
85

Optimal fixed-point smoother using covariance information

for white Gaussian plus colored observation noise
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The optimal fixed-point smoother is derived for the white Gaussian plus colored obser-

vation noise when the covariance information for the signal, the colored and white

Gaussian observation noises, and the observed value are available.

1. Introduction
●

In the estimation problems of the state of a dynamic model, the Kalman filter is well-

known (Kalman, 1960). The Wiener-Hopf integral equation is often used to derive a different

type of estimator, which uses the covariance information of the signal and white Gaussian

observation noise with the observed value (Nakamori and Sugisaka, 1977). The other

approach for an estimator using covariance information is studied (Kailath, 1976) , where the

estimator is derived in the relation between the Kalman filter and the covariance infor-

mation. There seems to be many cases when the white Gaussian and colored observation

noises are corrupted with the signal during the transmission of the signal (Trees, 1968).

Also, this kind of estimator is appropriate for estimation problems of stochastic signal

obtained from environmental circumstances.

This paper derives the optimal sequential fixed-point smoother from the Wiener-Hopf

integral equation for the white Gaussian plus colored observation noise. It is assumed that

the autocovariance functions of the signal and the colored observation noise are expressed in

the semi-degenerate kernel form. The sequential algorithm for an optimal impulse response

function, which yields a linear least-squares smoothing estimate, is also presented, and

uniqueness of the presented fixed･point smoothing algorithm is proved.
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2. Problem formulation

Consider the following observation equation

y(t) -z (t) +vc(t) +v(t),

一■■

(1)

where z (t) is an n-dimensional zero-mean signal vector, vc (t) is a zero-mean colored

observation noise, and v (t) is a zero-mean white Gaussian observation noise with variance

R.

E [v(t)vT(s)]-Rd(t-s), E [v(t)]-O (2)

It is assumed that the signal z (t) , the white Gaussian observation noise v (t) and the colored

observation noise vc (t) are uncorrelated mutually.

E[z(t)vT(s)]-O, ELz(t)VCT(s)]-O, E[vc(t)vT(s)]-0, 0≦S, t≦T (3)

Let us assume that the fixed-point smoothing estimate z (t, T) of z (t) , at the fixed-point

t, based on the measurement data Jy (s), o≦S≦TI is given by

T

t(t, T)-fk(t s, T)y(s)ds,
%

(4)

where h (t, s, T) denotes an nXn impulse response function. Minimizing the mean-square

value of smoothing error z (t) -2 (t, T)

J-E [(z(t)-1(t, T))T(z(t)-2(t, T))J

one obtains the Wiener-Hopf integral equation (Sage and Melsa, 1971)

T

E[z (t)yT(s)]- fh(t, s',T)E [y (s')yT(s)]ds'
r#

Let K (t, s) and Kc (t, s) denote the autocovariance functions of z (t) and vc (t) as

K(t, s) -E[z(t)zT(s)] , Kc(t, s) -E[vc(t)VCT(s)].

Substituting (1) into (6), and using (2) and (3), one obtains

(5)

(6)

(7)
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T

h(t, s, T)R-K(t, s)- fk(t, s',T) (K(s',s) +Kc(s¥ s))ds'
as

(8)

(Trees, 1968).

If one applies an invariant imbedding method (Nakamori and Sugisaka, 1977) , which

transforms Volterra type integral equation of the second kind into a Cauchy system, to ( 8 ) ,

one can derive an algorithm for the optimal impulse response function h (t, s, T). Here,

it is assumed that the autocovariance functions of the signal z (t) and the colored obser-

vation noise vc (t) are expressed in semi-degenerate kernel forms (Nakamori and

Sugisaka, 1977) as K (t, s) -A (t) BT (s) andKc (t, s) -C (t) DT (s) for O≦S≦t respectively.

Here, A (t) and B (s) are nXm bounded matrices, and C (t) and D (s) are nXm'bounded

matrices.

3. Derivation of optimal fixed-point smoother

If one differentiates( 8 ) with respect to T, one obtains

T

Bh(t, s, T)/3TR--h(t, T, T) (K(T, s)+Kc(T, s)) -fdh(t, s',T)/BT (K(s',s)
r#

+Kc (s¥s)) ds'.

Introducing a function O'(s, T) , which satisfies

(9)

T

卓(s, T)R-- (K (T, s) +Kc(T, s)) -f ¢(s',T) (K (s',s) +Kc(s'.s))ds', (10)
's:

one obtains a partial differential equation

dh(t, s, T)/dT -h(t, T, T)*(s, T), h(t, s, 0)-K(t, s)R'　　(ll)

Let us introduce functions / (s, T) and L (s, T) which satisfy

T

/ (s, T)R--BT(s) - IT (s',T) (K (s',s) +Kc(s',s))ds'
r#

qg
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and

T

L(s, T)R--DT(s) -fL (s',T) (K (s',s) +KC(s',s)) ds'.
m

From (10), (12) and (13), one notices that the function ¢ (s, T) is expressed as

#s,T-A TJ s,T　+C T L s,T

13

3日Ⅸ

by referring to the semi-degenerate kernel forms of K (t, s) and Kc (t, s) for O≦S≦t.

Differentiating (12) with respect to T, one obtains

dj (s, T)/dTR--J (T, T) (K(T, s) +Kc(T, s)) -

T

/ dj (s',T) /dT (K (s',s) +KC (s',s) ) ds'.
m

A partial differential equation for the function / (s, T) becomes

(1 5)

dj (s, T)/dT-J (T, T)S(s, T), J (s, 0) --BT(s)R　　　　　(16)

from (10) and (15). If one differentiates (13) with respect to T, one obtains

T

∂L(s, T)　∂TRニーL(T, T) (K(T, s)+Kc(T, s))-/∂L(s',T)　∂T(K(s',s)
0

+KC s¥s ds'.

From (10) and (17), a partial differential equation for L (s, T) is written as

dL(s, T)　∂T-L(T, T)◎(s, T), L(s, O)--DT(s)R-1

The function / (T, T) which appeared in (16) is developed as

T

/ <T T)R--BT(T) - IT (s',T) (K (s',T) +KC(s',T))ds'
as

T                            T

-BT (T) - fj (s'.T)B (s')AT(T) ds'- fj (s',T)D (s') CT (T) ds'.
0　　　　　　　　　　　　　　　　　　　　　　　　　　0

(描

(1 8)
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-BT (T) -r (T)AT (T) -f (T) CT (T)

by introducing functions r (T) and / (T) , which are expressed by (20) and (21).

r

r (T) - IJ (s',T)B (s')ds'
9｣

T

f (T) - fJ (s',T)D (s') ds'
rォ

(1 9)

刺)

OT

If one differentiates (20) with respect to T, and uses (14) and (16), one can develop an

ordinary differential equation for r (T).

T

dr (T)/dT-J (T, T)B (T) + / dj (s',T)/dTB (s') ds'
s

T

-J (T, T)B (T) + !J (T, T)◎(s',T)B (s')ds'
0

T

-/(X T)B(T) +J (T, T) I (A(T)J (s',T) +C (T)L(s',T))B(s')ds'
r#

If one introduces a function g r7ブexpressed by

T

g(T) -JL (s',T)B (s') ds¥
V

謁現

施EE

and if one uses (20) and (23), one can rewrite (22) as

dr (T)/dT-/ (T, T) (B (T) +A (T) r (T) +C (T)g(T)), r (O) -0.  (24)

If one differentiates (21) with respect to T, one obtains
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-/ (T, T) (D (T) +A(T) IJ (s¥ T)D (s')ds'+C (T) fL(s',T)
l^^^^^^^^^^^^^^^^^^^^K

D (s'J ds')

-J CT, T) (D (T) +ACT)/(V +C (T)I(T)), f(0) -0,　　　(25)

by using (14), (16), (21) and a newly introduced function / (T) given by

r

I (T) =fL(s'T)D (s')ds'.
%

06

If one differentiates (23) with respect to 7¥ one obtains

dg(T)/dT-L(T, T)B(T) +L(T, T) (A(T)r(T) +C (T)g(T)), g(O) -0,

by using (14), (18), (20)and (23). A differential equation for the function / (T) becomes

dl (T)/dT-L(T, T) (D (T) +A(T)f(T) +C (T)I (T)), I (O) -0,

I

by differentiating (26) with respect to T and using (14), (18), (21) and (26).

The function L (T, T) , which appeared in (18), is developed as

T

L(T, T)R--DT (T) -IL(s',T) (K (s',T) +Kc(s',T))ds'
0

T                             T

-DT (T) -JL (s',T)B (s')AT (T) ds'-JL (s',T)D (s') CT (T) ds'.
0　　　　　　　　　　　　　　　　　　　　　　　　　　　　0

-DT (T) -g(T)AT (T) -I (T) CT (T) ¢㊥
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by using (23) and (26) with the property of the semi-degenerate kernels in K (s',T) and

Kc(s', T) for O≦S'≦T.

The fixed-point smoothing estimate 2 (t, T) was formulated in ( 4 ). If one differentiates

4 ) with respect to T, one obtains a partial differential equation for 2 (t, T) from (ll) and

(14).

T

32(t, T)/dT-h(t, T, T)y(T) +fdh(t, s, T)/dTv (s)ds
s

T

-h(t, T, T)y(T) +h(t, T, T) f<p(s, T)y(s)ds
サ

T

-h(t, T, T) (y(T) +A(T) fj (s, T)y(s)ds+
サ

T

C (T) JL(s, T)y (s)ds)
%

Introducing functions e (T) and Q (T) expressed by

T

e(T)-fJ (s, T)y(s)ds
r#

T

Q(T) -JL(s, T)y (s)ds,
2E

and

one can rewrite (30) as

盟XE

帥

㈹

di(t, T)/dT-h(t, T, T) (y(T) +A(T)e(T) +C (T)Q(T)), ｣(t, O) -O.

A differential equation for the function e (T) is derived by differentiating (31) with respect

to 7'and using (14), (16), (31)and (32) as
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de(T)/dT-J (T, T) (y (T) +A (T)e(T) +C (T)Q(T)), e(O) -O.  (34)

If one differentiates (32) with respect to T and uses (14), (18), (31)and (32), one obtains a

differential equation for the function Q (T) as

dQ(T)/dT-L(T, T) (y(T) +A(T)e(T) +C(T)Q(T)), Q(O)-O. (35)

The function h(t, T, T) in (ll) is still unkown. If one put s-T in(8), one obtains

T

hit, T, T)R-K(t, T) - fh (t, s'T) (K(s',T) +KC(s',T))ds'.
サ

(鍋

Since the autocovariance functions of the signal and the colored observation noise are

expressed by K (s',T) -B (s')AT (T)and Kc(s',T) -D (s') CT (T) for O≦S'≦T from the

property of the semi-degenerate kernels, (36) is transformed into

ri^^^^^^^^^^^^^^^^^^^^^^^Wi

h(t, T, T)R-K(t, T) - fh(t, s',T)B(s')ds'AT(T) - fh(t, s',T)D (s')ds'
0　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　0

CT(T).

If one introduces functions S (t, T) and W (t, T) expressed by

T

S(t, T) - Jh (t, s',T)B (s')ds'
s

T

W ft, T) - Jh(t, s'.T)Dfs')ds¥
1

and

m

鍋

39

one obtains an expression for h (t, T, T) as

h(t, T, T)- (K(t, T)-S(t, T)AT(T)-W (t, T)CT(T))R'1.

If one differentiates (38) with respect to T and uses (ll), (14), (20)and (23), a partial
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differential equation for the function S (t, T) is developed as

lk

(t, T)/dT-h(t, T, T)B (T) +Jdh(t, s',T)/BTB (s')ds'
サ

T

-h(t, T, T) (B (T) + fo(s',T)B (s')ds')
r#

T

-h(t, T, T) (B(T) +A(T) fj (s',T)B(s')ds'+
r#

T

C (T) IL (s',T)B (s') ds')
0

-h(t, T, T) (B(T) +A(T)r(T) +C(T)g(T)), S(t, 0)-0.
帆)

93

If one differentiates (39) with respect to T, a partial differential equation for the function

W (t, T) becomes

∂W(t, T)　∂T-h(t, T, T) (D(T) +A(T)f(T) +C(T)I(T)), W(t, O)-0, (42)

from (ll), (14), (21) and (26).

If one wants to start with the filtering estimate 2 (t, t) at the fixed-point t in the calculation

of the fixed-point smoothing estimate z (t, T) by the partial differential equation (33) , one

needs the value of z (t, t). Fundamentally, the filtering estimate z (t, t) is an estimate which

is formulated by putting 7㌧ ～ in ( 4 ) and is expressed as a linear integral transformation of

the observed value set /y (s) , O≦S≦t). An optimal impulse response function h (t, s, t)

which calculates the linear least-squares filtering estimate, satisfies the following integral
●                                                                                                                 ●

equation

T

h(t, s, t)R-K(t, s) - fh(t, s',t) (K(s',t) +KC(s',t))ds¥
r#

個

It is noted that the inequality O≦s<t holds in (43). Substituting the expression K (t, s) -

A (t) BT (s) for O≦s<ty which is represented by the semi-degenerate property for the

autocovariance function of the signal z (t), into (43), one obtains

T

h(t, s, t)R-A (t)BT(s) - Jh (t, s',t) (K (s',t) +KC(s',t)) ds'.
9S

EEF!E
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Comparing (44) with (12) leads to an expression for the optimal impulse response function

*ft s,t)

h(t,s,t　--A tJ s,t. 個

If one substitutes (45) into an equation, which is obtained by putting T-t in ( 4 ), and uses

(31), one obtains an expression for the filtering estimate Z (t, t).

i t t　--A t e t 個

Also, the initial conditions at T-～ in the partial differential equations (41) and (42) are S

(t, t) --A (t) r (t) and W (t, t) --A (t)f (t) respectivelyby substituting (45) into (38) and

(39), and by using (20) and (21).

Now, let us summarize above results. The fixed-point smoothing estimate 2 (t, T) and the

filtering estimate z (t, t) are calculated sequentially by(47)-(59).

Fixed-point smoothing estimate ! 2 (t, T)

dt(t, T) ∂T-h(t T, T) (y(T)+A(T)e(T)+C(T)Q(T)), f(t, 0)-0　(47)

(Initial condition of 2(t, T) at T-t is 2(t, t).)

de(T)/dT-J (T, T) (y(T) +A(T)e(T) +C (T)Q(T)), e(0) -0

dQ(T)/dT-L(T, T) (y(T) +A(T)e(t) +C (T)Q(T)), Q(O) -0

h(t, T, T) - (B(t)AT(T)-S(t, T)AT(T)-W (t, T)CT(T))R~¥

個

個

盟RE

aS(t, T)/dT-h(t, T, T) (B(T) +A(T)r(T) +C (T)g(T)), S(t, 0) -0　(51)

(Initial condition of S(t, T) at T-t is S(t, t) --A(t) r (t).)

9W(t, T)/3T-h(t, T, T) (D(T)+A(T)f(T)+C(T)I(T)), W(t, 0)-0 (52)

(Initial condition of W (t, T) at T-t is W (t, t) --A(t)f(t).

dr(T)/dT-J (T, T) (B(T) +A(T)r(T) +C(T)g(T)), r(O) -O

df(T)/dT-J (T, T) (D (T) +A(T)f(T) +C (T)I (T)),f(O) -0

63)

冨田
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/(T, T) - (-BT(T) -r(T)AT(T) -f(T)CT(T))R-1

dg(T)/dT-L(T, T) (B(T) +A(T)r(T) +C (T)g(T)), g(0) -0

dl (T)/dT-L(T, T) (D (T) +A(T)f(T) +C (T)I (T)), 1(0) -0

L(T, T) - (-DT(T) -g(T)AT(T) -I(T)CT(T))R-1

2 (t, t) - -A (t) e (t) (Filtering estimate)

鍋

66)

5fl

児E

官記

Also, the optimal impulse response function h (t, s, T) is calculated by the following se-

quential algorithm.

dh(t, s, T)/dT-h(t, T, T)9.(s, T), h(t s, O) -K(t, s)R'1

◎(s, T)-A(T)J(s, T) +C (T)L(s, T)

dj(s, T)　∂T-J(T, T)¢(s, T),J(s, O)--BT(s)R-

dL(s, T)/dT-L(T, TY9(s, T), L(s, O) --DT(s)i?"

Here, the functions / (T, T) and L (T, T) are calculated by (55) and (58).

伽)

刷E

棉

(棉

4. Smoothing error covariance function

Let us derive an equation for a smoothing error covariance function. The smoothing error

covanance function is defined by

P(t, s, T)-E [(z(t)-t(t, T)) (z(s)-t(s, T))T], 0≦S, t≦T. ¢㊥

From an orthogonal projection lemma that smoothing error z (t) -2 (t, T) is orthogonal to

the smoothng estimate z (s, T) for O≦s< T, one obtains

P(t, s, T)-K(t, s)-E[2(t, T)zT(s)]. 棉

Substituting (4 ) into (65), andusing ( 1 ) and (3 ) withanexpressionofK (s',s) -E [z (s')

zT (s)] , one obtains

95
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T

P(t, s, T) -K(t, s) - fh (t, s',T)K(s',s)ds'.
1

If one differentiates (66) with respect to T and uses (60), one obtains

T

dP(t, s, T)/dT--h(t, T, T)K (T, s) -fdh(t, s',T)/dTK (s',s)ds'
r#

T

-h(t, T, T) (A(T)BT(s) + I¢(s',T)K (s',s)ds')
r#

(棉

(棉

in terms of K (T, s) -A (T)BT (s). If one introduces a function F (s, T) defined by

T

F (s, T) -Io(s',T)K (s',s)ds¥
0

one obtains a partial differential equation for P (t, s, T) as

詑監

dP(t,s, T)　∂T--h(t T, T) (A(T)BT(s)+F(s, T)),P(I s, O)-K(t, s).

Substituting (61) into (68) , one obtains　　　　　　　　　　　　　　　　　　　　　′

T                                T

F (s, T) -A (T) IJ (s',T)K (s',s) ds'+C (T) /L (s',T)K (s',s) ds'.
0　　　　　　　　　　　　　　　　　　　　　　　　　　　　　0

If one introduces functions U (s, T) and V (s, T) expressed by

T

U(s, T) - fJ (s',T)K(s',s) ds'
%

T

V (s, T) -fL (s',T)K (s',s)ds'
as

and

晒KE

(7 1)

緬現



97

S. Nakamori : Optimal fixed-point smoother using covariance information for white Gaussian plus

colored observation noise

one can rewite (70) as

F(s, T)-A(T)U(s, T) +C(T) V(s, T). (7 3)

If one differentiates (71) with respect to 7'and uses (61), (62), (71) and (72), one obtains

a partial differential equation for the function U (s, T) as

∂U s, T)　∂T-J(T, T) (A(T)BT(s) +A(T)U(s, T)+C(T) V(s, T)), U(s, 0)-0.

3用

Also, a partial differential equation for the function V (s, T) becomes

∂V s, T　∂T-L(T, T) (A(T)BT(s)+A(T)U(s, T)+C(T)V(s, T)), V(s, O)-O,

胸監

from (61), (63), (71) and (72).

Therefore, the sequential algorithm for the smoothing error covariance function P (t, s, T)

consists of (50)-(58), (69), (73), (74) and (75).

Now, the smoothing error covariance function P (t, s, T) is written as

P(t, s, T)-K(t, s)-E[2(t, T)2T(s, T)]

-K(t,s　-Pz t s,T, 翫囲

where Pz (t, s, T) denotes an autocovariance function of the fixed-point smoothing estimate

z (t, T). Pz (t, s, T) is a positive semi-definite matrix, and the smoothing error covariance

matrix P (t, s, T) is also positive semi-definite. Therefore, one notices that there exists a

relationship

0≦Pz(t, s, T ≦K(t, s). W

This relation for the white Gaussian noise is shown (Kailath, 1976). According to a discussion

about stability problems (Kailath, 1976) , (77) ensures that the presented smoothing algorithm

has a unique solution, since Pz (t, s, T) is lower and upper bounded.

From (69) with (76), one finds that Pz (t, s, T) satisfies a similar partial differential

equation with that for P (t s, T)as

∂>P*(t, s, T)　∂T-h(t, T, T) (A(T)BT(s) +F(s, T)), Pz(t, s, O)-0.
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5. Conclusions

In this paper, the continuous linear optimal filter was designed based on the Wiener-Hopf

integral equation in linear least-squares estimation theory. The fixed-point smoothing

algorithm presented here only uses information of A (T) , B (T) , C (T) , D (T) and R with

the observed value y (T). Therefore, the current fixed-point smoother does not need

information of system matrix etc. in a state-space model. This point is the basic difference

in approaches between the presented smoother and the Kalman filter based on the state-space

model.
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