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An invariant imbedding method enables to derive Chandrasekhaトtype filtering equations
●

in the case of white Gaussian plus colored observation noise.

●                                               ●

Key Words Chandrasekhar-type equations ; filter ; estimation ; signal processing.

Abstract-The linear least-squares filter of Chandrasekhaトtype is derived for white Gaussian

plus colored observation noise. Here, it is assumed that system matrices for signal and coレ
●

ored noise are known in each state-space model, and that the variance of white Gaussian noise

and the observed value are also given. The filtering estimate is calculated sequentially in
●                                                        ●

linear continuous-time stationary systems.

1. Introduction

In stationary continuous-time systems, Chandrasekhar-type filter is designed (Kailath,

1973 ; Lindquist, 1974). Chandrasekhar-type equations consist of 2m�"n simultaneous diffe-

rential equations for the Kalman gain, where n is the dimension of the system and m of
●

l

the output. In the Kalman filter (1960) , n (n+l) /2　Riccati-type nonlinear differential

equations should be calculated to obtain the Kalman gain in the case of white Gaussian
●

observation noise.

This paper, at first, clarifies that previous result by Lindquist (1974) can be obtained

by another method based on the innovations approach. In detection and estimation theory

(Trees, 1968) , estimation problems are investigated for white Gaussian plus colored

observation noise. However, the Chandrasekhar-type equations have not been derived for

white Gaussian plus colored observation noise. Secondly, the Chandrasekhar-type filter

for white Gaussian observation noise is extended to white Gaussian plus colored observa-

tion noise via an invariant imbedding method (Nakamori, 1990). The proposed filter cal-

culates the estimate sequentially in linear stationary stochastic systems. The filter neces-
●
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sitates the information of system matrices for the signal and colored noise in each state-
●

space model, the variance of white Gaussian noise and the observed value. The current

filter might be compared with a previous filter (Nakamori, 1991) which also computes

a filter gain directly by solving differential equations simultaneously. These equations
●

contain Riccati-type nonlinear differential equations partly and can not be regarded as

the Chandrasekhar-type equations strictly. Number of differential equations included in

the calculation of the filtering estimate by the proposed technique is 2m2+2m�"n+m+n

●

which is less than n2+2m2+3m�"n+m+n in the previous filter. It is considered that the

current algorithm is more appropriate for fast calculation than the previous one.

2. Derivation of Chandrasekhar-type equations for white Gaussian noise

Kailath (1973) derives the Chandrasekhaトtype equations from the Riccati-type nonlinear

differential equations of the Kalman filter. In this section, the Chandrasekhaトtype equa-

tions are obtained by a different method from the conventional derivation techniques

(Kailath, 1973 ; Lindquist, 1974).

Let an m-dimensional observation equation be given by
●

y (t)-Hx(t)+v (t), z (t)-Hx (t),　　　　　　　　　　　　　　　　　　　(1)

where y (t) is an observed value, H is an mXn observation matrix, x (t) is a zero-mean

signal process and v (t) is white Gaussian observation noise with variance R.

E[v (t) vT(su-Rd (t-s)

It is assumed that x (t) and v (s) are uncorrelated.

E[x(t) uT(s)]-0, 0≦s, t<∞

Let us assume that the filtering estimate念(t) of x (t) is expressed by

st (t)-J三g (t, s)リtods,

(2)

(3)

(4)

where g(t, s) is an impulse response function andy(s) (-y (s)-H｣ (s)) is called the

innovations process (Kailath, 1968). The optimal impulse response function for the linear

least-squares filtering estimate is given by
●                                                          ●

g(t,s)-E[x(t)リ(s)]R-∫　　　　　　　　　　　　　　　　　　　　　　(5)

(Kailath, 1968). If we denote the crosscovariance of x (t) with y (s) by K^ (t, s), we can

rewrite (5) as

g (t, s)-E[x (t) 也 (s)-Hi (s))rli?-J

- ¥K~ (t, s)-E[x (t)念T (s)] IFIR-)
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-1Kv(t,s)-E[盆(i)念蝣(* ]伊IR-I

-¥Kx3{t,s)-E[{J三g(t,8')棉)刺**｡ A8")〟(β")ds'^IFIR-1, (6)

where we used the orthogonal projection lemma (Sage and Melsa, 1971) of x (t)一点(t)

with x (s). If we put s-t, apply the property of convolution integral for stationary

process to (6) and note that the variance of the innovations process equals that of

white Gaussian observation noise, we have

g (t, t)-{Kxy (t, t) -J三g V, O)RgT (?', O)ds'IF)R.･

If we differentiate (7) with respect to t, we obtain

dg (t, t)/dt--g (t, O)RgT (t, 0) IFR-

(7)

(8)

The initial value on the differential equation (8) at t-0 is g (0, 0) -Kxy (0, 0)i?~i from

(7). g-(t, 0) is expressed by g(t, 0)-E[x (t)レT(0)] R 2 and this identity coincides with

that obtained by Lindquist (1974). The differential equation for g (土, 0) is written as

dg (t, O)/dt-(kx-g (t, t) H) g it, 0), g (0, 0)-Kxy (0, 0) R-　　　　　　　　(9)

where kx denotes the system matrix of the state-space model for the signal x (t). The

Chandrasekhar-type equations, which consist of 2m�"n differential equations (8) and (9) ,

calculate the Kalman gain g (t, t) directly. In the Kalman filter, n (n+l)/2 Riccati-type
●

nonlinear differential equations should be calculated in evaluating the Kalman gam.

3. Filtering problems for white Gaussian plus colored noise
●

In this section, linear least-squares filtering problems are introduced in the presence
●

of white Gaussian plus colored observation noise.

Let an m-dimensional observation equation be give by
●

y (t)-Hx (t)+vc(t)+v (t)　　　　　　　　　　　　　　　　　　　　　　(10)

in the case of white Gaussian plus colored observation noise, where x (t) and v (t) have

the same statistical properties with the case of white Gaussian observation noise in

section 2. It is assumed that the signal x (�"), white Gaussian noise v (�")蝣　and colored

noise u｡ (�") are uncorrelated mutually as written by

E[x (t) VCT (s)]-0, E[vc(t) vT (s)l-0, 0≦s, t<∞,

besides (3). Let us assume that the filtering estimate＼念(t) is given by

x (t)-J三h (t, s)y (s) ds,

3卿巴

(12)

where h (t, s) denotes nXm impulse response function. Minimizing the mean-square value



74

鹿児島大学教育学部研究紀要　自然科学編　第44巻(1992)

of filtering error x (t) -x (t)

J-E[(x(t)一念　t 'J t一会(t)L

we obtain the WieneトHopf integral equation (Sage and Melsa, 1971) :

E[x (t)yT (s)]-J三h (t, s')E[y (s')yT (s)] ds'.

(13)

14

LetKc(t,s)denotetheautocovarianceofve(t).Ifwesubstitute(10)into(14),anduse

(2),(3)and(ll),weobtain

h(t,s)R-Kxy{t,s)-fh{t,s')(HK,,(s',s)+Kc(ォ',s))ds'

*>o(15)

(Thees,1968).

(15)istheintegralequationwhichtheoptimalimpulseresponsefunctionh(t,s)

satisfiesinlinearleast-squaresfilteringproblemsforwhiteGaussianpluscoloredobser-●

vationnoise.

4. Derivation of Chandrasekhar-type filtering equations for white Gaussian

plus colored observation noise

In [Theorem l] , the Chandrasekhaトtype equations for linear least-squares filtering

estimate are derived based on the invariant imbedding method (Nakamori, 1990).

[Theorem l]

Let kx and kc be system matrices in the state-space models for the signal x (t) and

colored noise vc (t). Then the sequential algorithm for the filtering estimate念(t) consists

of the following Chandrasekhar-type equations (16) - (21) for white Gaussian plus colored

observation noise.

Filtering estimate of x (t)蕊(i)

戯(t)/dt-k誘(t)+h(t, t) (y (t)-Hx (t)-e (t)),念(OHO

Filtering estimate of vc (t) : e (t)

de {t)/dt-kce (t)+◎(t, t) (y (t)-Hx (t)-e (t)), e (0)-0

(16

(17)

Filter gain for the filtering estimate of x (t) : h (t, t)

dh(t, t)/dt--h(t,0) W(t,0)IF-h(t,0) ◎T(t,0), h(O,Q)-Kv(0,0)R-　(18)

Filter gain for the filtering estimate of vc (t) : O (t, t)

d◎ (t, t)/dt--◎ (t,0)hT(t,0)節-◎ (t,0) ◎ (t,0), ◎ (0,0)-Kc(0,0)R-'(19)

dh(t,O)/dt-kxh(t, 0)-h(t, t) (Hh(t,0)+◎(t,0)), h(0,0)-鶴(0,0)R-' (20)

d◎(t,0)/dt-kc◎(t,0)-◎(t, t) (Hh(t,0)+◎(t,Q)), ◎(0,0)-K,(0,0)R-　(21)
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Proof

lfwedifferentiate(15)withrespecttot,weobtain

･h(t,s)/dtR-kxKxy(t,s)-h(t,t)(HK-(t,s)+Kc(t,s))-f

ォJ｡∂h(t,s')/dt{HE,,(s¥s)

+Kc(s',s))ds'.(22)

Introducing a function O (t, s), which satisfies

<b(t, s) R-Kc (t, s)丁三<D(t, s') (HK,, (s¥ s)+Kc (s', s)) ds',
we obtain

dh (t, s)/dt-kxh (t, s)-h (t, t) (Hh (t, s)+ョ(t, s))

23

(24

form (15), (22) and (23).

Let us assume that the signal x (t) and colored noise vc (t) are wide-sense stationary

processes. From (24) and the differential equation, which is derived by differentiating

(15) with respect to s and by using (15) and (23), we obtain a differential equation for

h(t,t).

dh(t, t)/dt--h(t,O)hT(t,O)伊-h(t,0)◎ (t,0) 25

Here, we took into consideration of wide-sense stationarity for the stochastic process

x(t). The initial condition on the differential equation (25) at t-0 is h (0, 0) -Kxy (0, 0)

R-'irom (15).

The function h (t, 0) in (25) satisfies

h (t, O)R-Kxy (t, 0)丁三h (t, s') (HK- (s¥ 0)+K.(s', 0)) ds'
from (15). If we differentiate (26) with respect to t, we obtain

26

dh(t,O)/dtR-kxKxy(t,0)-h{t, t) (HKxy(t,0)+Kc(t,0))-f dh(t,s')/dt (HKxl o)

+Kc(s',O))ds'.

Adifferentialequationforh(t,0)becomes

dh(t,O)/dt-kxh(t,0)-h(t,t)(Hh(t,0)+O(t,0))

from(15),(23)and(27).

ThefunctionO(t,0)in(25)satisfies

O(t,O)R-Kc(t,0)-Po(t,s'){HE*,(8't0)+Kc(s',0))ds'

vn

27

28

(29

from (23). If we differentiate (29) with respect to t, and use (26) and (29), we obtain

a differential equation for O (t, 0) as

d◎(t,O)/dt-k◎ t,0 -◎(t, t) (Hh(t,0)+◎(t,0)). (30)
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The initial condition on the differential equation O(t, 0) at t-0 is O(0, 0)-Kc (0, OjR'1

from (29).

Now, the function ◎(t, t) in (30) is unknown. If we differentiate (23) with respect

to t, and use (15) and (23), we obtain a differential equation for O(t, s) as

∂◎(t, s)/∂t-kc◎it, s)-◎(t, t) (Hh (t, s)+◎it, s)).　　　　　　　　　(31)

From (31) and the differential equation, which is derived by differentiating (23) with

respect to s and by using (15), (23), (26) and (29), we obtain a differential equation

for O(t, t).

d◎(t, t)/dt--◎(t,0)hT(t,0)節-◎(t,0)◎　t,o (32)

Here, we used wide-sense stationarity for the colored noise process. The initial condition

on the differential equation (32) at t-0 is ◎(0, 0)-K,(0, 0) R" from (29).

If we differentiate (12) for the filtering estimate x (t) with respect to t, we obtain

-)/dt-h (t, t) y (t)+J三∂hit, s)/∂ty (s) ds

-h(t, t)y(t)+J三(kji(t,s)-h(t, t) (Hh(t, s)+◎(t, s)))y(s)ds (33)

from (24). If we introduce a function e (t) given by

e(t)- f<D(t, s)y(s) ds,

and use (12), we obtain a differential equation for the filtering estimate.

dx (t)/dt-k誘(t)+h (t, t) (y (t)-Hx (t)-e (t))

(34)

(35)

The initial condition on the differential equation (35) at t-0 is念(0)-0 from (12).

If we differentiate (34) with respect to t, we obtain

de (t)/dt-ョ(t, t)y (t)+ f dョ(t, s)/dty (s) ds.

If we substiute (31) into (36), and use (12) and (34), we obtain

de (t)/dt-kce (t)+◎(t, t) (y (t)-Hx (t)-e(t)).

(36)

(37)

The initial condition on the differential equation (37) at t-0 is e (0) -0 from (34).

We readily notice that e (t) represents a filtering estimate of colored noise ve (t) and

h ¥t, t) is the filter gain for念(t). Here, we should note that (16) and (17) are the inno-

vations state-space models for the signal x (t) and colored noise vc (t).

It should be pointed out that the filtering algorithm of Chandrasekhaトtype in [Theo-

rem l] calculates the filter gain directly and does not include any Riccati-type nonlinear

differential equations similarly with that in the case of white Gaussian observation noise.
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5. Comparison of the present filter with previous one

Now, let us compare the present filter with that by Nakamori (1991). The filtering

algorithm is summarized in [Theorem 2].

[Theorem 2]
●

Let kx and kc be the system matrices in the state-space models for the signal and

colored noise. Then the filtering algorithm, which calculates the filtering estimate of x (t)

sequentially, consists of (38) - (47) for white Gaussian plus colored observation noise.

Filtering estimate of signal x(t) :蕊(i)

dx(t)/dt-k誘(t)+w (t, t) 也 (t)-Hx (t)-f(t)),蕊(0 -0

Filtering estimate of colored noise vc (t) : / (t)

df(t)/dt-k/(t)+J(t, t) (y (t)-Hx (t)-/(*)), /(0)-0

Filter gain for the filtering estimate of x (t) : w (t,t)

w (t, t)-{Kxy {t, t)-Q(t))R-

Filter gain for the filtering estimate of vc (t) : J (t, t)

J(t, t)-(KAt, t)S(t))R-

38

(39)

40

41

dT(t)/dt-kxT(t)+T(t)kxT+w (t, t) {KJ (t, t)-HT(t)-U(t)), r(0)-0　(42)

dU (t)/dt-kcU (t)+U(t)kxT+J (t, t) (KJ (t, t) -HT (t)-U (t)), C7 (0)-0　(43)

dV(t)/dt-kxV(t)+V(t)hT+w (t, t) (KAt, t)-HV(t)-W(t)), F(0)-0　(44)

dQ (t)/dt-kxQ(t)+T(t)kxTHT+V(t)kT+w (t, t) {HKAt, t)+Kc (t, t)-HO (t)-S (t)),

Q (0) -0　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(45)

dS {t)/dt-kS (t)+U (t) kxTIF+W (t)kcT+J(t, t) (HKv (t,. t)+Kc (t, t)-HQ (t)-S (t)),

S (0) -0　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(46)

dW(t)/dt-kcW(t)+W (t)kcT+J(t, t) (K. (t, t)-HV(t)-W(t)), W(0)-0　(47)

We notice that the filter in [Theorem 2] does not correspond to the Chandrasekhar-

type algorithm, since the differential equations (45) and (46) are Riccati-type nonlinear

differential equations.

Number of differential equations contained in the present filtering algorithm is 2 (m2

+m*n)+m+n which might be compared with n2+2m2+3m-n+m+n in [Theorem 2]. This

suggests that the current estimation technique is more appropriate for fast calculation

of the filtering estimate than the previous one in linear time invariant continuous systems.
●
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6. Digital simulation example

The signal processes xi (t) and x2 (t) are generated by

l霊三……漂…]-十…　_三日:三…　+ ; u(t),

E[u (t) u (s)]-8 (i-s)/3.

The observation equation is given by
●

y(t)-[1 0] +vc(t)+v(t).

(48)

49

We find that the crosscovariance of x (t) with y (t) is given by Kxy (t, t)-1^ (0, 0)-

[1/8　0]T. Also, we assume that the colored noise process is generated by

dv.(t)/dt--0.7ve(t)+r.(t), E [r (t) r (s)]-V2. 0.7�"P, P-0.01.　　　(50)

The autocovariance Kc(t, s) of vc(t) for s-t is Kc(t, t)-Kc(0, 0)-0.01 from (50). Fig.1

shows colored noise processes for i>c(0)--0.1 (graph (a)), vc (0) --0.3 (graph (b)) and

vc(O)--0.5 (graph (c)). Fig. 2 shows the filtering estimate xi(t) of xi (t) calculated by

the present filtering algorithm of [Theorem l]. Graph (a) illustrates the signal process

xi (t). Graphs (b) and (c) illustrate the filtering estimates for white Gaussian observation

noises N (0,0.12) and N (0,0.32) when initial condition of the colored noise process is vc (0)

-0.1. Graph (d) illustrates the filtering estimate xi(t) for white Gaussian observation

0
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O
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3
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O
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O
3

Fig. 1 Colored noise process vc(t) vs. t.

!a)　Colored noise process for the initial value of vc (t) at t-0 vc(0)--0.1.

(b)　Colored noise process for the initial value of ve (t) at t-0 uc(0)--0.3.

[c)　Colored noise process for the initial value of vc (t) at t-0 vc(0)--0.5.
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Fig. 2 Filtering estimate立i it) of xi (t) calculated by the present filtering equations

of [Theorem l].

(a)-　�"Signal process xi (t).

(b)　Filtering estimate立i (t) for white Gaussian observation noise N (0.0.I2)

when initial value of the colored noise process is vc (0)--0.1.

:<;)�"　-Filtering estimate立i (t) for white Gaussian observation noise N (0,0.32)

when initial value of the colored noise process is uc (0) --0.1.

(d)　Filtering estimate立i (t) for white Gaussian observation noise N (0.0.I2)

when ue (0).--0.3.

壬
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Fig. 3 Filtering estimate立2 (t) of x2 (t) calculated by the present filtering equations

of [Theorem l].

(a)　Signal process xi it).

(b)　Filtering estimate立(t) for white Gaussian observation noise N (0.0.I2)

when initial value of the colored noise process is vc (0)--0.1.

(c)　Filtering estimate立(t) for white Gaussian observation noise N (0,0.32)

when initial value of the colored noise process is vc (0)--0.1.

(d)　Filtering estimate立(t) for white Gaussian observation noise N (0.0.I2)

when a (0)--0.3.

79
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noise N(0,0.12) when l^c(0)--0.3. Fig. 3 shows the filtering estimate会(t) of x2 (t) cal-

culated by the algorithm of [Theorem l]. Graph (a) illustrates the signal process X2 (t).

Graphs (b) and (c) illustrate the filtering estimates for white Gaussian observation noises

AT (0.0.I2) and N (0,0.32) when initial condition of the colored noise process is vc (0)--0.1.

Graph (d) illustrates the filtering estimate ｣2 (t) for white Gaussian observation noise

N (0.0.I2) when vc (0) --0.3. Table 1 summarizes the mean-square values of filtering errors

x, (t)一念∫ (t) and x2 (t)一念2 (t). The mean-square values are calculated by

Table 1. Mean-square values of filtering errors xi (t)一会i (t) and X2 (t)一会I (t)蝣

2000

∑ (x, (k△)一会(&A))2/2000, i-l, 2. Here, sampling interval for numerical integration
k-¥

scheme by the fourth-order Runge-Kutta method is A -0.001.

●M ean-square value of filtering error M ean-square value of filtering error●

Xi(t)- 立 X2 (t)- Xl (t)

v. 0 = - 0.1 w.(0)= - 0.3 vc(0)= - 0.5 w.(0)= - 0.1 v. 0 = - 0.3 u.(0)= - 0.5

N (0.0.l2) 0.57469×io- 0.10019 0.15983 0.36399×10" 0.51633×10" 0.73802×io-

N (0,0.32) 0.22825 0.26791 0.31323 0.83834×10" 0.10063 0.11987

JV (0,0.52) 0.34995 0.37786 0.40763
㌔

0.13182 0.14433 0.15766

n (0.0.r ) 0.41926 0.43814 0.45773 0.16201 0.17065 0.17960

2000

∑ (xAk△)一念i (h△))2/2000, i-1 2. Here, we used the fourth-order Runge-Kutta method
k-1

and its sampling interval for numerical integration scheme is A -0.001. The mean-square

value decreases as the variance of white Gaussian noise and colored noise in Fig. 1 become

small.

The filtering estimates盆i (t) and盆(t) are also calculated by using the filtering algo-

rithm of [Theorem 2]. As a result, the filtering algorithm of [Theorem 2] has the same

estimation accuracy for盆i (t) and念(t) with that of [Theorem l].

7. Conclusions

In this paper, the Chandrasekhaトtype filter was devised for white Gaussian plus color-

ed observation noise in linear continuous stationary stochastic systems. The number of

differential equations included in the present filtering algorithm is less that that in
●

[Theorem 2]. Furthermore, the present filter has the same estimation accuracy with that

in [Theorem 2]. Therefore, the proposed filter is more suitable for fast calculation than

the previous filter (Nakamori, 1991).
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