鹿児島県本土の各地区における電力系統 台風被害予測に関する研究

高田 等* 川路 真也** 八野 知博*

Study on a Prediction Method of Typhoon Damage of Electric Power Systems in Each District on the Main Island in Kagoshima Prefecture

Hitoshi TAKATA, Shinya KAWAJI and Tomohiro HACHINO

Kagoshima Prefecture is located in a typhoon path, so its electric power systems have been destroyed by typhoon every year. To ensure the rapid restoration of electricity supply, one needs to predict the amount of damage accurately. This paper considers the damage prediction in each district on the main island in Kagoshima Prefecture by using the GA (Genetic Algorithm), linear regression model, and NN (Neural Networks). The track of typhoon is evaluated by counting values of a given Gaussian function made by the GA. A predictor consists of linear regression model at the first stage and the NN at the second stage. This method enables us to predict the number of damaged distribution poles and lines from weather forecasts of a coming typhoon. Effectiveness of the method is assured by applying it to the actual date.

Keywords: Prediction, Linear regression model, NN, GA, Typhoon damage, Power system

1. まえがき

鹿児島県は毎年数個の台風が接近してくる特殊な 位置にあり、台風による電力系統被害を受け易い地域 である。今や人間にとって電気は必要不可欠の存在で あり、電力系統が被害を受け停電が起こると、社会生 活に甚大な影響を与える。停電時間を最小にくい止め るためには迅速な復旧作業が必要であるが、被害が起 こってから各地域に出向するのでは停電時間の長期化、 社会生活への影響の拡大は避けられない。そこで、迅 速な復旧作業を実現するために、台風が接近する前に

2006年8月31日受理

* 電気電子工学科

** 博士前期課程電気電子工学専攻

被害を予測^{1)~8)} し、それに応じた復旧対応人員を被 害予測地域に派遣しておく必要がある。このためには、 正確な設備被害予測が不可欠であり、高精度な予測法 の開発が強く望まれている。

台風による電力系統の設備被害は様々な要因で発 生する。例えば、台風時の雨による水分を多く含んだ 安定度の悪い軟弱地盤に立つ支持物は、一瞬の強風で も倒壊、傾斜、流出する。電線は、強風による直接被 害だけでなく、飛来物や樹木倒壊等による間接被害を 受けても、断混線する。これらは市街地、農村部、海 岸地帯にもその地域性が顕著に現れる。このように、 設備被害はいろいろな要因に影響を受けて発生するの で予測することは容易でない。

本論文では、線形回帰モデルとニューラルネット ワーク⁹⁾を用いて二段階台風被害予測システムを構築 し、気象庁などから入手できる台風の気象情報を基に、 支持物の折損-転倒、傾斜、電線の断混線を予測する手 法について考察した。その際に、入力として用いた台 風の進行経路は台風被害に強い相関のある要素であり、 その数値化法が予測精度に極めて大きな影響を与える。 そこで、遺伝的アルゴリズム (Genetic Algorithm)¹⁰⁾ により最適にパラメータ設定された正規分布を用いて 進行経路の数値化を行った。また、入出力データをシ ステムの全体に効率よく反映させるために入出力デー タの規格化を行った。その際に、入出力データの変換 関数の形を決めるパラメータを GA により求めた。本 手法は、鹿児島地区電力系統の台風被害予測に限定さ れたが、他の地区でも同様に適用可能なものである。

2. 電力系統台風被害予測システム

2.1 データ処理

本手法では、電力系統台風被害予測システムを構 築するにあたって、入力に用いる台風の気象情報とし ては進行経路、風速、最大瞬間風速、最低気圧、暴風 半径の5つを用いた。予測の対象としての出力は折損-転倒、傾斜、断混線の3つを取り上げた。予測システ ムの入力データとしての台風情報は時間的に変化する ので、的確な入力データとして得ることは難しい。ま た、被害を及ぼすと思われるすべての要因をシステム の入力とすると、必然的にネットワークの規模は大き くなり、計算時間等の問題が発生する。

そこで、本手法では「線形回帰モデル」と「3 階層 型ニューラルネットワーク」を用いて二段階予測シス テムを構築した。5つの入力データのうち台風の進行 経路は台風被害に最も強い相関のある要素であり、そ の数値化法が予測精度に大きな影響を与える。2.2 節 でその数値化法を述べる。さらに、入出力データをシ ステムの全体に効率よく反映させるための入出力デー タの規格化を2.3 節で述べる。

2.2 進行経路の数値化

台風の進行経路を入力データとして扱うには、数値 化を行う必要がある。進行経路は台風被害に強い相関 のある要素であり、その数値化法が予測精度に極めて大 きな影響を与える。そこで、鹿児島県の各地区毎に図1 に示すような正規分布を設置し、これを通過する台風の 正規分布の標高値の平均で数値化を行った。その際に、 正規分布の形状を決めるパラメータ $h_{1k}, h_{2k}, \alpha_{1k}, \alpha_{2k}$ は GA を用いて求めた。 また、台風の風速分布は厳密に左右対称になって いるのではなく進行方向の右側と左側で大きな違いが ある。一般に右側は風が強く、左側は比較的風が弱い。 このような台風の風速分布特性を考慮し、台風被害の 偏りを表現するために正規分布に中心バイアス β_k を 付加し、それを GA により準最適に求めた。

$$x_{1k} = \frac{1}{p} \sum_{j=1}^{p} \exp\left[-\frac{\alpha_{1k}(T_{LAj} - C_{LAk})^2}{h_{1k}^2} - \frac{\alpha_{2k}(T_{LOj} - C_{LOk} - \beta_k)^2}{h_{2k}^2}\right]$$
(1)

ただし、

 T_{LAj} :台風の中心の緯度, T_{LOj} :台風の中心の経度, C_{LAk} : k地区の緯度, C_{LOk} : k地区の緯度, h_{1k}, h_{2k} :正規分布の幅, α_{1k}, α_{2k} :形状パラメータ, β_k :中心バイアス,

2.3 入出力データの規格化

入出力観測データ $x(p) \ge y(p)$ はそれぞれ単位も 異なり、最大値、最小値をとる値も異なるため、規格 化が必要である。入力データは各要素 $x_j(p)(1 \le j \le J, 1 \le p \le L)$ ごとに、次のように $-1 \sim 1$ までの値に 非線形規格化を施す。

$$x'_{j}(p) = \frac{1 - exp(-\bar{x}_{j}(p))}{1 + exp(-\bar{x}_{j}(p))}$$
(2)

$$\bar{x}_j = N_j \left(\frac{x_j(p) - h_j}{x_{j,max} - h_j} + M_j \right)$$
(3)

ただし,

$$x_{j,max} = max\{x_j(p) : 1 \le p \le L\},$$

 $x_{j,min} = min\{x_j(p) : 1 \le p \le L\},$
 $h_j = \frac{x_{j,max} + x_{j,min}}{2},$
 N_j, M_j : 規格化パラメータ.

関数の傾きを N_j で、関数の中心位置を M_j によって変化させる。 N_j, M_j はGAを用いて準最適に決定する。

同様に、出力データも各要素 $y_i(p)(1 \le i \le N)$ ご とに、最大値と最小値をそれぞれ $0 \sim 1$ となるように 非線形規格化を行う。

$$y'_{i}(p) = \frac{ln\{G_{i}(y_{i}(p) - y_{i,min}) + 1\}}{ln\{G_{i}(y_{i,max} - y_{i,min}) + 1\}}$$
(4)

ただし、

$$y_{i,max} = max\{y_i(p) : 1 \le p \le L\},\ y_{i,min} = min\{y_i(p) : 1 \le p \le L\},\ G_i : 規格化パラメータ.$$

これは G_i により被害なしの $y_i(p) = 0$ 近傍を重視し つつ、大きな値も比較的効率よく調整できる。 G_i は GA を用いて準最適に求める。(2)、(4)式の規格化後 のデータを用いて、台風による設備被害の予測を行う。 これにより得られた出力値 \hat{y}'_i は次式により逆変換さ れる。

$$\hat{y}_{i}(p) = exp\{\hat{y}'_{i}(p)ln(y_{i,max} - y_{i,min} + 1)\} + y_{i,min} - 1$$
(5)

以下簡単のため、本論文を通じ式 (2)、(4) による規格 化後のデータ x',y' を改めて x,y で表記しよう。

2.4 GA によるパラメータの決定

本手法では、入出力データの規格化のパラメータ N_j, M_j, G_i と進行経路の数値化に用いる正規分布の形 状を決めるパラメータ $h_{1k}, h_{2k}, \alpha_{1k}, \alpha_{2k},$ および中心 バイアス β_k をGAを使って決定する。これら未知パ ラメータに対する評価は以下の適応度関数により決定 する。

$$F = \frac{1}{J+1} \tag{6}$$

ここで、

$$J = \frac{\sum_{p=1}^{L} |y_j^p - \hat{y}_j^p|}{\sum_{p=1}^{L} y_j^p}$$
(7)

ただし、

 y_j^p : パターン p における j 番目の出力データ, \hat{y}_j^p : パターン p における j 番目の予測出力.

集団全体の適応度が高くなるように遺伝的操作を繰 り返し、最適な値を得る。最終的に、全世代において最 も高い適応度を有する個体から、最適な $N_j, M_j, G_i, h_{1k}, h_{2k}, \alpha_{1k}, \alpha_{2k}, \beta_k$ が決定される。

2.5 二段階予測システム

本手法では、「線形回帰モデル」と「3階層型ニュー ラルネットワーク」を用いた二段階予測モデルを構築 した。本モデルの概略図を図2に示す。

2.5.1 一段目予測

まず、一段目予測として線形回帰モデルによる予 測を行う。入出力データは前述の通り非線形関数を用 いて規格化したものを用いる。線形回帰モデルの説明 変数 X は、入力に用いた台風の気象情報である。目 的変数 Y は台風による設備被害値である。これらは次 の行列で表現される。

$$Y = \begin{bmatrix} y_1(1) & \cdots & y_i(1) & \cdots & y_I(1) \\ \vdots & \vdots & \vdots & \vdots \\ y_1(p) & \cdots & y_i(p) & \cdots & y_I(p) \\ \vdots & \vdots & \vdots & \vdots \\ y_1(L) & \cdots & y_i(L) & \cdots & y_I(L) \end{bmatrix}$$
(8)

$$X(p) = [1, x_1(p), \cdots, x_j(p), \dots, x_J(p)]^T$$
(9)

$$X = [X(1), \cdots, X(p), \dots, X(L)]$$
 (10)

$$\Theta_i = [\Theta_{i0}, \cdots, \Theta_{i1}, \cdots, \Theta_{iJ}]^T$$
(11)

$$\Theta = [\Theta_1, \cdots, \Theta_i, \cdots, \Theta_I] \tag{12}$$

ただし、

$$p: データ数で台風の個数 $(1 \le p \le L),$
 $y_i:$ 出力データで台風による設備被害値
 $(1 \le i \le I),$$$

 $x_j: 入力データで気象データ <math>(1 \le j \le J)$. 線形回帰モデルは、誤差 E に対し行列表現で次式となる。

$$Y = X\Theta + E \tag{13}$$

ここで、評価関数として二乗誤差を導入すれば、

$$J = tr(Y - X\Theta)^T (Y - X\Theta)$$
(14)

となり、最小二乗法によって Θ は次式のようになる。

$$\frac{\partial J}{\partial \Theta} = -2X^T (Y - X\Theta) = 0 \tag{15}$$

$$\hat{\Theta} = (X^T X)^{-1} (X^T Y) \tag{16}$$

したがって線形回帰モデルは次のように近似される。

$$\hat{Y} = X\hat{\Theta} \tag{17}$$

すなわち、

$$\hat{y}_i = \hat{\Theta}_i^T X \qquad (1 \le i \le I) \tag{18}$$

このとき、線形回帰モデルの近似誤差 ΔY は、

$$\Delta Y = Y - \hat{Y} \tag{19}$$

すなわち、

$$\Delta y_i = y - \hat{y}_i \qquad (1 \le i \le I) \tag{20}$$

となる。

2.5.2 二段目予測

二段目予測として (19) 式の予測誤差 ΔY を 3 階層 型ニューラルネットワークモデルで補正する。ニュー ラルネットワークの入力データは、線形回帰モデルと 同じ入力を使用する。つまり、

$$X(p) = [1, x_1(p), \cdots, x_j(p), \dots, x_J(p)]^T$$
(21)

を入力とし、ニューラルネットワークの教師信号は、

$$\Delta y(p) = [\Delta y_1(p), \cdots, \Delta y_i(p), \cdots, \Delta y_I(p)]^T \quad (22)$$

となる。また、ネットワークにおけるニューロン関数 として、一般のシグモイド関数を用いれば入出力関数 が次式で表される。

$$o_{pj}^{k} = f(\sum_{i=1}^{N_{k-1}} w_{i,j}^{k-1,k} o_{pi}^{k-1} + \psi_{j}^{k})$$
$$= f(\sum_{i=0}^{N_{k-1}} w_{i,j}^{k-1,k} o_{pi}^{k-1})$$
(23)

ただし、

$$f(x) = \frac{1}{1 + exp(-x)}$$

- n : \mathbb{R}
- N_k :第 k 階層におけるユニット数で,出力層 におけるユニット数は $N_n = N$,
- o_{pj}^k : 台風 p 時の第 k 層におけるユニット j の出力値で, $o_{p0}^k = 1$,

 $w_{i,j}^{k-1,k}$:第k-1層におけるi番目と第k層に

おける j 番目のユニット間の結合荷重, ψ_j^k :閾値で, $\psi_j^k = w_{0,j}^{k-1,k}$.

学習は、誤差伝播学習アルゴリズムにより行われ る。この学習法は、各 $x(p)(1 \le p \le L)$ に対応する (22)式の $\Delta y_i(p)$ を教師信号とし、ネットワークの現 在の重みに基づく出力値との差を最小にするように ニューロン間の結合荷重 { $w_{i,j}^{k-1,k}: 2 \le k \le n, 0 \le i \le N_{k-1}, 1 \le j \le N_k$ }を更新していく。すなわち、学習 の評価関数として、{ $\Delta y_i(p)$ }を教師信号とし、その出 力値 { o_{m}^n } との二乗誤差

$$E_p = \frac{1}{2} \sum_{i=1}^{N} (o_{pi}^n - \Delta y_i(p))^2$$
(24)

を選ぶ。このとき評価関数を最小にする結合荷重の修 正量 $\Delta_p w_{i,j}^{k-1,k}(m)$ は、

$$\Delta_{p} w_{i,j}^{k-1,k}(m) = \eta \delta_{pj}^{k} o_{pi}^{k-1} + \alpha \Delta_{p} w_{i,j}^{k-1,k}(m-1)$$

$$(2 \le k \le n)$$
(25)

で計算される。ここで、 $\delta_{pi}^{k} = o_{pj}^{n}(1 - o_{pj}^{n}) \sum_{s=1}^{N_{k+1}} (\delta_{ps}^{k+1} w_{j,s}^{k,k+1}(m-1))$ $(2 \le k \le n-1)$ $\delta_{pj}^{n} = (\Delta y_{i}(p) - o_{pj}^{n}) o_{pj}^{n}(1 - o_{pj}^{n})$ η : 学習係数, α : 慣性項の係数, m: 学習ステップ, m_{f} : 学習回数. それ故、結合荷重 $w_{i,j}^{k-1,k}$ は、

$$w_{i,j}^{k-1,k}(m) = w_{i,j}^{k-1,k}(m-1) - \Delta_p w_{i,j}^{k-1,k}(m) \quad (26)$$

により更新される。最終的に得られた結合荷重 $\{w_{i,j}^{k-1,k} = w_{i,j}^{k-1,k}(m_f)\}$ を (23) 式に代入して予測誤差修正用 のニューラルネットワークが合成された。よって任意 の入力 X に関し本ニューラルネットワークを適用すれ ば、(17) 式 \hat{Y} の修正量 $\Delta \hat{Y}$ が得られる。そして、提 案法の最終的な出力値 $\hat{\hat{Y}}_{(p)}$ は、

$$\hat{\hat{Y}} = \hat{Y} + \Delta \hat{Y} \tag{27}$$

ただし、

$$\hat{y} = [\hat{y}_1(p), \cdots, \hat{y}_i(p), \dots, \hat{y}_I(p)]$$
 (28)

となる。

図2 提案法の概略図

3. シミュレーション実験

3.1 予測シミュレーション

台風被害シミュレーション実験として、1989年か ら 2004年までに鹿児島県本土に接近した 22 個の台風 を対象とし、年代順に通しの台風番号を付与した。ま た、鹿児島本土内を各営業所毎の9地区(出水、大口、 川内、加治木、鹿児島、志布志、加世田、鹿屋、指宿) に分割した。この22 個の台風気象データを用いて学 習用 21 個とテスト用1個に分け、計22通りの場合に おいて各地区毎に予測シミュレーションを行った。な お本手法と他の手法との比較のため、線形回帰モデル のみの予測法(LRM)、ニューラルネットワークのみの 予測法(NN)による実験も同時に行った。

本手法の入力として5次元の $x = [x_1, x_2, x_3, x_4, x_5]^T$ を、出力としては、3次元の $y = [y_1, y_2, y_3]^T$ を選ん だ。ただし、 x_1 :進行経路、 $x_2[m/s]$:風速、 $x_3[hpa]$: 最低気圧、 $x_4[m/s]$:最大瞬間風速、 $x_5[km]$:暴風半 径、 $y_1[本]$:折損-転倒、 $y_2[本]$:傾斜、 $y_3[件]$:断混線 とした。

本手法においてニューラルネットワークの各パラ メータ値は、

入力層ユニット数:5ユニット,
中間層ユニット数:5ユニット,
出力層ユニット数:3ユニット,
学習係数 η = 0.2,
慣性項の係数 α = 0.8,
学習回数:200回.
また、GA の各パラメータ値を
個体数 M = 300,

各個体の二進文字列ビット数 $\zeta = 10$, 交叉確率 $P_c = 0.8$, 突然変異確率 $P_m = 0.03$, 世代数 G = 30, N_j の探索範囲 $0.1 \le N_j \le 10$, M_j の探索範囲 $-0.8 \le M_j \le 0.8$, G_i の探索範囲 $-0.005 \le G_i \le 5.0$, h_{1k}, h_{2k} の探索範囲 $0.1 \le h_{1k}, h_{2k} \le 10$, α_{1k}, α_{2k} の探索範囲 $1 \le \alpha_{1k}, \alpha_{2k} \le 100$, β_k の探索範囲 $-1.0 \le \beta_k \le 1.0$.

とした。これらの各パラメータ値は工学的に妥当と思われるものを試行錯誤的に求めた。また、比較のために用いた線形回帰モデル(LRM)とニューラルネットワークのみ(NN)においても、学習係数、慣性項の係数、学習回数などは本手法と同じ値を用いた。代表として、出水地区、川内地区、鹿児島地区の台風による被害予測結果をそれぞれ図3~図11に示す。このとき表2、表3の結果を得た。

表1 各地区経緯度

地区名	C_{LAk}	C_{LOk}
出水	32.08616667	130.3594583
大口	32.05963611	130.5909944
川内	31.81150556	130.3129333
加治木	31.73755000	130.6616778
鹿児島	31.58083056	130.5492550
志布志	31.46699722	131.0962750
加世田	31.41235833	130.2990000
鹿屋	31.38940000	130.8384194
指宿	31.25702778	130.5825056

表2 進行経路パラメータ

	出水	川内	鹿児島
h_{1k}	7.425807	6.235484	9.119355
h_{2k}	6.370968	9.932258	6.370968
α_{1k}	89.451614	45.612904	2.258065
α_{2k}	28.096775	2.451613	71.161293
β_k	-0.098240	0.051320	-0.054057

(a) 提案法

図5 出水地区の断混線被害予測結果

図7 川内地区の傾斜被害予測結果

(b) 従来法

図11 鹿児島地区の断混線被害予測結果

3.2 評価

各手法を評価するために以下のような絶対平均誤 差を導入する.

$$J_{i} = \frac{\sum_{q=1}^{22} \left| y_{i}(q) - \hat{y}_{i}(q) \right|}{\sum_{q=1}^{22} \left| y_{i}(q) \right|}$$
(29)

ただし,

 $y_i(q): 被害実績值,$

 $\hat{y}_i(q)$:予測値

q:台風番号

である.(29) 式により, 各手法による折損-転倒予測誤 差評価 *J*₁ を表 4 に, 傾斜予測誤差評価 *J*₂ を表 5 に, 断混線予測誤差評価 *J*₃ を表 6 に示す.

表 4 折損-転倒被害予測誤差評価

地区名	NEW	LRM	NN
出水	0.17	0.20	1.43
大口	0.44	0.52	0.79
川内	0.18	0.19	0.50
加治木	0.54	0.59	0.77
鹿児島	0.61	0.91	1.22
志布志	0.81	0.97	1.56
加世田	0.71	0.83	1.21
鹿屋	0.41	0.52	1.45
指宿	0.75	1.17	0.95
平均	0.51	0.66	1.10

表 5	傾斜被	害予測設	差評価
地区名	NEW	LRM	NN
出水	0.10	0.11	1.13
大口	0.44	0.49	0.76
川内	0.22	0.37	0.97
加治木	0.51	0.52	0.66
鹿児島	0.44	0.56	0.88
志布志	0.57	0.82	1.02
加世田	0.52	0.72	0.66
鹿屋	0.19	0.20	1.05
指宿	0.56	0.62	0.93
平均	0.39	0.49	0.90

表6 断	i混線被害予測誤差評価
------	-------------

地区名	NEW	LRM	NN
出水	0.16	0.17	0.95
大口	0.25	0.32	0.91
川内	0.23	0.23	0.56
加治木	0.20	0.24	0.57
鹿児島	0.46	0.47	0.84
志布志	0.42	0.45	1.40
加世田	0.36	0.44	0.70
鹿屋	0.29	0.37	0.92
指宿	0.43	0.51	0.74
平均	0.31	0.36	0.84

3.3 考察

表4~表6の予測誤差評価から本手法(NEW)は線 形回帰モデルのみ(LRM)、ニューラルネットワークの み(NN)の予測法と比較して優れていることがわかる。 しかし、地域毎、または台風番号毎において予測精度 のばらつきが見られた。これは、電柱の老朽化や地盤 のゆるみなどの蓄積された要因、間接的被害の影響な どが被害の要素に多く含まれているからではないかと 推測される。また、本研究で用いたデータ数はニュー ラルネットワークが十分に学習できる範囲にあるとは 言いがたく、学習中に局所解に陥ってしまい近似精度 が低下した可能性も考えられる。今後の課題としては、 さらなるモデルの改良、地形などのそれぞれの地域の 特徴やそれぞれの台風の特徴を考慮した入力データの 選定、進行経路の数値化法の改善、入出力データの規 格化法の改善などが必要だと考えられる。

4. あとがき

本研究は、鹿児島県本土の各地区における電力系 統台風被害予測の精度良い予測法の開発を目的とした ものである。本論文では、「線形回帰モデル」と「3階 層型ニューラルネットワーク」を用いた二段階予測法 を提案した。また、予測を行う際に各パラメータ設定 にGAを用いることにより、更なる予測精度の向上を 目指した。1989年~2004年に鹿児島県本土に接近し た22個の台風を対象とした数値シミュレーション実 験を行うことにより、提案法の有効性を確認した。

本手法の予測精度をより高めるためには、地形な どのそれぞれの地域の特徴やそれぞれの台風の特徴を 考慮した入力データの選定、進行経路の数値化法の改 善、入出力データの規格化法の改善などが必要である。

また、これらを具体的に実用化するためには、設備被害箇所の地点とその被害程度のより正確な把握が必要になる。これは GPS(Global Positioning System)、IC、IT 技術の有機的活用により達成できると考えられる。著者らは上述課題に関する研究⁷⁾を既に進めており,詳細については別に報告されるであろう.

謝辞

本研究を行うにあたり,各種データの提供と論議 を賜った九州電力(株)鹿児島支店の各諸氏に深甚の 謝意を表します.

参考文献

- 高田等,園田克治,八野知博,実成義孝:「線形回 帰モデルとニューラルネットワークによる鹿児島 地区電力配電系統の台風被害予測法」,Journal of Signal Processing, Vol.3, No.6, pp.455-461, 1999
- 2) 高田等,八野知博,畠山雅登,倉山功冶:「営業 所レベルでの台風による電力系統被害予測と位 置確定に関する研究」平成15年度九州電力(株) 産学共同研究報告会資料,2003
- 3)高田等,川路真也,八野知博,畠山雅登,長谷 秀一,浜崎庄吉,倉山功冶:「LRM と NN を用 いた奄美群島の台風による電力設備被害予測に ついて」,第23回 SICE 九州支部学術講演会, 104D4, pp.343-344,2004
- 4)高田等,川路真也,八野知博:「線形回帰モデルとNNによる奄美群島の電力設備台風被害予測について」,平成16年度電気関係学会九州支部連合大会,07-1A-03,2004
- 5) 高田等,八野知博,松山幹男,畠山雅登,長谷 秀一,浜崎庄吉,倉山功冶:「鹿児島県各営業所 毎の,台風による電力系統被害の予測と位置確 定に関する研究」平成17年度九州電力(株)産 学共同研究懇談会資料,2005
- 6)高田等,川路真也,八野知博:「鹿児島県本土の 各地区における電力系統台風被害予測」,第24
 回SICE九州支部学術講演会,102C3,pp.89-90, 2005
- 7)高田等,八野知博,松山幹男,坂元均,伊知地紀公,川路真也,山崎知一,畠山雅登,倉山功冶:「GPSによる支持物傾斜測位実験について」,第24回SICE九州支部学術講演会,104A1,pp.189-190,2005
- 8) Hitoshi Takata , Shinya Kawaji , Tomohiro Hach ino , Masato Hatakeyama , Syuuichi Hase , Syoukichi Hamasaki , Kouji Kurayama : ^r Prediction of Electric Power Damage by Typhoons in the Amami Archipelago via a Two-stages Predictor J , 2005 RISP International Workshop on Nonlinear Circuit and Signal Processing (NCSP '05) , pp.223-226 , Hawai, USA, Mar, 4-6, 2005
- 9) 馬場則夫,小島文男,小澤誠一:「ニューラルネットの基礎と応用」,共立出版,1994
- 10) 北野宏明:「遺伝的アルゴリズム」,産業図書, 1993