2.12), we see that the Christoffel symbols Fをof this connection are given by

･ &�"(*)--‡盈(x, x, x).　　　(2.16)
For Example 1, this connection is the canonical connection for differentiable homogeneous

systems (see 【91, formula (4.3), p. 49).
′

For Example 2, this connection is the (-)-connection introduced by E. Cartan and J.A. Schouten

[2]. Let Mbe a Lie group with unit element e. For any left invariant vector fields Xand Yon M, from

the relation (2.ll), we have

▽妥Y(e)-XY+V(X, Y)-XY-X- Y-0,

■■■

where X-X(e) and Y- Y(e) (see Example 5 and Remark 6). Therefore, our connection is the

(-)-connection (see, for instance, 【31, Prop. 1.4, p. 102 and p. 104).

For Example 3, this connection is the canonical connection for symmetric spaces.

LEMMA 2. Let M be a symmetric space. For any e牀M, and for all Xt Te(M),

i) eox--x,　　11) XO i-2X. 2.17

For a proof, see 0. Loos 【11], p. 76.

Now, for any symmetric space M, from Example 3, (2.15), (S3), Proposition 4 iii), and the above

Lemma2,
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X- Y-2T(X, Y)-eO(XO Y)-(eOX)O(eO Y)-(-X)O(-Y)-XO Y,

for e牀M, and X, Ye TAM). Therefore, this connection is the canonical connection on the symmetric

space 〟, as is seen from the definition in 0. Loos 【111, p. 83.

Example6. Let Mbe a Lie group with unit element c, thenthe multiplication xOy-xmy　�"x on

〟gives the structure of a symmetric space on 〟(see 【11], p. 65). The canonical connection on this 脚is
′

the (O)-connection introduced by E. Cartan and J. A. Schouten 【2】.

For any left invariant vector fields Zand Yon M, from (2.ll), Propositions 4 and 5, and Example

4,

▽xy(e)-XY+T(X, Y)-X- Y+i(-X- Y-Y- X)-‡【x, n

where X-X{e) and Y- Y(e). This shows the above assertion (see, also, 【31, Prop. 1.4, p. 102, and p.

104.

The followi咽key lemma is essentially the same to Lemma in M. Kikkawa 【101.

Lemma 3. Let (M, v ) be a ㌢叩ace with canonical connection. Ifa tensor field S of type (r, 5) on M

satisfies the following relation (2.18) for all points x牀M, in local coordinates (xi,...,xm ) at x, where for

each x, y runs a neighborhood of x; then, the covariant differentiation of S is zero, i.e. ▽s-O.

h:,(V(x,y,x))普(x,y,x)諾(x,y,x).j r

�"y          '>

-s*r r(x)普(x,y,xノ-　語(x,y,x).●

1'　'Js

2.18

PROOF.OperateY-d/dxkonbothsidesof(2.18)forvariabley,andputy-x.Fromthe

followingformulaforcovariantdifferentiation

･∂/∂Qll'"

Ji"':"3s孟s(i%+isuir(x)n(x)

jlJ,a=1JIJs

-三　　　　　　. (x)r% fx),
S

Ji rn js

2.19

this lemma follows immediately, if we consider the relations (1.2), (1.3) and (2.16).

Two fundamental tensor fields on a manifold 〟with an affine connection are the torsion tensor

field T and the curvature tensor field R. They are defined by

T(X, Y)-▽xY-▽yX-[X, Y}-T(X, Y)- T(Y, X),

R(X, Y) Z-▽yVyZ-▽yv^Z-▽[x, Y] Z,

where X, Y, and Zare any vector fields on M

(2.20)

2.21
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Our main aim in this paper is to prove the following theorem, by virtue of the above Lemma 3.

THEOREM 1. Let M be a p-space with canonical connection. Then, the covariant differentiations of

the torsion tensorfield Tand the curvature tensorfield R on Mare zero, i.e. ▽ r-O, ▽i?-0. (M is locally

a so-called reductive homogeneous space in K. Nomizu [12].)

ァ3. A proof of Theorem 1

The heart of our proof is the Lemma 4 below, which has many important applications.

Proposition 6 (see 【11】, Theorem 2.6 i ) a), p. 84). Let(M, rj ,k) and(N,? ,k) be twop-spaces with

the same k, and ≠ : M-+Na homomorphism ofM into N. Then ≠ is an affine map ofM into N,for their

canonical connections.

PROOF. For any vector fields X and Yon M, we must show that

≠(X(e)�"Y(e))- ≠(X(e)) ≠(Y(e))　　　　foralle牀M 3.1

(see 【111, definition of affine map, p. 20). But, from our definition (2.15), this is a special case of the

Lemma 4 below.

Corollary (see 【10】, §3 Remark 2). Let (M, 7 ) be a p-space with canonical connection. Then any

displacementヮ(e, w): M-*M is an affine transformation of M.

Lemma 4 (see 【11】, p. 49). The homomorphism ≠ of Proposition 6 has the following commutativity.

≠(v(X, Y,Z))- i{≠(X),≠(Y),≠(Z))　　　forallX, Y,Ze 17(M)　(3.2)

Proof. For fe F(N),

≠(ワ(X, Y, Z))f-X④Y④ZUo≠ oヮte y* *))

-X④ Y④Z(fo rj(≠(*),≠(y),≠(ォ)))

-≠(X)④≠(Y)④≠(Z)(foワ/ / / ′))

-?(≠(X),≠(Y),≠(Z))f,

in the above, x¥ y¥ z′ denote variables on N around ≠(e).

Now, let (M,ワ) be a p-space. Then,ワ(x, x, x)-xfor all x牀M, therefore, for higher order vector

fields X, Y, and Z on M, we can define their product　ヮ(X, Y, Z) by

n (X, Y, Z) (x)=ワ(X(x),Y(x),Z(x)),　　　(xe M)

which is also a higher order vector field on M

Especially, X�"Y means

(X- Y)lx)-X(x) 'Ylx)-ワ(x,X(x), Y(x)),　　　(*ォ仰

3.3

3.4

Lemma 5. (see 【11], p. 83). Let(M,ワ) be a p-space. For any higher order vector fields X, Y, Z, and

any vector field W on M, we have

Wヮ(X, Y,Z)-rj(WX, Y,Z)+ヮ(X, WY,Z)+ヮ(X, Y, WZ). 3.5
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PROOF. For any /e F(M),

(Ⅳヮ(X, Y, Z)f)(w)-W(X(w)㊨ Y(w)⑪Z(w)f(ワ(x, y, *)))

-(W20(ォ⑪Y(w)④Z(w)ワ(*, y, z))

+X(w)㊨(WY)(w) ④Z(w)f{ワ(*, y, z))

+X(u>)㊨ Y(w)㊨(WZ)(w) f(ワ(*,y,z))

=({V(WX, Y, Z)+r>(X, WY, Z)十7CX, Y, WZ))f)(w).

By a similar calculation in 【111 p. 84, we obtain

PROPOSITION 7. Let (M, rj ,k) be a p-space. For the canonical connection on M, the torsion tensor

field T and the curvature tensor field R can be expressed by

T(X, Y)--r(X- Y-Y'X), 3.6

R(X, Y)Z-去(X- (Y- Z)-Y- (X- Z))-i(r}(X, Y,Z)-n(Y,X,Z)),  (3.7)
where X, Y, and Z are any vector fields on M.

PROOF. (3.6) is obvious from the definition (2.20).

As to R, we first remark that, as a special case of (3.5),

Xr>(x, Y, Z)-ワ(X, Y, Z)+ri(x, XY, Z)+ヮ(x, Y, XZ),

X(Y- Z)-y(X, Y,Z)+(XY) - Z+Y- (XZ).

i.e.

(*ォM

3.8

From (2.21), (2.ll), and the above (3.8),

R(X, Y)Z-▽yvyZ-▽rvvZ-▽【x,Y¥*

1             1

-X(YZ一丁Y- Z)-rX- (YZ一丁Y- Z)

I ^^^^H
-Y(XZ-TZ- Z)+了Y- (XZ-rX- Z)

1

-(XY- YX)Z+了(XY- YX) - Z

il         i!         il         i!

了㌻X-(Y-Z)-｢打Y'(X-Z)一丁ワ(A, Y, Z)+了V(Y, X, Z).

Combining this Proposition 7 and Lemma 4, we gain a proof of the following

Proposition 8. Let(M,? ,k) and (N, V ,k) be two p-spaces with the same k, and let ≠ : M-*Nbe a

homomorphism ofM into N. Then, the torsion tensor fields T and the curvature tensorfields R on M and N

(here the same symbols are used) for their canonical connections, satisfy the following relations.

≠(T(X, Y))-T(≠(X),≠(Y)), 3.9
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≠(R(X, Y)Z)-R(≠(X),≠(Y))t(Z), 3.10

13

for any vector fields X, Y, and Z on M.

Remark 7. The above Proposition 8 holds, generally, for any manifolds M and N with affine

connection and for any affine map ≠:好一N (see 【111 p. 28). See, also, Remark 8 below.

T and R are expressed, in local coordinates (xi,...,xm) on M, by

T(∂/∂xi,∂/∂%j)-Tも(x)∂/∂xk,

R{3/dxi,d/3xj)d/3xk=R%ij{x)d/3xh.

3.ll

3.12

we have similar expressions for T and R on N, in local coordinates (yi,..',yn) on N.

Using these expressions, (3.9) and (3.10) can be written explicitly, on account of (2.3), in the

following forms.

･紺(*))普(x)普¥-Tk
(x)-T%(x)djr

dxk(x),

BU(*(x))普(x,普(x,普(*)-/&,�"(*)普(*).

Therefore,wehavefinallyaproofofTheorem1.

PROOF.Thedisplacement≠-ワ(e,w):M-+MisanautomorphismofAf,and

dft,,9vi,.

(3.9)∫

(3.10)∫

Putting ∬ -e, the desired relations (2.18) follow, immediately, from (3.9)′and (3.10)∫.

Remark 8. For any tensor field Son M, which is expressed by 7 , we can show that▽S-0. The

reason is that the heart of our proof is the Lemma 4, as already pointed out.

ァ4. The tangent algebra

Observing the tangent algebras of locally reductive spaces, K. Yamaguti has introduced in 【13] an

algebraic system, called general Lie triple system (afterward Lie triple algebra by M. Kikkawa in 【6】),

which has important and leading significance in our investigation.

Definition 6. Let V be a finite dimensional vector space (over a field). A bilinear composition

[X, Y], and a trilinear composition (X, Y, Z) are defined in V, and satisfy the following conditions,

then V is called a Lie triple algebra (or a general Lie triple system).

Ti [X,X]-0,

(T2) (X, X, Y)-0,

(T3) ¥[X, Y), Z]+[[Y, Z], X¥+[¥Z, X], Y]+(X, Y, Z)+{Y, Z, X)+(Z, X, Y)-0,

(T4) (¥X, Y], Z, W)+([Y, Z], X, W)+{[Z, X), Y, W)-0,

(T5) (X Y, ¥Z, WX>-[(X, Y, Z),W]+[Z, (X, Y, W)l

(T6) (X, Y(U, V, W))

-((X, Y, U), V, W)+(U, (X, Y, V), W)+(U, V, (X, Y, W)).
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Remark 9. If the trilinear composition in the above definition vanishes identically then this

definition becomes that of Lie algebra, and if the bilinear composition in the above definition vanishes

identically then this definition becomes that of Lie triple system.

Theorem 2 (K. Yamaguti [131 also see M.Kikkawa 【5】). Let M be a manifold with an affine

connection. If the covariant differentiations of the torsion tensorfield T and the curvature tensorfield R

on M are zero, Le.▽T-0, and▽/?-0, then for any point e* M, the tangent space Te(M) has the

structure of a Lie triple algebra by the following compositions.

[X, Y]--T(X, Y),

(X, Y,Z)--R{X, Y)Z.

4.1

4.2

PROOF. (T3) and (T4) are Bianchi's identities, and (T5) and (Tq) are Ricci's identities.

Proposition 9. Let (Af, 7 ,*) be a ㌢space with canonical connection. The trilinear composition in

the tangent Lie triple algebra Te(M) (e* M), has the following expressions.

(x, Y, Z)-一志(X-(Y-Z)-Y-(X-Z))

1

+了(v(X, Y,Z)-ワ(Y,X,Z)¥

(x, Y, Z)--rr(X'(Y'Z)-Y'(X-Z))

1

一手UX- Y-Y-X)-Z),

(x, Y, Z)-去(ワ(X, Y, Z)-n(Y, X, Z))

(4.3)

(4.4

-ofcTtt*- Y-Y- X) - Z).　　　　　　(4.5)

Remark 10. From the expression (4.4), we can directly show the condition (T3) for the tangent Lie

triple algebra Te(M).

Remark ll. The expression (4.3) corresponds to the formula (3.6) in [10], and the expression (4.4)

corresponds to the formula (4.9) in 【91.

PROOF. From (4.2), (4.3) is reduced to (3.7).

Now, consider the following triple multiplication ≠ on M.

≠(x, y, z)-ワ(rj(e, x, e), y,y(e, x, z))

=ワ(e, x,ワ(e,ワ(*, e, y), z)).

For X, Y, Z* Te(M), by virtue of Propositions 4 and 5

≠(X, Y, Z)-n(ワ(e, X, e), Y,r>(e, e, Z))+ヮ(ワ(e, e, e), Y,V(e, X, Z))

-kn(X, Y, Z)+Y-(X-Z).

On the other hand, also using Corollary of Proposition 5



N. HITOTSUYANAGI: A generalization of Lie groups and symmetric spaces 15

≠(X, Y, Z)-ワ(e, X,ワ(e,V(e, e, Y), Z))+ヮ(e, e,ワ(e,ワ(X, e, Y), Z))

-X-(Y-Z)-(X- Y　�"Z.

Comparing these relations, and using (4.3), we obtain (4.4).

If (4.3) and (4.4) are added side by side, (4.5) follows immediately.

COROLLARY 1. IfM denotes the p-space ofa Lie group G, then the tangent Lie triple algebra T牀(M)

is identical to the Lie algebra of G.

PROOF. From Example 2 and Corollary of Proposition 6, we may assume eto be unit element of G.

(X, 7, Z)-0 follows from (4.4) and Proposition 4iii), and

[X, Y]--T(X, Y)-X- Y-Y-X

from (3.6), therefore Example 5 shows Corollary 1. (see Remark 9 and Remark 12 below.)

Corollary 2. If(M,? ,-2) denotes the ㌢space ofa symmetric space S, then the tangent Lie triple

algebra Te(M) is identical to the Lie triple system of S.

PROOF. For the multiplication on S, we have

xOy-Sxy-　ワ(*, y, y),

therefore, by virtue of Proposition 5

XOY-ワ(X, Y, e)+ヮ(X, e, Y) for X, Ye r.CAf).

Also, we know XOY-X- Y(see p. 10), so using (2.10)

2X- Y-ワ(X, Y,e)　　iorX, Ye TJM)

For vector fields A, and Yon M, making use of Lemma 2, we see

ワ(x, Y, x)=xO(YOx)=-2Y,　　(xe M)

so, appling Lemma 5 we have

ワ(X, Y,x)+ V(x,XY,x)+ n(x, Y,X)--2XY.

4.6

4.7

If X-d/dxi9 and Y-d/dxj (locally), then XY-YX, therefore (4.7) and the similar relation

interchanged X and Y lead to the following commutativity, with the aid of (4.6)

X- Y-Y-X, 4.8

which holds for all vector fields X, and Yon M, by linearity. So, the torsion tensor field Ton Mis zero

identically.

Finally, from (4.5) and the above (4.8)

(x, Y, Z)ニー‡(ワ(X, Y, Z)-rj伴X, Z))

1

一寸(XO(YOZ)- YO(XOZ)) iorX, Y,Ze TAM), 4.9
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which is equal to the trilinear composition [X, Y, Z] in 0. Loos [11], Lemma 2.4, p. 80.

Remark 12. The canonical connections on Mand S, as p-space and symmetric space, are the same;

therefore, the above Corollary 2 is obvious from 0. Loos 【11】, Lemma 2.4, p. 80, and Prop. 2.5, p. 83.

Our above consideration gives another proof for this fact, from a general point of view of p-spaces (see

also Remark ll).

We wish to express our heartfelt gratitude to Prof. K. Yamaguti, and Prof. M. Kikkawa for their

valuable advices and informative discussions with us.
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