97

DISCRETE-TIME FILTERING ALGORITHM USING COVARIANCE INFORMATION
FOR WHITE GAUSSIAN PLUS COLORED OBSERVATION NOISE

Seiichi NAKAMORI
(Received 1 October, 1999)

Abstract This paper proposes recursive least-squares (RLS) filtering algorithm using
the covariance information in the case of white Gaussian plus colored observation noise
in linear discrete-time wide-sense stationary systems. Here, it is assumed that the
system matrices in the state-space models for both the signal and the colored noise, the
crossvariance functions of the state variables for the signal and the colored noise with
the observed value, the observation vectors for the signal and the colored noise, the

variance of white Gaussian observation noise and the observed value are known.

1. Introduction

In the approach to the estimation theory using the state-space model, the Kalman
filter [1],[2] is well-known. Besides the Kalman approach, the estimators using the
covariance information are designed. In [3], the estimators use the covariance
information in the form of the semi-degenerate kernel function. The semi-degenerate
kernel function expresses the covariance information as the finite sum of products of
nonrandom functions. In [4],[5],[6], the continuous- time estimators use the observation
vector, the system matrix and the crossvariance function of the state variable with the
observed value, which constitute the autocovariance function of the stochastic signal.

In the theory of detection and estimation [7], the estimation problem using the
covariance information is investigated for both white Gaussian and white Gaussian plus
colored observation noises. Correspondingly, the RLS estimation algorithms using the

covariance information are derived for white Gaussian plus colored observation noise

[31.[6].
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This paper proposes the RLS filtering algorithm using the covariance information
for white Gaussian plus colored observation noise in wide-sense discrete-time
stationary stochastic systems. The filter is derived based on the invariant imbedding
method [8]. The filter necessitates the information of the observation vectors, the
system matrices for the scalar signal and colored noise in the both state-space models,
the crossvariance functions of the state-variables for the signal and the colored noise
with the observed value, the variance of white Gaussian noise and the observed value. It
is shown that these necessary quantities in the filtering algorithm are obtained from the

autocovariance functions of the signal and the colored observation noise.

2. Filtering problems for white Gaussian plus colored noise
In this section, the least-squares filtering problems using the covariance

information are introduced for white Gaussian plus colored observation noise in linear
discrete-time stochastic systems.

Let a scalar discrete-time observation equation be given by
y(k)=z(k) +v(k)+v.(k), z(k)=Hx(k), v.(k)=Hx.(k) (1)
for white Gaussian plus colored observation noise in linear discrete-time wide-sense
stationary stochastic systems. Here, (k) is an observed value, z(k) is a zero-mean
signal, H is a 1 Xn observation vector for a state variable X(k) concerned with the
signal z(k), v.(k) is zero-mean colored observation noise, , is a 1 X m
observation vector for a state variable xc(k) concerned with the colored noise Vc(k)
and V(k) is white Gaussian observation noise with the variance K.
E[v(k)v(s)]= RSy (k—5) (2)
Here, Ox(k —5) represents the Kronecker delta function. It is assumed that the signal
z(-), the white Gaussian noise v(-) and the colored noise VC(') are uncorrelated
mutually as written by
E[z(k)v(s)]=0, E[z(k)v,(s)]=0, E[v, (k)v(s)]=0, 0<s,k<m. 3)
Also, we assume that /' and F, represent the system matrices for X(k) and x.(k).

Let us assume that the filtering estimate X(k,k) of the state variable X(k) is

given by
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2(k, k) =3 h(k.0)y(D), (4)

where h(k,s) represents an nX 1 impulse response function. Minimizing the mean-
square value of the filtering error X(k)—X(k,k)

J = E[(x(k) = %(k, k)" (x(k) - 2(k,k))], (%)
we obtain the Wi:ner-Hopf equation [2]: '

E[x(k)y(s)] = D h(k, D E[y (i) y(s)]: (6)
Let ny (k,S) rigi)resent the crosscovariance function of the state variable x(k) with
the observed value y(s) and let Kcy(k,S) represent the crosscovariance function of
the state variable X.(K) with the observed value YV(S). Substituting (1) into (6), and

using (2) and (3), we obtain

h(k,s)R =K, (k,s)~ Zk:h(k,i)(Hny (i,5)+ H K, (i,5)). (7)

(7) is the equation which the optimal impulse response function A(K,S) satisfies in

linear least-équares filtering problem for white Gaussian plus colored observation noise.
Let Kx(k,S) represent the autocovariance function of the state variable x(k).

The autocovariance function K,(k,S) of the signal z(k) is given by

K, (k,s)= HA(k)B" (s)H  1(k —s)+ HB(k) A" (s)H  1(s— k),

A(k)=F*, B'(s)=F"K(s,5), (8)

where F is the system matrix in the state-space model for the state variable x(k) and

1(k-s) represents the unit step function. Let K (k,s) represent the autocovariance

function of the state variable xc(k) for the colored noise Vc(k). The autocovariance

function of the colored noise V.(k) is given by

K. (k,s)= HC(k)D" (s)H 1(k —s)+ H.D(k)CT (s)H  1(s—k),

C(k)=F/, D'(s)=FK(s,5), )

where FC is the system matrix in the state-space model for the state variable xc(k)_
The RLS filtering algorithm proposed in section 3 uses the information of the

observation vector H for the state variable x(k), the system matrix F for x(k), the
crossvariance function of x(k) with y(k), ny (k,k), the observation vector H_ for the

state variable xc(k), the system matrix FC for xc(k), the crossvariance function of

the colored noise V.(k) with y(k), K., (k,k), and the observed value y(k).
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3. Derivation of filtering algorithm for white Gaussian plus colored
observation noise
In [Theorem 1], the RLS filtering algorithm using the covariance information is

derived based on the invariant imbedding method [8].

[Theorem 1]
Let I and F, be square system matrices of orders n and m respectively in the
state-space models for the signal z(k) and the colored observation noise V.(k). Let

H and H, be the observation vectors concerned with z(k) and V. (k). Let
K, (k,k) be the crossvariance function of the state variable X(k) with the observed

value Y(k). Let Kcy(k,k) be the crossvariance function of the colored noise Vc(k)

with the observed value Y(k). Let 5(k,k) and ﬁc (k,k) represent the filtering
estimates of Z(kK) and V,(k) respectively. Then the RLS algorithm for the filtering
estimates Z(k,k) and V.(k,k) consists of the following equations (10)-(17) for
white Gaussian plus colored observation noise.
Filtering estimate of signal z(k): f(k,k) = Hf(k,k)
2(k,k) = Fi(k -1,k —1)+h(k,k)(p(k) - HER(k—1,k—1)— HF.f(k-1)), £(0,0)=0
(10)

Filtering estimate of colored noise V.(k): v, (k,k)=H_ f (k) -

J(k)=F f(k-1)+®(k,k)(y(k)- HF£(k-Lk-1)-H.F f(k-1)), f(0)=0

(11)
Filter gain for the filtering estimate of x(k): h(k,k)
h(k,k) ={K,,(k.,k)- FG(k—-1)F"H" = FJ(k-1)F, H.}/
{R+HK,,(k,k)- HFGk-)F"H' - H.F.L(k-)F"H" +
HK (k,k)-HFJ(k-)F H -H F.M(k-1)F H.}
(12)

Filter gain for the function f(k): ®(k,k)

O (k,k)={K,(k,k)-F,L(k-\)F"H" - F,M(k-1)F/H]}/

{R+ HK _ (k,k)- HFG (k-1)F"H" - H F,L(k-1)F"H" + (13)
H.,K,(k,k)- HFJ (k-1)F/H - H.F,.M(k-1)F'H]}
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G(k)=FG(k—1)F" +h(k,k)(K;, (k. k)— HFGk-1)F" —HF,L(k—1)F"), G(0)=0
(14)

J(k)= FJ(k-1)F + h(k,k)(K_,(k,k)— HFJ(k-1)F, = HF,M(k-1)E), 30)=0
| (15)

L(k)=F,L(k—1)F" +®(k,k)(K, (k,k)- HFGk-1)F" - HF,L(k-1F"), L(0)=0
(16)

M(k)= FM(k—-)F +®(k,k)(K.,(k,k) - HFXk-DF' - H.FM(k-1)E") , M(0)=0
(17)

Proof
Subtracting the equation obtained by putting k—k-1 in (7) from (7), we have

(h(k,s)—h(k =1,$)R = (F - DK, (k —1,5) - h(k,k)(HK , (k,5) + H K, (k,s)) -

c ey

i(h(k,i) —h(k -1L))(HK ,(i,s)+ H K, (i,s)). (18)

Let us introduce a function CD(k,s) which satisfies

D(k,5)R = Kcy(k,s)—Zk:CI)(k,i)(Hny (i) + H.K,, (i,5)). (19)

From (7), (18) and (19), we have a difference equation for h(k,s).
h(k,s) = Fh(k —-1,8)=h(k,k)(HFh(k -1,8)+ H F®(k-1,s)) (20)
Subtracting the equation obtained by putting k—k-1 in (19) from (19), we have

(D(k,s) -~ Dk~ 1,)R = (F - DK, (k—1,5) -~ Dk, k)(HK,, (k,s)+ H K, (k,s))

k
D (D(k,i)-D(k - 1,i)(HK,, (i,s) + H.K,,(i,5)).

i=1

(21)

From (19) and (21), we obtain a difference equation for DP(%,s).
D(k,s)=FO(k-1,5)-D(k,k)(HFh(k-1,s)+ HF.®(k-1,s)) (22)

Substituting (20) into (4), we have
k-1

Rk, k) = Fi(k -1,k —1) + h(k, k)(y(k) - HF5(k -1,k =1) - H_F, Y ®(k - 1,i)y(i)).

i=1

(23)



02 REBKFHFEHMALE BARERE #£51% (2000)

Introducing a function f(k) given by
k

f() =Y @(k,i)y@), (24)
i=1

we obtain the recursive equation for the filtering estimate X(k,k).
20k, k) = FE(k -1,k — 1)+ h(k, k)(y(k) - HFR(k-1L,k-1)= HEf(k-1)) (25)
The initial condition on (25) at k=0 is £(0,0) =0 from (4).

Subtracting the equation obtained by putting k—k-1 in (24) from (24), we have

k-1
)= f(k=1) =Dk, k) y(k) + Y (D(k,i) ~ D(k - 1,i)) y (). (26)
i=1
Substituting (22) into (26) and using (4) and (24), we obtain the difference equation for
f(k)
f(k)=F f(k-1)+®(k,k)(y(k) - HFX(k - 1,k-1)- H F,f (k-1)). (27)

The initial condition on (27) at k=0 is f(0)=0 from (24).

Let us introduce a function T(k) given by
k
T(k) = h(k,i)HB(). (28)
i=1

Subtracting the equation obtained by putting k—k-1 in (28) from (28), we have
k=1
T(k)-T(k-1)=h(k,k)HB(k)+ Z(h(k,i) —h(k-1,i))HB(i). (29)
i=1
Substituting (20) into (29) and introducing a function W(k) given by
k
W(k)=Y ®(k,i)HB(), (30)
i=1
we obtain a difference equation for T(k)
T(k)=FT(k-1)+h(k,k)(HB(k)- HFT(k-1)-H . FW(k-1)). (31)
The initial condition on (31) at k=0 is T(0)=0 from (28).

Subtracting the equation obtained by putting k—k-1 in (30) from (30), we have
k=1

W (k) -W(k-1) = Ok, k) HB(k) + > (®(k,i) - ®(k —1,i)) HB(i). (32)

i=1
Substituting (22) into (32) and using (28) and (30), we obtain
W(k)=FEW(k-1)+D(k,k)(HB(k)- HFT(k-1)- HFEW(k-1)). (33)
The initial condition on (32) at k=0 is W(0)=0 from (30).

Let us introduce a function V(k) given by
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k
V(k)=>_ h(k,iyH,D(i). (34)
i=1
Subtracting the equation obtained by putting k—k-1 in (34) from (34), we have
V(k)-V(k-1)=h(k,k)H D(k)+ kz_i (h(k,i)—h(k-1,i))H D). (35)
i=1 :
Substituting (20) into (35) and introducing the function U(k) given by
U(k) = f ®(k,i)H D(), (36)

i=1
we obtain a difference equation for V(k)
V(k)=FV(k-1)+h(k,k)(H.D(k)- HFV(k-1)- H F.U(k-1)). 37
The initial condition on (37) at k=0 is V(0)=0 from (34).
Subtracting the equation obtained by putting k—k-1 in (36) from (36), we have

Uk)-U(k-1)=D(k,k)H D(k)+ kii (D(k,i)—D(k-1,i))H D). (38)

i=1
Substituting (22) into (38) and using (34) and (36), we obtain
U(k)= FU(k-1)+®(k,k)(H.D(k)- HFV(k-1)-H.FU(k-1)). 39)
The initial condition on (39) at k=0 is U(0)=0 from (36).
Let G(k), L(k), J(k) and M(k) be given by
G(k)=Tk)A" (k),L(k)=W(k)A" (k),J(k) =V (k)C"(k), M(k)=U(k)C" (k).
(40)
Substituting (31) into G(k)= T(k)AT(k)(= T(k)(Fk)T), and using (40) and

the relationship K,;(k,k)=HB(k)AT(k) from (8), we obtain the difference

equation (14) for G(k). The initial value on (14) at k=0 is G(0)=0 from (28).
Substituting (37) into J(k) =V (k)C" (k)(=V (k)(F*)"), and using (40) and

the relationship K;(k,k)=HcD(k)CT(k) from (9), we obtain the difference

equation (15) for J(k). The initial value on (15) at k=0 is J(0)=0 from (34).
Substituting (33) into L(k) = W(k)AT(k)(=W(k)(Fk)T), and using (40) and

the relationship K;(k,k)=HB(k)AT(k) from (8), we obtain the difference

equation (16) for L(k). The initial value on (16) at k=0 is L(0)=0 from (30).
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Substituting (39) into M(k) =U(k)CT(k)(=U(k)(F;k)T), and using (40) and

the relationship KcTy(k,k)=HcD(k)CT(k) from (9), we obtain the difference

equation (17) for M(k). The initial value on (17) at k=0 is M(0)=0 from (36). ]

We readily notice that H_f (k) represents the filtering estimate of colored noise
Vc(k) and h(k,k) the filter gain for the filtering estimate J?(k,k) of the state
variable x(k). Here, we should note that (10) and (11) are the innovations state-space
models for the filtering estimates -f(k,k) and f (k) of the state variables X(k) and
x. (k).

Let f}(k,k) represent the autovariance function of the filtering error
x(k)-x(k,k). Let P.(k,k) represent the autovariance function of the filtering
estimate X(k,k) . There exists a relationship Pi(k,k)= K (k,k)- P.(k,k) .
P.(k,k) and P.(k,k) are the positive-semidefinite matrices. Also, from (12), we
find that P,;(k,k) = FG(k)FT. Hence, the condition on the existence of the filtering
estimate J?(k,k) in [Theorem 1] is that f}(k,k)(= FG(k)FT) is upper bounded by
the autovariance function K, (k,k) and lower bounded by the zero matrix [5].
0< P.(k,k)< K (k. k) (41)

A digital simulation example is demonstrated in section 5 to examine the validity

of the filtering algorithm in [Theorem 1].

4. Realization of H, F and K (k,k) from K_(k,s)

The filtering algorithm of [Theorem 1] uses the information of the observation
vectors H and H,, the system matrices F and F,, the crossvariance functions
ny(k,k) and Kcy(k,k) and the observed value y(k). This section shows the
estimation technique for H, F and ny(k,k) from the autocovariance function
Kz(k,s) of the signal z(k). Here, we assume that the signal is the wide-sense
stationary stochastic process. That is, Kz(k.,s) =K, (k-5).

The autocovariance function K,(k,s) of the signal z(k) is represented as
K, (k,s)= HO(k,$)K,, (5,5)1(k ~5)+ K", (k,k)®" (5, k) H  1(s — k),

O(k,s)=F"° ®(k+1,5)= FO(k,s). (42)

Here, ®(k,s) is called the state-transition function. In terms of the autocovariance
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function K,(k—5)(= K,(k,s)) of the wide-sense stationary signal z(k), f, F and
K, (k,s) are estimated by

H=[K,0) K,1) - K,(n-1]
[ K,(0) K, (1) o e K,n-17"
K, (1) K,(00 - o K, (n-2) (43)
X : : : : :
Kz(n—2) KZ(O) Kz(l)
K, (n-1) K,(n-2) -~ - K,(0) |
(K. KO0 - o K(n-2)]
K. KO - - K(@»-3
F= : : P :
K(-1) = = KO K\
K. K= o K0
(K0 KO o o K@-D]
KO K0 - - K(@n-2
X : : : . : (44)
K.(n=2) o K0 K@)
K.n-) K,(n-2) -+ - K(0)
and
K, (k,k) =K, (k.k)=[K,(0) K,() - K(»n-2) K((n-DI. (45)

Here, sz (k,k) represents the crossvariance function of the state variable x(k) with

the signal z(k). The necessary and sufficient condition, that the dimension of the state

vector x(k) is n, is that the rank of the Hankel matrix I

(K.(0 K. K2 -
K.(1) K.(2 K.Q) -
=K. KQ K@ - (46)
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isn [9].
The estimation technique for H,, F, and K (k,k) from K_(k,s) obeys the
above technique quite similarly with that for H, 6 F and ny(k,k) from

K. (k,s).

S. A numerical simulation example

Let the observation equation be given by

y(k) = Hx(k) +v (k) +v(k), z(k)=x,(k), x(k)=[x,(k) x,(K)]". (47)

Let the autocovariance function of the signal z(k) be given by
Kz(k,S) = HFk_sty (s,8), 0<s<k. Here, let the observation vector H, the system

matrix F for the state variable x(k) and the crossvariance function ny (k,k) of the

state variable x(k) with the observed value y(k) be given by

H=[1 0], (48)
0 1
F = , a,=-01, a,=-0.8, 0=0.5 (49)
-4, —q
and
i 1+a, = ]
1-al —a))(1+a,)+2a]
Ky (eky=| (- mmliva) 2ae (50)
| (1-a} —a;)1+a,)+2ala,

Let the autocovariance function of the colored noise V.(k) be given by
Kc(k,S) = HCF;k_SKcy (s,5), 0<s< k. Here, let the observation function f1., the

system matrix F, for the state variable X.(k) and the crossvariance function
Kcy(k,k) of the state variable V,(k) with the observed value y(k) be given by

H =1, (51)
F.=0.9 (52)
and

o
K, (k.k)= o =0.01. (53)

019" ¢
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If we substitute the quantities H, F', K (k,k), H, F, and K (k,k) into
the estimation algorithms of [Theorem 1], the filtering estimate of z(k) is calculated.
Fig.1 illustrates the colored noise process for v.(0)=0.7. Fig.2 illustrates the signal
z(k)(= xl(k)) (solid line) and the filtering estimate f(k,k)(= fl(k,k)) (notation
by “+—+” ) for white Gaussian observation noise N(O,O.22). Here, X,(k,k)
represents the filtering estimate of X,(K). Fig.3 illustrates the mean-square values of
the filtering error Z(k)—f(k,k) vs. k for white Gaussian observation noises
N(0,0.lz) and N(O, 0.22). Solid line in Fig.3 depicts the MSV for observation noise

N(0,0.1). Notation by “+—+" in Fig.3 depicts the MSV for observation noise
100

. (2(k) = 2(k, k)’
100

N(0,0.2%). The mean-square value is calculated by

07

0.6

05

1
»

Colored noise
o
w

o
N

0.1

o

L L . L L L
10 20 30 40 50 60 70 80 90 100
Time k

Fig.1 Colored noise process Vc(k) vs. k for v, (0)=0.7.
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15

-

o
o

o

S
L)

Signal z(k) and its filtering estimate

10 20 30 40 50

Time k

60 70 90 100

z(k)(= x,(k)) (solid line) and the filtering estimate

Z(k,k)(= x,(k,k)) (notation by “+—+" ) calculated by the filtering algorithm of

Fig.2 Signal process

[Theorem 1] for white Gaussian observation noise N (0, 0-22).

o
©

o
3

o
>

o

Mean-square value of filtering error for z(k)
w

o
N

o
-

o
~

o
o

o
o

0

50 60

Time k

“40

0 10 20 30

Fig.3 Mean-square values of the filtering error z(k) - f(k,k) vs. k for white Gaussian
observation noises N(0,0.1°) and N(0,0.2%).

Solid line

MSV for the observation noise N (0, 0.12).
MSYV for the observation noise N(O,O-zz).
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Table 1 MSV of filtering error z(k)—Z(k,k) for observation noises N(0,0.1%),
N(0,0.2%), N(0,0.4%), N(0,0.7*) and N(0,1).

¥hite Gaussian Mean-square value of
observation noise |filtering error z(k)-Z(k,k)
N(0,0.1°) 0. 0349223
N(0,0.2%) 0. 0755164
N(0,0.4%) 0. 187773
N(0,0.7%) 0. 315724
N(0,1) 0. 384757

Table 1 shows the MSV of filtering error z(k)—Z(k,k) for observation noises
N(0,0.1%), N(0,0.2%), N(0,0.4*), N(0,0.7*) and N(0,1). The MSV decreases
as the variance of white Gaussian noise becomes small.

For references, the stochastic processes z(k), xl(k) and xz(k) are generated

by

(54)

x, (k)
x, (k) ’

{xl(k+l)}=[ 0 1 }[x'(k)}-[ﬂu(kﬂ), E[u(k)u(s)] = 5, (k—5). (55)

z2(k)(= x, (k) =[1 0][

x,(k+1) —a, —a, | x(k)
Namely,
2(k+2)==a;z(k+1)—a,z(k) +u(k +1). (56)

Also, the colored noise process is generated by

v.(k+1)=0.9v,(k)+u,(k+1), E[u (k)u(s)]= 05, (k-s). (57)

6. Conclusions

A numerical simulation example in section 5 has shown that the proposed
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filtering algorithm in [Theorem 1] is feasible.

In this paper, the filtering algorithm using the covariance information has been
devised for white Gaussian plus colored observation noise in linear discrete-time wide-
sense stationary stochastic systems. The proposed filter is suitable for recursive
calculation of the filtering estimate. Also, the condition on the existence of the filtering

estimate is given.
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