規格化ガウシャン関数を用いた 奄美群島の台風停電被害予測法

八野 知博* 伊知地 紀公** 高田 等*

A Method of Blackout Prediction by Typhoon in Amami Archipelago via Normalized Gaussian Function

Tomohiro HACHINO, Noriyuki IJICHI and Hitoshi TAKATA

The Amami archipelago has been frequently suffered from typhoons. They often hit electric power systems and cause blackouts. To ensure their rapid restoration, one needs to predict the amount of damage accurately. This paper is concerned with a prediction of blackouts by typhoons in the Amami archipelago.

Keywords: Amami Archipelago, Blackout Prediction , Normalized Gaussian Function

1. はじめに

日本は、台風が毎年襲来し、たびたび甚大な災害を 被ってきた。その中でも電力系統設備への被害は、社 会全体に大きな損害を及ぼす要因となっている。特に 鹿児島県は、地理的に台風の通り道に位置するため、 接近、上陸数が多く、電力系統設備の被害が大きい地 域である。更には、離島が多いため、復旧に時間のか かる環境にある。電力系統設備が台風により被害を被 ると,停電を引き起こし,長時間続くと民間,企業な どの社会生活ばかりでなく,電力会社自身も大きな損 害となる。それゆえ、停電時間をできるだけ最小限に 抑えるためには、台風による設備被害を迅速に復旧さ せる必要がある。迅速かつ効率的に復旧作業を行うた めには、台風被害発生前に設備被害量を予め予測^{1)~9)} し、それに応じた復旧対応人員を被害予測地域に派遣 する必要がある。

2006年8月31日受理

** 博士前期課程電気電子工学専攻

すなわち、電力系統設備被害による損害を最小限に抑 えるためには、正確な設備被害予測が必要になり、高 精度な予測法の開発が求められている。

現在、台風に関して、風速や進路の予測など多く の研究があるが正確な予測法はない。台風の気象情報 は時間とともに変化し続けるため、その性質を捉える のが困難だからである。さらに、電力系統の設備被害 では、様々な要因が考えられる。例えば、平野部、山 間部、海辺などの地形による影響や、設備自体の耐久 力の違いによっても影響を受けるので予測は容易では ない。

本論文では、入手可能な台風の気象情報を基に、停 電の回線数や戸数等の停電被害を規格化ガウシャン関 数ネットワーク(Normalized Gaussian Network)^{1)~5)} で予測する手法について考察した。また、気象情報の 一つである台風の進行経路は非常に台風被害と相関の 高い情報であり、その数値化が極めて重要となる。そ こで、規格化ガウシャン関数の未知パラメータの決定 と、進行経路を数値化する際に用いる正規分布のパラ メータの決定に、大域的探索能力に優れている遺伝的 アルゴリズム (Genetic Algorithm)^{9),10)}を用いた。

^{*} 電気電子工学科

2. 規格化ガウシャン関数ネットワーク

2.1 ネットワーク式

RBF とスプライン関数の両方の特徴をあわせもっ た関数近似の方法である規格化ガウシャン関数ネット ワークは、次のように与えられる。

$$y = \sum_{i=1}^{n} f_i(\boldsymbol{x}) \mu_i(\boldsymbol{x})$$
(1)

$$f_i(\boldsymbol{x}) = \sum_{j=0}^m \theta_{ij} x_j \tag{2}$$

ただし、

m: 入力数,

n:領域分割数,

 $f_i(m{x})$:観測データ各領域の同定モデル, $m{x}=[x_1,\cdots,x_m]^T$, $x_0=1,$

 $\theta_{ij}:$ 相関係数.

ここに $\mu_i(x)$ は、次の規格化ガウシャン関数である。

$$\mu_i(\boldsymbol{x}) = \frac{G_i(\boldsymbol{x})}{\sum_{j=1}^n G_j(\boldsymbol{x})}$$
(3)

$$G_i(\boldsymbol{x}) = \prod_{k=1}^m \exp\left\{-\left(\frac{x_k - c_{ik}}{b_{ik}}\right)^2\right\}$$
(4)

この場合、各ガウシャン関数は入力データとの近さに 応じて出力を受けもつことになり、入力に近い中心値 をもつガウシャン関数は、関数 $f_i(x)$ で目的の関数を 近似する。これにより、入力毎の3つのガウシャン関 数の間は滑らかに接続されることになる。なお、同定 モデル $f_i(x)$ $(i = 1, 2, \dots, n)$ には平面あるいは単調 増加,単調減少であるモデルが望ましく、本手法では 線形回帰モデルを用いた。すなわち本関数近似法は、 まず全データをプロットし、入出力値による特質の類 似した集団を作り n 個のグループ分けを行う。次に、 各グループ内を線形回帰 $f_i(x)$ し、グループ間はガウ シャン関数 $\mu_i(x)$ で結合して構築される。

2.2 観測データの分割

観測データ $(\boldsymbol{x}(p), \boldsymbol{y}(p))$ $(p = 1, 2, \dots, L)$ は n 個の 領域に分割され、各領域ごとに同定モデル $f_i(\boldsymbol{x})$ $(i = 1, 2, \dots, n)$ が構築される。その手順を次の図 1 を使っ て説明する。

図1 観測データの分割

図1より、中心 (o_{11}, o_{12}, o_{13}) 、半径 r_1 の領域内に 位置する観測データ $(\boldsymbol{x}(p), \boldsymbol{y}(p))$ が p = 1から p = 5まであるものとする。この領域に与えられる入力デー タ \boldsymbol{x}_{f_1} と出力データ \boldsymbol{y}_{f_2} は、

$$y_{f_1}(q) = \sum_{j=0}^{3} \theta_{1j} x_{f_{1_j}}(q) + e_{f_1}(q) \qquad (1 \le q \le 5) \quad (5)$$

ただし、

 $e_{f_1}(q)$:近似誤差,

 θ_{1i} :相関係数.

で表される.これをベクトル表示すると、

$$\boldsymbol{y}_{f_1} = \boldsymbol{x}_{f_1} \boldsymbol{\theta}_1 + \boldsymbol{e}_{f_1} \tag{6}$$

ただし、

$$\boldsymbol{\theta_1} = \begin{bmatrix} \theta_{10} & \theta_{11} & \theta_{12} & \theta_{13} \end{bmatrix}^T \tag{7}$$

$$\boldsymbol{x}_{f_{1}} = \begin{bmatrix} 1 & x_{f_{1_{1}}}(1) & x_{f_{1_{2}}}(1) & x_{f_{1_{3}}}(1) \\ 1 & x_{f_{1_{1}}}(2) & x_{f_{1_{2}}}(2) & x_{f_{1_{3}}}(2) \\ 1 & x_{f_{1_{1}}}(3) & x_{f_{1_{2}}}(3) & x_{f_{1_{3}}}(3) \\ 1 & x_{f_{1_{1}}}(4) & x_{f_{1_{2}}}(4) & x_{f_{1_{3}}}(4) \\ 1 & x_{f_{1_{1}}}(5) & x_{f_{1_{2}}}(5) & x_{f_{1_{3}}}(5) \end{bmatrix}$$
(8)
$$\boldsymbol{y}_{f_{1}} = \begin{bmatrix} y_{f_{1}}(1) \\ y_{f_{1}}(2) \\ y_{f_{1}}(3) \\ y_{f_{1}}(4) \\ y_{f_{1}}(5) \end{bmatrix} \quad \boldsymbol{e}_{f_{1}} = \begin{bmatrix} e_{f_{1}}(1) \\ e_{f_{1}}(2) \\ e_{f_{1}}(3) \\ e_{f_{1}}(4) \\ e_{f_{1}}(5) \end{bmatrix}$$

となる。ここで、

$$\boldsymbol{J} = tr(\boldsymbol{y}_{f_1} - \boldsymbol{x}_{f_1}\boldsymbol{\theta}_1)^T(\boldsymbol{y}_{f_1} - \boldsymbol{x}_{f_1}\boldsymbol{\theta}_1)$$
(9)

で表される評価関数 J を θ_1 について微分し零とお くと、

$$\frac{\partial \boldsymbol{J}}{\partial \boldsymbol{\theta}_1} = -2\boldsymbol{x}_{f_1}^T(\boldsymbol{y}_{f_1} - \boldsymbol{x}_{f_1}\boldsymbol{\theta}_1) = \boldsymbol{0}$$
(10)

よって最小二乗法により求める相関行列 $\hat{\theta}_1$ は、

$$\hat{\boldsymbol{\theta}}_{1} = (\boldsymbol{x}_{f_{1}}^{T} \boldsymbol{x}_{f_{1}})^{-1} (\boldsymbol{x}_{f_{1}}^{T} \boldsymbol{y}_{f_{1}})$$
(11)

となる。この相関行列 $\hat{\theta}_1 = [\hat{\theta}_{10} \ \hat{\theta}_{11} \ \hat{\theta}_{12} \ \hat{\theta}_{13}]^T$ を用い た次式を、同定モデル $f_1(x)$ の出力とする

$$f_1(\boldsymbol{x}) = \sum_{j=0}^{3} \hat{\theta}_{1j} x_j \tag{12}$$

同様にして、i = 2の場合とi = 3の場合も、分割 された観測データから同定モデル $f_2(x)$, $f_3(x)$ を構 築する。

ここまでは、各ガウシャン関数の構造は既知であ るが、中心値 c_{ik} と幅 b_{ik} および各同定モデル $f_i(x)$ の 範囲を決めるパラメータ値 o_{ki}, r_i は未知である。これ ら未知パラメータを遺伝的アルゴリズム(GA)を用 いて準最適に求める。そのアルゴリズムは次の 3.4 節 に記載される。

3. 被害システムの構築

3.1 データ処理

台風気象データを入力とし、電力系統設備被害予 測値を出力とする予測システムを構築する。具体的に は、入力として、進行経路、進行速度、最大風速、継続 時間の内3つを、出力として、停電回線数と最大停電 戸数を考える。しかし、台風は時々刻々と変化するも のなので的確な入力データとして得ることは難しい。 また、獲得できたとしても全ての要因をシステムの入 力とすると、必然的にネットワークの規模は大きくな り、計算時間などが大きくなる。 そこで、本手法によ リ予測器を作る段階、即ち学習の段階と予測を行うと きに用いる最大風速と進行速度の値は、奄美群島(奄 美大島、喜界島、徳之島、沖永良部、与論島)各島付 近を通過した台風データの値とする。また、できるだ け各離島ごとの特徴を反映した気象情報を用いるため に、各島の測候所のデータをそれぞれ採用した。継続 時間は各島が暴風円内に入っている時間とした。各島 毎の進行経路評価値は次に述べる正規関数により与え られる。

3.2 進行経路の数値化

台風の進行経路は、緯度、経度で表されるのでデー タとして数値化が必要となる。また、単なる数値化で はなく、台風と各島の位置関係や、北半球では進行方 向の右の半円の方が風速が強いという特徴などを踏ま えた数値化が、精度の高い被害予測に有効である。そ のため本手法では、各島について図2、図3に示すよう な正規分布を用いて進行経路の評価値 x_1 を決定する。 正規分布の形状を決めるパラメータ $h_{1g}, h_{2g}, \alpha_{1g}, \alpha_{2g}$ と中心バイアス β_g ,は GA を用いて求めた。

$$x_1g = \frac{1}{p} \sum_{j=1}^{p} \exp\left[-\frac{\alpha_{1g}(T_{LAj} - C_{LAg})^2}{h_{1g}^2} \quad (13)\right]$$

$$-\frac{\alpha_{2g}(T_{LOj} - C_{LOg} - \beta_g)^2}{h_{2g}^2} \right]$$
(14)

ただし、

 T_{LAj} : 台風の中心の緯度, T_{LOj} : 台風の中心の経度, C_{LAg} : 各地区の緯度, C_{LOg} : 各地区の経度, h_{1g}, h_{2g} : 正規分布の幅, α_{1g}, α_{2g} : 形状パラメータ, β_{g} : 中心バイアス,

p:台風の進行経路のプロット数.

3.3 データの規格化

観測データ $X(p) \ge Y(p)$ ($p = 1, \dots, L$) はそれぞ れ単位も異なり、最大値や最小値をとる値も異なるた め、次のように 0~1 までの値に規格化を施す。

$$x_{k}(p) = \frac{X_{k}(p) - X_{k,\min}}{X_{k,\max} - X_{k,\min}}$$
(15)

ただし、

$$X_k(p)$$
: 観測データ (入力),
 $X_{k,\max}$: 入力データの最大値,
 $X_{k,\min}$: 入力データの最小値.

$$y_k(p) = \frac{Y_k(p) - Y_{k,\min}}{Y_{k,\max} - Y_{k,\min}}$$
(16)

ただし、

$$Y_k(p): 観測データ (出力),$$

 $Y_{k,\max}: 出力データの最大値,$
 $Y_{k,\min}: 出力データの最小値.$

これより最終的には、被害予測モデルの出力 \hat{y} は次の 式より被害予測実績値 \hat{Y} に逆変換される

$$\hat{Y} = \hat{y} \left(Y_{\text{max}} - Y_{\text{min}} \right) + Y_{\text{min}} \tag{17}$$

また、本手法では被害予測モデルの近似精度を考慮して、被害予測モデルを多入力1出力と設定し、出 カデータ Y(p) ($p = 1, \dots, L$)を、停電回線数と最大 停電戸数の別々に設定する。

3.4 アルゴリズム

本手法で用いた規格化ガウシャン関数ネットワーク の最適化アルゴリズムをGAの手順に沿って説明する。 step 0: データ規格化

3.3節により全データを規格化する。

step 1:初期候補集団発生

Q 個の二進文字列(個体)から構成される Ω の初 期候補集団 { $c_{ik}^{s}, b_{ik}^{s}, o_{ki}^{s}, r_{i}^{s}, h_{1g}^{s}, h_{2g}^{s}, \alpha_{1g}^{s}, \alpha_{2g}^{s}, \beta_{g}^{s}, (s = 1, \dots, Q)$ をランダムに発生させる。 step 2: デコーディング

各個体を遺伝子型から表現体にデコーディングする。 step 3: 規格化ガウシャン関数ネットワークの構築

デコーディングされた候補 $\{c_{ik}^{s}, b_{ik}^{s}, o_{ki}^{s}, r_{i}^{s}, h_{1g}^{s}, h_{2g}^{s}, \alpha_{1g}^{s}, \alpha_{2g}^{s}, \beta_{g}^{s}, (s = 1, \cdots, Q)$ より正規化後データを計算 し,これらのデータを用いて第2章の方法により、Q個の規格化ガウシャン関数ネットワークの候補を構築 する。

step 4: 適応度計算

 $s = 1, \cdots, Q$ に対し各s毎 { $c_{ik}^s, b_{ik}^s, o_{ki}^s, r_i^s, h_{1g}^s, h_{2g}^s, \alpha_{1g}^s, \alpha_{2g}^s, \beta_a^s,$ } を用いて目的関数

$$J_{s} = \frac{\sum_{p=1}^{L} |Y(p) - \tilde{Y}(p)|}{\sum_{p=1}^{L} Y(p)}$$
(18)

ただし、Y(p):パターンpにおける出力データ、 $\tilde{Y}(p)$:パ ターンpにおいて、 $\{c_{ik}^{s}, b_{ik}^{s}, o_{ki}^{s}, r_{i}^{s}, h_{1g}^{s}, h_{2g}^{s}, \alpha_{1g}^{s}, \alpha_{2g}^{s}, \beta_{g}^{s}, \}$ による(1)式の規格化ガウシャン関数ネットワー ク近似出力を求め、適応度 $F_{s} = 1/(J_{s}+1)$ を計算する。 step 5:複製

適応度に比例した選択確率で複製を行う適応度比 例戦略を用いる。

step 6:交叉

ランダムに個体のペアを *Q*/2 個作成し、交叉確率 *P_c* で交叉を行う。

step 7:突然変異

突然変異 P_m で個体の遺伝子(0 あるいは1)を反転させる。

step 8:繰り返し

以後 step2~ step7 をあらかじめ決められた世代数 G に達するまで繰り返し、集団全体の適応度を高める。 最終的に、全世代において最も高い適応度を有する個体 から、最適な規格化ガウシャン関数ネットワークの未知 パラメータ $\{c_{ik}^{s}, b_{ik}^{s}, o_{ki}^{s}, r_{i}^{s}\}$ 及び、進行経路の数値化で 用いる正規分布のパラメータ $\{h_{1g}^{s}, h_{2g}^{s}, \alpha_{1g}^{s}, \alpha_{2g}^{s}, \beta_{g}^{s}, \}$ が決定される。

4. シミュレーション実験

4.1 実験内容

台風被害シミュレーションとして入力に使用した データは、1990年から2004年までの15年間に鹿児島 県奄美群島に接近または上陸した計25個の台風を対 象とし、年代順に通しの台風番号を付与した。この25 個の台風気象データと奄美群島における電力系統の被 害実績値が予測に用いる入出力データである。奄美群 島(奄美大島、喜界島、沖永良部、与論、徳之島)各 離島ごとの特徴を反映した気象情報を用いるために、 各離島の測候所のデータよりそれぞれ取り上げた。ま た喜界島、沖永良部、与論、徳之島の4つの離島は25 個あるデータの内19個を用いてシミュレーション実 験を行った。全データ25(又は19)個の内、予測する 1つをテスト用データ、残り24(18)個を学習用デー タとして用い、それぞれ全ての台風において予測シュ ミレーションを行った。なお本手法(NEW)と比較 のために線形回帰モデル(LRM)のみを用いた予測 法による実験も同時に行った。

被害予測の入力として、3次元の $x_k = [x_1, x_2, x_3]^T$ を、出力として、1次元の $y = [y_1], y = [y_2],$ を選ん だ。ただし、離島毎の地形の違い等による気象情報や 設備規模の差などを考慮するため、各離島それぞれの 測候所のデータを用い、予測に使う3つの入力の組み 合わせもそれぞれ別とした。 奄美大島:x1:進行経路評価値 x_2 [km/h]:進行速度 $x_3[h]: 継続時間$ 喜界島: x₁:進行経路評価値 $x_2[h]: 継続時間$ x_3 [m/s]:最大風速 沖永良部: x₁:進行経路評価値 $x_2[h]: 継続時間$ x_3 [m/s]:最大風速 与論島:x1:進行経路評価値 $x_2[h]: 継続時間$ x_3 [m/s]:最大風速 徳之島: x1:進行経路評価値 $x_2[h]: 継続時間$ x_3 [m/s]:最大風速 出力は y_1 [回線]:停電回線数、 y_2 [千戸]:最大停電戸数 とした。 4.2 規格化ガウシャン関数の構造 入力数 m = 3, 領域の数n = 3 =ガウシャン関数の数. 4.3 遺伝的アルゴリズムの設定パラメータ 世代数 G=30.

個体数 *M*=300.

二進文字列ビット数 (=10,

交叉確率 $P_c = 0.8$,

突然変異確率 Pm=0.03.

4.4 規格化ガウシャン関数のパラメータ

 c_{ik} の範囲 $0.0 \le c_{i1}, c_{i2} \le 1.0,$

 b_{ik} の範囲 $0.1 \le b_{ik} \le 1.0$,

 o_{ik} の範囲 $0.1 \le o_{ik} \le 1.0$,

 r_i の範囲 $0.5 \le r_i \le 0.7$.

4.5 進行経路数値化の正規分布設定パラメータ

- h_{1g} の範囲 $0.5 \le h_{ik} \le 5.0$,
- h_{2g} の範囲 $0.5 \le h_{2g} \le 5.0$,
- α_{1g} の範囲 $1.0 \le \alpha_{1g} \le 100.0$,
- α_{2g} の範囲 $1.0 \le \alpha_{2g} \le 100.0$,

 β_g の範囲 $0.0 \le \beta_g \le 1.0.$

これらの各パラメータ値は工学的に妥当と思われ るものを試行錯誤的に求めた。予測シミュレーション の結果を図4~図8に示す。このときの数値結果を表-1 ~表4に示す。ただし表3と表4は台風通し番号1を 予測するときの代表例である。

表1 島の経緯度

k	島名	C_{LAg} 度	C_{LOg} 度		
1	奄美大島	28.257	129.406		
2	喜界島	28.317	129.934		
3	沖永良部	27.359	128.616		
4	与論	27.044	128.417		
5	徳之島	27.723	129.202		

表 2 進行経路評価値

台風番号	奄美大島	喜界島	沖永良部	与論	徳之島
1	10.525	9.361	4.756	5.018	5.4954
2	2.125	0.017	1.333	2.025	0.383
3	11.496	6.693	5.5038	4.609	7.234
4	7.176	1.01	3.267	3.562	2.474
5	4.300	2.80	0.020	0.007	0.075
6	4.110	0.39	4.370	5.322	1.259
7	0.109	0.005	9.031	7.846	0.656
8	1.604	0.007	0.829	1.395	0.178
9	0.039	0.0001	0.003	0.003	0.002
10	0.652	0.0005	0.582	1.014	0.054
11	1.310	0.0056	0.089	0.085	0.020
12	1.670	0.0057	4.581	9.607	3.597
13	0.010	0	0.891	3.774	0.008
14	11.140	5.119	0.481	0.320	0.996
15	7.672	1.217	4.186	5.315	2.777
16	11.175	8.943	0.0276	0.0009	1.028
17	0	0	0	0	0
18	4.962	3.172	0.679	0.548	0.7267
19	0.397	0.0001	0.012	0.019	0.0016
20	11.540	0	0	0	0
21	8.108	0	0	0	0
22	4.722	0	0	0	0
23	2.576	0	0	0	0
24	2.117	0	0	0	0
25	11.272	0	0	0	0

表3 分割パラメータ

パラ	メータ	奄美大島	喜界島	沖永良部	与論	徳之島
c_{ik}	c_{11}	0.210	0.856	0.776	0.524	0.689
	c_{12}	0.524	0.665	0.459	0.903	0.114
	c_{13}	0.967	0.793	0.538	0.710	0.031
	b_{11}	0.385	0.983	0.383	0.197	0.368
b_{ik}	b_{12}	0.119	0.124	0.112	0.210	0.310
	b_{13}	0.667	0.502	0.293	0.549	0.941
o_{ik}	011	0.842	0.465	0.183	0.146	0.175
	012	0.642	0.435	0.783	0.508	0.424
	013	0.148	0.517	0.799	0.538	0.674
r_i	r_1	0.698	0.672	0.633	0.582	0.550
	r_2	0.588	0.685	0.565	0.518	0.617
	r_3	0.426	0.597	0.580	0.547	0.629

進行経路パラメータ

沖永良部

0.873

2.874

16.809

56.972

0.366

与論

0.512

1.239

16.231

60.236

0.128

徳之島

3.118

4.980

18.121

65.540

0.431

表 4 ^{奄美大島}

1.319

3.132

18.226

65.742

0.401

 $\frac{h_{1g}}{h_{2g}}$

 α_{1g}

 α_{2g}

 β_g

喜界島

2.341

4.988

13.873

46.873

0.631

図 5.1 喜界島の停電回線数被害値予測

図 5.2 喜界島の最大停電戸数被害予測

図 4.1 奄美大島の停電回線数被害値予測

図 6.1 沖永良部の停電回線数被害値予測

図 8.1 徳之島の停電回線数被害値予測

5. 評価

5.1 評価値

各手法を評価するために以下のような絶対平均誤差 を導入する。

$$J_{i} = \frac{\sum_{q=1}^{p} |y_{i}(q) - \hat{y}_{i}(q)|}{\sum_{q=1}^{p} y_{i}(q)}$$
(19)

ただし、

- $y_i(q): 被害実績値,$
- $\hat{y}_i(q)$:予測値
- q:台風番号
- p: 奄美大島 (p=25)

喜界島、沖永良部、与論島、徳之島(*p*=19) である。本手法と線形回帰モデルのみの予測評価 { *J_i* } を表 5、表 6 に示す。

表 5 停電回線被害予測誤差評価

地区名	本手法	LRM
奄美大島	0.13	0.85
喜界島	0.18	0.4
沖永良部	0.29	0.56
与論	0.63	0.704
徳之島	0.48	0.65
平均	0.342	0.548

表 6 最大停電戶数被害予測誤差評価

地区名	本手法	LRM
奄美大島	0.18	0.95
喜界島	0.35	0.56
沖永良部	0.56	1.0
与論	0.68	1.0
徳之島	0.59	0.71
平均	0.48	0.843

5.2 考察

これらの結果より本手法(NEW)は他の手法に比 べ優れていることがわかる。しかし、表5と表6から、 停電回線数と最大停電戸数を比べると、表6の最大停 電戸数の方が平均予測誤差値が大きい。また、奄美大 島と他の離島の予測結果を比べると、同じ手法で予測 を行っても評価値は大きく異なり、予測精度に地域差 がある。これらの予測誤差の起因としては、例えば以 下が想像される。(1)本手法の同定モデルは線形であ り近似精度や汎化能力に限界がある。(2)同じ台風の 影響でも、設備に関わる要因や各地域における地形、 雨による地盤の安定度の低下などによる二次要因も関 わっている。すなわち、線形回帰モデルと現使用の入 力データでは台風情報と被害値との関係を十分に表現 できなかったためと思われる。これらの予測誤差改善 には、さらなるモデルの改良や入力データの選定が必 要である。

6. あとがき

一般に高精度な予測が難しい鹿児島県奄美群島に おける、台風による停電被害の予測法について考察し た。本手法は、台風の気象情報を入力、設備被害を出 力とし、規格化ガウシャン関数ネットワークとGAを 用いて構成されたものである。また、入力の中で最も 重要だと思われる台風の進行経路に関して、北半球に おける台風の強さの特徴である「偏り度」を考慮した。 さらに各離島毎の気象データを用いることで地域性を 考慮した。過去の実データを用いた数値シミュレーショ ン実験により本手法の有効性を確かめた。

なお、本手法の予測精度をさらに向上させるため には、入力に用いる気象データの選定、入出力データ の規格化の改善、および規格化ガウシャン関数ネット ワークモデルの改善などがある。これらに関するさら なる検討は、今後に残された研究課題である。

また、これらを具体的に実用化するためには、設備被害箇所の地点とその被害程度のより正確な把握が必要になる。これはGPS(Global Positioning System)、IC、IT 技術の有機的活用により達成できると考えられる。著者らは上述課題に関する研究を既に進めており,詳細については別に報告されるであろう。

謝辞

本研究を行うにあたり、各種データの提供と論議 を賜った九州電力(株)鹿児島支店の各諸氏に深甚の 謝意を表します。

参考文献

- 高田等,柳瀬三司,土田比佐志,八野知博:「電 力系統台風被害予測における台風進行経路評価 の一考察」,第19回 SICE 九州支部学術講演会, 222, pp.169-170,2000
- 2) 高田等, 柳瀬三司, 八野知博, 坂元均: 「電力系統

台風被害予測に対しガウシャン関数ネットワークを用いた台風進行経路の改善」,平成13年度 電気関係学会九州支部連合大会論文集,pp.303, 2001

- 高田等,脇寿彦,八野知博,坂元均:「電力系統 台風被害予測用 RBF ネットワークについて」, 平成14年度電気関係学会九州支部連合大会論文 集,pp.300,2002
- 4)高田等,伊知地紀公,八野知博:「規格化ガウシャン関数を用いた奄美大島の台風による停電被害予測」,平成16年度電気関係学会九州支部連合大会論文集,07-1A-02,2004
- 5) 高田等,伊知地紀公,八野知博:「規格化ガウシャン関数を用いた奄美大島の台風停電被害予測」, 第19回SICE九州支部学術講演会,102C2,2005
- 6)高田等,坂本均:「GPS衛星を用いた鹿児島地区における位置推定について」,第19回SICE九州支部学術講演会,104A2,2005
- 7)高田等,八野知博,畠山雅登,倉山功治:「営業所 レベルでの台風による電力系統被害予測と位置 確定に関する研究」,平成15年度九州電力(株) 産学共同研究,報告会資料,2003
- 高田等,八野知博,松山幹男,畠山雅登,長谷 秀一,浜崎庄吉,倉山功治:「鹿児島県各営業所 毎の台風による電力系統被害予測と位置確定に 関する研究」,平成17年度産学共同研究懇談会 資料,2005
- 高田等、土田比佐志、花田秀幸、八野知博、宮 島廣美:「遺伝的アルゴリズムと線形回帰モデル に基づく電力配電系統の台風被害予測」、平成 11年度電気関係学会九州支部連合大会論文集、 pp.323、1999
- 10) 北野宏明 :「遺伝的アルゴリズム」、産業図書、 1993