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Abstract

Electronic computer program to obtain starting sets satisfying tangent formula in the

phases was formed. The number of the initial sets obtained from the 20 sets of 14 random

phases was 6. The phases of the 5 sets satisfy the tangent formula. The number of triplets

ft, ky ft-kinthesetare30. Thephasesofthe 4 setssatisfythesums of phases,少A -

少(* +少(h-k). The phases of the sets of 200 phases obtained by the tangent formula from

the starting sets did not agree with the true phases.

1. Introduction

Recently, there appeared the Lead Article for direct determination of crystal struc-

tures by Woolfson (1987) in Acta Crystallographica. This paper showed clearly the outline

of the development of the phase determination methods. We can study at glance the trunk

of the recent phase determination without useless boughs and branches growing luxuriantly

in this field. His discussion was mainly concentrated on the development of the equations

indicating the relation between correct phases, especially on so-called tan貞ent formula.

However, even though the tangent formula is valid for the correct phases, the correct phases

can be only obtained from the other correct phases. Hence, we must start to determine

correctly the starting set of phases, at first. Therefore, the most important task in the

investigation of the methods for the phase determination is not to make higher the accuracy

of tangent formula but to cultivate the method determining the phases of the starting set.

So far as we judge by the description of Woolfson, any numbers, magic numbers or random
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numbers, can be allowed for the phases of the starting set.

Furusaki (1979) showed that correct phases could be obtained through the method of

trial and error, giving the random phases to the phases of the starting sets. Furusaki (1982)

suggested that the reason why the random phases of the starting sets converged to the correct

phases might be that there was power of amending correctly phases in the tangent formula.
∫

The present author (1987) pointed out that the power was due to the power effect of absolute

values of structure factors, since the phases of the starting set were fixed for initial 10 cycles

calculation in Furusaki's method. The power effect should be exact if the sum rule of the

phases,

少(h)-少* +少(h-k),

is valid for any 3 reflectionsh, k and h-k. That is to say, the power effect isvalid if the

weights of the any phases in the tangent formula are equal to one another. But, the sum rule

is not satisfied for reflections with small absolute values of structure factors. Owing to this,

to determine correctly the phases of the stronger reflections in the starting set becomes

important.

If we must initially guess correct phases in order to satisfy the sum rule or the tangent

formula, the number of the phases to be given correct values should be limited to be very

small, since the number of stronger reflections making pairs of k and h-k is small. Then,

the problem whether or not we can determine correctly the remaining phases by using the

sum rule or the tangent formula should arise. To estimate the size of starting set and the

proportion of the correct phases in the set in order to determine correctly the phases

necessary for crystal structure analysis is a very difficult task. This problem should theoreti-

cally be solved by taking account of the power effect and the weights of the phases in the

tangent formula in future. But, we can show tentatively by simulations that a number of

phases can be determined suitably by a certain initial set. The present author (1987) already

showed that the phases could be determined if 20 phases of stronger reflections were

correctly given among the set of 30 reflections of which absolute values of structure factors

lie in from the first until the 30th in our set of the structure factors. However, we can not

determine correctly the 20 phases by the use of the tangent formula, since the 20 reflections

are not related with one another with respect to the tangent formula by pairing k and h- k

reflections.

The present author's method is to make converge normalized structure factors with

the random phases of considerably large starting set to the observed normalized structure
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factors. Hence, the problem on the starting set of phases does not occur. The phase relation

used in the method is only the equation ( 3, 8) of Karle and Karle (1966) (equivalent to

the equation (18) of Woolfson, and called the equation of K and Khereafter). By changing

the control parameter of the convergence from the absolute values of the structure factors

to the difference between phases before and after one cycle calculation, we can obtain phases

satisfying self-consistently the equation of K and K. This idea is equivalent to the essential

idea of Symbolic Addition method. The computer program for this idea is easily formed.

The difference between Symbolic Addition method and this method is that the phase relation

in the Symbolic Addition method is the sum rule but the phase relation in our method is the

equation of K and K. Hence, a phase is calculated by some pairs of phases in our method,

in general.

The starting set of 14 reflections with true phases was chosen from 50 strong

reflections. The phases of the starting set were converged to sastisfy with one another the

phase relation of the equation of K and K. It is natural that the results of calculation satisfy

also the sum rule. That is, the sum of phases of each pair of reflections A: andh-k is nearly

equal to the phase of reflectionれ　The results of the application of the method to the sets

of the 200 reflections were bad for the phase determination. This means that even though we

can determine a few number of phases to satisfy the sum rule, we can not determine all the

correct phases necessary for crystal strcture analysis. In this paper, the author demonstrates

the difficulty of phase determination from a few number of strong reflections through the

simulation calculations.

The simulations described in this paper were carried out by using the same material

in the previous paper (1987). The number of independent atoms is 30 and the space group

is P2.

2. Starting sets

The largest group of the reflections related with one another through the equation K

and K in the 50 strong reflections was chosen as the starting set of the reflections. As stated

in the previous paper, the reflections are numbered according to the magnitude of structure

factors, of which reflection indices are limited within 0 ≦ h ≦14, 0 ≦ k ≦14 and 0 ≦1≦

14. The number of the reflections belonging the starting set decreased t0 14 by further

examination, which was reported as 18 in the previous paper. The indices of the 14 reflections

are listed in the Table 1.
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Table 1. Indices of the initial set.
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At first, the starting set of the true 14 phases was fixed constantly to obtain 200

phases in the 30 cycles calculation. The result was analyzed by the method described in the

previous paper (1987). The number of phases equal to the true phases was only 66 in this

case. Hence, we can not determine this crystal structure, even though the 14 phases are

determined correctly.

If the symmetry of crystal structure becomes higher, the number of the phases in the

starting set becomes larger, when the number of the reflections of basic set from which the

starting set is to be chosen is the same. The space group of the testing material is P 2 ,

hence, the number of the phases in the starting set is comparatively small. This smallness

of the starting set might give rise the indetermination of the phases. Hence, we can not

deduce the impossibility of the phase determination fronj this simple fact, but this suggests

the difficulty of the phase determination by deriving the new phases from the starting set

through the tangent formula.

The author's convergence method was applied to the result. The convergence speed

can be adjusted suitably as described in the previous paper (1987). In this case, only the

case (B) with the number of the reflections being 150, very high speed convergence, was

tested. The number of equal phases to the true phases became 151. This fact suggests that

the phases can not be determined simply by the 14 true phases, but if we can determine

correctly the phases of the starting sets, we may be able to save computer CPU time by

applying the author's convergence method to the results derived by using the equation of K

and K to the fixed phases of starting sets.

In order to obtain the phases of the starting set, the electronic computer program was

formed. The program is the modified one from the given in Appendix in the previous paper

(1987). The outline of the program is as follows. The starting set of phases is given by

randomly as described in the previous papers. The control parameter is the difference of the
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phases between one cycle calculation. That is, when the difference of the phase of a reflection

h before and after one cycle calculation is larger than n1 8 , the contribution of the reflection

and of the related reflections forming k and h-k pairs is nullified, and the phase of the

reflection h is calculated by the structure factors of the remaining pairs of the reflections.

In this case, when the number of the reflections with zero contribution becomes large, it

happens that some calculated structure factors become zero in one cycle calculation, and

finally all the calculated structure factors become zero. Hence, the contributions of the one

reflections with the largest absolute value of the structure factor among the reflections which

have different values of phases in a cycle calculation and those of the reflections forming k

and h-k pairs are put to be zero. When all phases can not have definite values by 5 cycles

calculation, the set of phases is abandoned. The list of the program is given in Appendix.

It is necessary to estimate the validity of the program. At first, we must notice that

all the true phases do not satisfy the equation of K and K at once. Hence, the new phases

were obtained by 10 cycles calculation from the starting set of true phases. The number of

the new phases equal to the true phases by this adjustment became ll. Therefore, the number

of phases to be determined by the equation of K and K in any way is limited within ll at

most. The 6 set of phases were obtained from the 20 sets of random phases. The phases

of the 6 sets are listed in Table 2. The numbers of the correct phases for the 6 sets were

7, 10, 10, 7, 9, 6.

Table 2. The phases of the initial sets.

No.1　　　No.2　　　No.3　　　　No.4　　　No.5　　　No.6

1　0.00000　0.00000　3.14159

2　3.14159　0.00000　0.00000

3　3.14159　3.14159　0.00000

4　0.23339　3.13886　4.94839

5　2.46228　1.39306　1.81400

6　3.14159　0.00000　3.14159

7　3.22793　3.72735　0.24738

8　3.14159　3.14159　0.00000

9　0.00000　0.00000　0.00000

10　3.14159　3.14159　4.71239

11　3.22607　3.72771　3.38809

12　3.23149　3.72666　3.39066

13　2.55218　1.97812　2.06306

14　0.00000　3.14159　0.00000

3.14159　3.14159　3.14159

3.14159　3.14159　0.00000

3.14159　3.14159　3.14159

3.34362　2.57387　　4.86417

0.05731　3.91269　　3.69131

0.00000　0.00000　　3.14159

4.78884　1.28510　2.70324

3.14159　0.00000　0.00000

0.00000　3.14159　3.14159

0.73641　5.49779　5.56065

4.78789　1.28610　2.70439

4.79066　　4.42478　5.84264

1.70638　5.19588　0.10917

0.00000　0.00000　3.14159
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To examine the degree of satisfaction of the phases of the starting sets for the

equation of K and K, the differences between the phases of the sets and the phases obtained

by the equation K and K with substituting the phases of the sets were calculated and listed

in Table 3. We can see that the phases satisfy very good the equation of K and K, except

the set of No. 6. Although the phases are not necessary to satisfy the sumrule少(A -少*) +

少(h-k), the differences of the phases少(*)一少(*)一少(h-k) were calculated and listed

inTable 4. ByexaminingtheTable 3, theresultsofthesetsofNo. 1, 2, 3and 5

were fairly good in satisfying the sum rule for each of 3 phases.

Table 3. The differences between the determined phases少(h) and the phases satisfying

the tangent formula in the initial sets.

No.1　　　　No.2　　　　　No.3

0.00000　　0.00000　　0.00000

0.00000　　0.00000　　0.00000

0.00000　　0.00000　　0.00000

0.16214　-0.00189　　0.16395

0.00000　　0.00001　　0.00001

0.00000　　0.00000　　0.00000

7　-0.01200　　0.00024　-0.01184

8　　0.00000　　0.00000　　0.00000

9　　0.00000　　0.00000　　0.00000

10　　0.00000　　0.00000　　0.00000

11　-0.02352　　0.00078　-0.02232

12　-0.01685　-0.00005　-0.01777

13　-0.01685　-0.00005　-0.01777

14　　0.00000　　0.00000　　0.00000

No.4　　　　　No.5

0.00000　　0.00000

0.00000　　0.00000

0.00000　　0.00000

-0.37298　　0.15120

0.00000　　0.00000

0.00000　　0.00000

0.02565　-0.01040

0.00000　　0.00000

0.00000　　0.00000

0.00000　　0.00000

0.04565　　-0.01793

0.04193　-0.01773

0.04193　-0.01773

0.00000　　0.00000

No.6

0.00000

0.00000

0.00000

-0.48814

0.00000

0.00000

0.03377

0.00000

0.00000

0.00000

0.06236

0.05233

0.05233

0.00000

It is natural that the 200 phases derived by the equation of K and K from the starting

sets with the 14 phases do not coincide with the true phases, since the 200 phases obtained

form the starting set of the true 14 phases did not coincide with the true phases. The

convergence method with the rapid convergence described above was applied to the results,

the R-value of only one set became small (R-0.13770), the R-values of the other sets were

nearly 0.2. The analysis of the sets showed that the maximum numbers of the coincided

phases were 57, 54, 68, 61, 53 and 51. These number could be obtained from the random

phases.

We can conclude that the true solution of phases problems may be difficult only by

means of the sum rule and for the small number of strong reflections in the starting sets.
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Table 4. The differences between the phases少(h) and少(k +少(h-k) in the initial

sets.
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No.1　　　　No.2　　　　　No.3　　　　　No.4　　　　　No.5　　　　　No.6

-6.28318　　0.00000　　0.00000　　0.00000　　0.00000

0.00000　　0.00000　-6.28318　　0.00000　　0.00000

-6.04979　-6.28591

0.00000　-6.28318

-6.28505　-6.28283

0.00000　　0.00000

-6.28133　　-6.28355

0.00000　　0.00000

-6.04979　-0.00273

-6.28319　　-6.28318

0.00000　　0.00000

0.00000　　0.00000

0.00186　　-0.00036

-6.04718　-0.53438　-6.06551

0.00000　　0.00000　　0.00000

-6.28407　　-6.28414　　0.00100

0.00000　　0.00000　　0.00000

-6.28230　　-6.28224　　-0.00100

0.00000　　0.00000　　0.00000

0.00000

-6.28318

-6.97966

-6.28318

0.00115

0.00000

-0.00115

0.00000

0.23600　-0.53438　-6.06551　-0.69648

-6.28318　-6.28319　-6.28319　　0.00000

0.00000　　-6.28318　　-6.28318　　0.00000

0.00000　-6.28318　-6.28318　　0.00000

0.00088　　0.00095　-6.28418　　-6.28433

-0.00356　　0.00069　-0.00169　-0.00182　　0.00191　　0.00219

0.00000　　0.00000　　0.00000　　0.00000　-6.28318　-6.28318

-6.27963　　-6.28388

0.00000　　0.00000

-6.28675　　-6.28250

-6.28318　　-6.28318

-6.28860　　-6.28213

-0.23339　　0.00273

-0.23339　　0.00273

-0.00186　　0.00036

-0.00542　　0.00105

0.00356　　-0.00069

0.00542　　-0.00105

0.00542　-0.00105

0.00000　　-0.00001

-6.28318　　0.00000

-6.28318　　0.00000

-6.28150　-6.28137　　-6.28510　　-6.28538

0.00000　　0.00000　　-6.28318　　-6.28318

-6.28487　　-6.28501　-6.28127　-6.28099

0.00000

-6.28575

-0.23600

-0.23600

-0.00088

-0.00257

0.00169

0.00257

0.00257

-6.28318　　0.00000　　0.00000

-6.28595　-6.28028　-6.27984

-5.74880　　-0.21767　　0.69648

-5.74880　-0.21767　　0.69648

-0.00095　　-6.28218　　-6.28203

-0.00277　　-6.28027　　-6.27984

0.00182　　-0.00191　-0.00219

0.00277　　-0.00291　-0.00334

0.00277　　-0.00291　-0.00334

-0.00001　　0.00000　　0.00000　-6.28319

0.00000　-6.28318　-6.28318　　0.00000

0.00000　-6.28318　-6.28318　　0.00000

3. Remarks

The author wishes to correct the description in the previous papers in this series. The

author wrote that the convergence speed was slowed if the number of zero contribution of the

phases increased. This was the author's misjudge for the relations with the number of the

zero contribution and CPU time. Probably, this may be due to the ambiguity of the relation

between the numbers of zero contribution and the number LNREF in the previous paper

(1985). When the number of the zero contribution in (B) in the paper (1987) increased,

the convergence speed was accelerated. Hence, it becomes doubtful whether or not the

(A) are necessary.

The present author had been doubtful for the reports of the successes of phase

determination, since he did not believe that all phases could be determined from very small
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number of correct phases of strong reflections. In the previous papers, the present author

noticed that it was not necessarily impossible to determine all the phases from the small

number of correct phases of the strong reflections. The present author pointed out that this

was due to the power effect of amplitudes of structure fasctors in the case of fixing the strong

correct phases for several cycles of calculation. Hence, the next problem to be solved is to

determine correctly the phases of small number of strong reflection. But, this is very

difficult, since strong reflections do not make triplets ft, k and ft-A: in many cases. We

must determine correctly the phases of the isolated reflections. The initial sets obtained in

this paper are satisfying the condition required for Symbolic Addition method. The phases

derived from the initial sets did not agree with the correct phases. This indicates that there

are many sets of small numbers of phases satisfying the tangent formula, but that the correct

phases can not be determined from the sets of phases.
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COMPLEX EPHS

DIMENSION IH(3′15),EPHS(15),MRL(15,20′2),

1AF(15),ANGM(15),AFC(15),NRM(15)

PAIT=6.283185307179586

PAI=PAIT/2.0

500　　FORMAT(811 0)

IX=8735

NREF=14

READCl.510　IH J′工).J=1′3).工=1′NREF)

510　　FORMAT(4(3I5′2X) )

READ(1 ′530)　I)′工=1 ′NREF)

530　　FORMAT(4F1 5.5)

DO 10 l=1′NREF

READM ′500)NRM(I)

IF(NRM(I).EQ.O) GO TO 10

READ(1 ′540)(MRL(I,J,1 ).MRL(I′J,2),J=1 ′NRM(I))

1 0　　　CONTINUE

540　　FORMAT*4(215,5X) )

EPS=PAIT/1 6

NCAL=20

NTR=O

NCC=O

1 00 CONTINUE

NTR=NTR+1

20

30

★
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IFCNTR.GT.NCAI一) STOP

DO　20 1=1′NREF

ANGM(I)=10.0

EPHS(I)=0.0

CALL RANPHS(I,IH,EPHS(I) ,IX)
CONTINUE

DO　30 1=1′NREF

IED=NRM( I

IF(IED.EQ.0)GO TO　30

CALL DETPHS(I,IED.IH,AFfEPHS,MRL,EPHS(I) ,AFC(r) ,ANGM(I) ,PAIT)
CCNTINUE

IR=O

CALL FACCOM(NREF,IH.AF,MRL,NRM,EPHS,ANGM,AFC,PAIT,IX.EPS.IR)
IF(IR.NE.0)GO TO　40
NCC=NCC+1

GO TO　50

DO　60 J=1′10

DO　70 1=1′NREF

IED=NRM( I

IF(IED.EQ.0)GO TO　70

CALL DETPHS(I,IED′工H′AF,EPHS,MRL,EPHS(I) ,AFC(I) ,ANGM(I) ,PAIT)

CONTINUE

CONTINUE

CONTINUE

WRITE(7,500)NCC

WRITE(7,530)(ANGM(I),I=1 ,NREF)
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CONTINUE

GO TO 100

END

SUBROUTINE DETPHS( IJ, IED′ZH′AF,EPHS,MRL,EPH,AC′ANG,PAIT)

COMPLEX EPHS,EPH,SUMEHfSM,REPS

DIMENSION IH(3,15),AF(15).EPHS(15),MRL(15,20′2),IK(3)

SUMEH=O. 0

NSM=O

DO 10 l=1′工ED

J=MRL(IJ,I,1 )

K=MRL(IJ,1,2)

DO　20　KA=1,3

IK(KA)-IH(KA,IJ)-1H(KA,J)
CONTINUE

CALL REPHS(K,IH,IK,EPHS(K) ,REPS)

SM=EPHS(J) *REPS

IF(SM.NE.0.0)NSM=NSM+1

SUMEH=SUMEH+SM*AF(J　*AF(K)
CONTINUE

IF(NSM.EQ,0)ANG=10.0

IF(NSM.EQ.0)EPH=0.0

IF(NSM.EQ.0 )RETURN

SUMEH=SUMEH/NSM

AA=CONJG( SUMEH　*SUMEH

AC=SQRT AA

CALL UNICMP(SUMEH,AC,EPH,ANG,PAIT)

IF(IH(2′IJ).EQ.O.AND.REAL(EPH).GE.0.0)ANG=0.0

IF(IH(2,IJ).EQ.0.AND.REAL(EPH).LT.0.0)ANG=PAIT/2.0
RETURN

END

SUBROUTINE UNICMPCFC′ABF,UNTV′ANG.PAIT)

COMPLEX FC,UNTV

IF(ABF.EQ.0.0)UNTV=0.0

IF(ABF.EQ.O.O)RETURN

A=REAL( FC) /ABF

B=AIMAG( FC) /ABF

UNTV=CMPLX(A,B)

CALL ARG(PAIT,UNTV,ANG)
RETURN

END

SUBROUTINE REPHS(K, IH,IK,EPH,REPS)

COMPLEX EPH′REPS

DIMENSION IK(3)′IH(3,15)

IJK=O

NN=O

NA=O

DO 10 l=1′3

IF(IK(I).NE.IH(I,K))IJK=1

IF(IK(I)*IH(I,K).LT.0)NN=NN+1

IF(IK(I).NE.0)NA=NA+1
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CONTINUE

IF( IJK.EQ.O )REPS=EPH
IF( UK.EQ.0)RETURN
IF(NN.EQ.NA)REPS=CONJG(EPH)

IF(NN.EQ.NA)RETURN

AKO=0.5*IK(2)

CKO=AKO-AINT ( AKO )
EPS=0.001

IF(ABS(CKO).LT.EPS) GO TO　30

IF(ABS(CKO).GE.EPS) GO TO　40
CONTINUE

IF(IK(2).LT.0)REPS=CONJG(EPH)
IF(IK(2).LT.O)RETURN
REPS=EPH

RETURN

CONTINUE

A=REAL( EPH )

B=AIMAG( EPH)

IF(IH(1,K).LT.O)　GO TO　50

IF(IK(2)

IF(IK(2)

IF(IK(2)

IF(IK(2)
50　　　CONTINUE

IF(IK(2)

IF(IK(2)

IF(IK(2)

IF(IK(2)
END

LT.0 )REPS=CMPLX(-A,B)
LT.O RETURN

GT.O )REPS=CMPLX(-A,-B)
GT.O RETURN

GT.O )REPS=CMPLX(-A,-B)

GT.O )RETURN

LT.O )REPS=CMPLX(-A,B)
LT.O RETURN

SUBROUTINE FACCOM(NREF, IH,AF,MRL,NRM,EPHS,

1ANGM,AFC,PAITfIX,EPS,IR)
COMPLEX EPHS.EP

DIMENSION IH(3,15),AF(15),MRL(15,20.2),NRM(15)

1EPHS(15),AFC(15),ANGM(15),IAM(15),HANGM(15),IBM(15),
2PM(15),NPM(15),NPO(15)

DO 10 l=1′NREF

IAM(I)=O

1 0 CONTINUE

20　　　CONTINUE

30

NC=O

DO　30 1=1′NREF

IBM I)=O

IF(IAM(I).EQ.1 )NC=NC+1

IF(NC.GT.1 )IAM(I)=O
CONTINUE

DO　40 1=1′NREF

IED=NRM( I )

IF(IAM(I).EQ.O) GO TO　40

IBM I)=1

DO　50 J=1′工ED
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JA=MRL(IfJ,1 )
JB=MRL(I,J,2)

IBM(JA　=1
IBMfJB　=1

50　　　CONTINUE

40　　　CONTINUE

DO　60 1=1′NREF

IF(IBM(I).EQ.1 )EPHS(I)=0.0

60　　　CONTINUE

NCC=O

NA=0

80　　　CONTINUE

71

NC=1

DO　71 1=1′NREF

CALL RANDOM( IX,RAN)

PM( I ) =RAN*NREF

CONTINUE

CALL NUMBR(NREF,PMfNPM,NPO)

DO　70 1=1′NREF

IA=NPO( I

IED=NRM( IA)

CALL DETPHS(IA,IED,IH,AF,EPHS,MRL,EP,AFF,

1HANGM(IA) ,PAIT)

IF(HANGM(IA .EQ.10.0)NC=O

[HANGM(IA).EQ.10.0) GO TO　70
EPHSflA　=EP

70　　　CONTINUE

IF(NC.EQ.0 )NCC=NCC+1

IF NCC.EQ.5)IR=1

IF IR.EQ.1 )RETURN

IF(NC.EQ.O) GO TO　80
NCC=O

NA=NA+1

IF(MOD(NA,5).NE.0)GO TO　80

DO　90 J=1′5

DO 100 l=1′NREF

IED=NRM I

CALL DETPHS(I,IED,IH,AF,EPHS,MRL,EP,AFF,

1HANGM(I) fPAIT)
EPHSCI　=EP

1 00 CONTINUE

90　　　CONTINUE

CALL CRITLM(NREF,ANGM,HANGM, IAM,NN,PAIT,EPS)

DO 110 l=1′NREF

ANGM I)=HANGM I

1 1 0 CONTINUE

IF(NN.GT.0)GO TO　20

RETURN

END

SUBROUTINE ARG( PAIT′UNTV′ANG

20
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COMPLEX UNTV

AA=REAL ( UNTV )

BB=AIMAG ( UNTV)

IF(AA.EQ.0.0.AND.BB.EQ.0.0)ANG=10.0

IF(AA.EQ.O.O.AND.BB.EQ.O.O) RETURN

IF(AA.EQ.0.0.AND.BB.EQ.1.0)ANG=PAIT/4.0

IF(AA.EQ.0.0.AND.BB.EQ.-1.0)ANG=PAIT*3.0/乍･O
IF(AA.EQ.0.0)RETURN

D=BB/AA

C=ATAN( D

IF(AA.GT.0.0.AND.BB.GE.0.0)ANG=C

IF(AA.GT.0.0.AND.BB.GE.0.0)RETURN

IF(AA.GT.0.0.AND.BB.LT.0.0)ANG=PAIT+C

IF(AA.GT.O.O)RETURN

ANG=PAIT/2.0+C
RETURN

END

SUBROUTINE RANPHS(I′工H′EPH′工X)

COMPLEX EPH

DIMENSION IH(3,500)

A=0.707107

CALL RANDOM( IX,RAN)

IF(RAN.LT.0.125)EPH=CMPLX(1.0,0.0)

IF(RAN.GE.0.125.AND.RAN.LT.0.25)EPH=CMPLX(A,A)

IF(RAN.GE.0.25.AND.RAN.LT.O.375)EPH=CMPLX(0.0,1.0)
IF(RAN.GE.0.375.AND.RAN.LT.0.5)EPH=CMPLX(-A,A)

IF(RAN.GE.0.5.AND.RAN.LT.0.625)EPH=CMPLX(-1.0,0.0)

IF(RAN.GE.0.625.AND.RAN.LT.0.75)EPH=CMPLX(-A,-A)

IF(RAN.GE.0.75.AND.RAN.LT.O.875)EPH=CMPLX(0.0,-1.0)

IF(RAN.GE.0.875.AND.RAN.LT.1.0)EPH=CMPLX(A,-A)

IF(IH(2,I).EQ.0.AND.RAN.LT.0.5)EPH=CMPLX(1.0.0.0

IF(IH(2,I).EQ.0.AND.RAN.GE.0.5)EPH=CMPLX(-1.0,0.0)
RETURN

END

SUBROUTINE CRITLM(NR,ANGM,HANGM, IAM,NN,

1PAIT,EPS)

DIMENSION ANGM(15),HANGM(15),IAM(15)

PAI=PAIT/2.0

DO 10 l=1′NR

IAMCI　=O

CONTINUE

NN=O

DO　20 1=1′NR

DA=ANGM( I ) -HANGM( I )

IF(DA.GE.0.0 )DA=DA-PAIT*AINT(DA/PAIT)

IF(DA.LT.0.0)DA=DA-PAIT*(AINT(DA/PAIT)-1.0)

IF(DA.GE.PAI )DA=DA-PAIT

ADA=ABS (DA)

IF(ADA.GT.EPS)IAM(I)=1

IF(ADA.GT.EPS)NN=NN+1
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CONTINUE

RETURN

END

SUBROUTINE RANDOM( IR,RAN )

REAI一★8　　A′B′C′Cl ′W

A=23　　B=11317　　C=32749　　Cl=り32749
DATA A.B/23.DO.11317.DO/

DATA C.Cl/32749.DO.0.30535283520107484D-4/

W=IABS( IR

W=DMOD(A*W+B,C)
IR=W

IF(W.EQ.O) W=1.0
RAN=W★cI

RETURN

END

SUBROUTINE NUMBR(NREF,RH,MRH,MHR)

DIMENSION RH(200) ,MRH(200) ,RHH(200) ,MHR(200),IM(200)

DO 10 l=1′NREF

RHH(I)=RH(I)
CONTINUE

IA=NREF-1

DO　20 1=1′工A

JA=I+1

DO　30 J=JA′NREF

IF(RHH(I).GE.RHH(J)) GO TO　40

SRS=RHH( I

RHH(I)=RHH(J)

RHH(J)=SRS

CONTINUE

CONTINUE

CONTINUE

DO　50 1=1′NREF

IM(I)=O
CONTINUE

DO　60 1=1′NREF

IJK=O

DO　70 J=1′NREF

IF(IJK.EQ.1) GO TO　70

IF(IM(J).EQ.1　GO TO　70

IF(RHH(I).NE.RH(J)) GO TO　70

MRH(J)=I

IJK=1

IMCJ　=1

CONTINUE

CONTINUE

DO　80 1=1′NREF

IM(I)=O
CONTINUE

DO　90 1=1′NREF
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IJK=O

DO 100 J=1,NREF

IF(IJK.EQ.1) GO TO TOO

IF(IM(J).EQ.1) GO TO 100

IF(RH(I).NE.RHH(J)) GO TO 100

MHR(J)=I

IJK=1

蝣)=1

CONTINUE

CONTINUE

RETURN

END


