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§ 0. Introduction

Throughout this paper, p will denote an odd prime integer.
Let S2n+1 be the unit (2rc + l)-sphere in the complex 0 + l)-space. Then

the free actions of Sl = {eie\Q<d<2n} and Zp={eie\0 = 2nh/p, A=0, •••, p-1}
on S2n+1 are defined by eie(z0, ..., zH)=(ei0zo, •••, ei9zn).

Let V2n,k be the Stiefel manifold of orthonormal ^-frames in the real
2/i-space R2n. We define free actions of Sl and Zp on V2n,k such that eie
operates on each vector of A>frame as above. We consider the quotient
manifolds

Z2n,k~ V2n>k/S > X2n>k = V2n,k/Zp.

Then Z2n>1 = CPn~1, the real 2n—2 dimensional complex projective space, and
X2n,i = Ln~1(p\ the 2n—1 dimensional modp lens space.

Let £ and tj be the canonical complex line bundles over CP™ and L°°(p\
respectively. Then the above manifolds Z2n>k and X2n>k are homotopy
equivalent to the total spaces of the associated F^a-bundles of ni and n-q,
respectively, as is shown in Proposition 1.3. Consequently, it is expected
that the cohomology structures of Z2n>k and X2n>k give us the informations
about the structures of n£ and utj and so the immersion problem for lens
spaces Ln(p).

Recently, S. Gitler and D. Handel [5] have considered the projective
Stiefel manifolds, which are the above manifolds Xn>k for p=2 (in this case,
n need not be even), and determined their mod 2 cohomology algebras and the
actions of the Steenrod squares up to a small indeterminancy. Also,
P. F. Baum and W. Browder [1] have determined completely the actions of the
Steenrod squares when n is a power of 2. Moreover S. Gitler [6J has applied
these results to the immersion problem for the real projective spaces.

The purpose of this paper is to study the mod p cohomology structures
of Z2rttk and X2n>k and to apply these results to the problems of independent
cross sections of nrj and immersions of Ln(p).

In §1, we prove Theorem 1.11, which determines the mod p cohomology
algebras H*(Z2n>k) and H*(X2ntk). Furthermore the generators are given in
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Theorem 2.7, using the universal Pontrjagin classes pj and Euler class %,
which is proved by the analogous method in [5]. The mod p reduced power
operations §>* in these algebras are studied in §3, using Theorem 2.7 and the
well-known results on fP'pj and §>lx. Also we study the Bockstein homomor-
phism 0 in §4, using the results of [1, Main Theorem I (7.12)]. °P{ and /?
are determined explicitly in Theorems 3.10-11 and 4.12 for n —n'pr (r>l)
and some k.

For the applications, we study the relations between Z2n>k and Z2n+2m>k in
§ 5 and prove Proposition 6.4. Finally, we apply Proposition 6.4 to Theorem
6.2 which is a non-existance theorem of k independent cross sections of the
bundle myj over L\p). By Theorem 6.2 and T. Kobayashi's Theorem [7,
Theorem 1], we obtain Theorem 6.3, which is a non-immersion theorem for
lens spaces L\p).

The author thanks Professors M. Sugawara and T. Kobayashi for their
kind advice.

§ 1. The mod p cohomology of X2n>k and Z2n>k

In this paper, the cohomology JET*( ) will be understood to have Zp for
coefficients, unless otherwise stated.

Let V2tlyk be the Stiefel manifold of orthonormal ^-frames in the real 2n-
space R2n and define a free action of S1={eie |0 <d<2n} on V2n>k by consider
ing

0 \
\eU(n)CSO(2n).

0

We consider the following quotient manifolds:

Z2n,k— V2n,k/S , X2n,k= V2n>k/Zp

where Zp={eie\d= 27i:h/p, A= 0, 1, • -,p-l}CS\
Let $ and rj be the canonical complex line bundles over the infinite

dimensional complex projective space CP°° and the mod p lens space L°°(p\
respectively, and n$ (resp. n-q) the Whitney sum of n copies of f (resp. tj). The
real restriction of ng (resp. nrj) is denoted by the same notation ng (resp.
riTJ). The associated F2w,;rbundles of n$ and n-rj are the following:

(1.1)

(1.2)

V2n,k —• S x siV2n>k -^CP°°,

V2n>k —+S~XZpV2n,k -^L-(p),

where S~ is the infinite dimensional sphere and the projections are defined by
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the natural projections S~ >S*/S1 = CP™ and S~ >S~/Zp = L~(p\ respec
tively.

Proposition 1.3. The manifolds Z2n>k (resp. X2n>k) and S~x s^V2n,k (resp.
S~x ZpV2n>k) are of the same homotopy type and the natural projection
V2n,k >Z2n,k (resp. V2n>k >X2n>k) can he identified with the inclusion.

Proof. The following diagram is commutative:

Sl >S~x V2n,k >S~xsiV2n,k
(1.4) ||x i 1

S > V2ritk >Z2n>k,

where vertical maps are the projections. The projection S~x V2n,k >V2n,k
is obviously a homotopy equivalence and the inclusion map V2n>k >S~ x V2n,k
is its homotopy inverse. Hence, by the homotopy exact sequences of the
fibrations and the five lemma, the projection ^x^^^ >Z2tttk induces
isomorphisms of all homotopy groups, and we obtain S~x 5iF2w,£ —Z2w,*.
Similarly it follows that S"x ZpV2n,k~X2„tk. Q.E.D.

According to Proposition 1.3, we identify the space 5" x si V2n>k with Z2Htk
and 5°°xZpV2n,k with X2n>k.

Now, let fn: CP°° >BSO(2n) be a classifying map of n$. Then fnn is a
classifying map of ny, since ?? = 7r*f, where n: L°°(p) >CP°° is the natural
projection. Therefore we obtain the following homotopy commutative
diagram:

V2n, k V2n> k V2n, k
I I I

(1.5) x2n>k-^Z2n>k-l^BSO(2n-k)

L°°(p)-^->CP°°-^BSO(2n).

The mod p cohomology structures of V2n>k and BSO(n) are the following
([2], [3] and [9, Theorem 32]):

f /\(vn-k'+U •••> Vn-U 1>) ^ &= 2A/ —1
(1.6) H*(V2H,k) =

I /\(Vn-k'+U ••'5 Vn-U V, v') if k= 2k\

where deg t?y=4y —1, deg v= 2n —1 and deg v'—2n —k.

{ ZpLpu •••iPn'-u xl if n= 2n
(1.7) H*(BSO(n))= I

[ Z£pu •••j/v-i] if n= 2nf— 1,

where pf is the y'-th Pontr jagin class of the universal oriented rc-plane bundle,
x is its Euler class. Notice that x2=pn>, for n—2nf. Moreover the elements
vj and v are transgressive in the fibration V2n,k >BSO(2n —k) >BSO(2n),
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and

(1.8) xvj=ph vv= x.

Also, it is well-known that

(1.9) H*(CP~)=Zp[_y-}, where deg j = 2,

(1.10) H*(L~(p))= A(x)®zp£y1,

where deg x = l9 deg y=2 and j3x = y (/? denotes the Bockstein homomor-
phism).

Theorem 1.11. Suppose 0<k<2n and set k'=[_(k+ l)/2~]. Let

N=N(n, k)=minUi\n-k'+l<i<n-l, (")^0 mod/j.

Then the mod p cohomology algebras of X2n>k and Z2nfk are as follows:
(a) If N does not exist or if N exists and 2n<N,

(ACz,,-*'+i, •••> zn_i)®Zp^yy(yn) for odd k
(1.11.1) H*(Z2n>k)=\

{V(zn_k>+U ..., zn_u zf)<g)Zp[yy(yn) for even k,

[A(zn-k>+u •-., ^_0(g)/\(x)<g)Zp[_yy(yn) for odd k
(1.11.2) H*(X2n>k)=\

(V(zH-k'+u •••> zn-u *')<8>A(x)®Zp[_j]/(yn) for even k.

(b) If N exists and 2n = N= Ai0,

'A(zH-h>+u ..-, *,-„,..., zn^)<S)Z£yy(yn)^A(ziQ)

for odd k

Vfe-^i, •••, *,-0, •••, zn_u zf)<S}Zp[_yy(yn)<S)A(zh)

for even k,

A(zn-k'+U •••) ^i0j •••> *n-l)

®A(x)®ZPtyy(yn)®A(ziQ) for odd k

v\Zn-k' +l) •••} zi^ •••, £w_i, Z )

(g>A(*)<g>^[y]/(j'«)(g)A(z,0) for even k.

(c) // N exists and 2re> JV= 4i0,

' a(«„-*'+!, •••, 2,-0,..., *„_!, ^^z^jDAj2*'0)

(1.11.5) H*(Z2n>k)= I for odd k

(1.11.3) #*(Z2M)=

(1.11.4) H*(X2n.k)={
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v(*,-*'+i, •••, *,„ •••, *-i, *, zyStZLyyiy"")

for even k,

A(*,-»'+i, •••, */„, ..., zn-i, zy8A(xy8>Z£yy(y2i')

for odd k

V(*»_*'+i, •••, *i„ -; zn-u z, 2')®A(*)<g>^[j]/(j2'V)

for even k.

(1.11.6) #*(X2M)= ., 9.

ffere degzy=4/-l, deg z,-0 = 4i0-l, degz = 2rc-l, deg z'= 2ti-A;, deg *= 1,
deg y = 2 cmd V(Ai, •••, hs) means the algebra with hu -,hs as the simple
system of generators, and zio indicates that ziQ has been omitted. Moreover, we
have the following relations:

(1.11.7)

>*,=*„ *'%=^o-(^K i**=»> i**'=v'l

p*x =x, P*y = y; z ={n_k,)y ,

where p and i are the maps in (1.5).

Remark 1.12. When n=pr or 2pr (r^l), the case (c) does not appear
and V(-) are A (•••)• In fact, N(p\k) does not exist for any &, and
N(2pr,k) = APr if k'>pr and N(2pr,k) does not exist if k'<pr. Moreover
*/2 =0, since y2n~k =yn=0if n=2pr=k, and (^^^=0 mod /> otherwise.

Remark 1.13. By (2.7.3) of Theorem 2.7, the element ziQ will be denoted
simply by zio in §§3-5.

Proof of Theorem 1.11. We shall prove (1.11.3) and the others are
proved similarly. Let {En dr} be the mod p cohomology spectral sequence
of the bundle (1.1). Since n£ is orientable, the local system of the bundle
(1.1) is trivial and we have E2 = H*(V2n>k)®H*(CP~).

If k is odd, E2=A(vn-k>+u ••-, vH^uv)(g>ZpZyJ From (1.8) and the natur-
ality of the transgression, we have

(1.14) vvj=pj(nS)=(j)y2J9 rv=x(n?)=y\
Hence, the first non-zero differential is d2„=du0 and

d2nvi=(j^y2i\ d2nv=y\ d2nvj=0(j=n-kr+l, ...,?<>, •••, n-1),
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E2n+l= A(vn^+U ..., f)iQ, ..., vn_l)^A(vi-(^y)^Zp[_yy(yn).

Since yn= 0 in £2*+i, we have dr = 0 for ri> 2rc + l and £2»+i = £,oo. Therefore
we have (1.11.3) and (1.11.7) by [3, Proposition 7.4].

If k is even, E2= A(vn_k>+1, •••, *v_i, v, z/^Z^y] and

£«= A(tw.n, .-., *>,-„, ..-, t;,-!, ^AK-(?)f)®^[r]/(/),

similarly. Now let {E'r9 d'r) be the mod p cohomology spectral sequence of
the fibration V2n,k >BSO(2n-k)-^BSO(2n), then we have EL= AW)
(gtZpZpu .--ipn-k'j by (1.8). The map /„ in (1.5) induces /*: {E'r9 d'r} •

{En dr} such that }*=l®f*:E'2 >E2 and />'=*/, /*#=(")/' for /*:
EL >E^. The element v e EL is the image of x' c H*(BSO(2n-k))

= Zplpu .--,pH-k'-i, %'] by the projection H*(BSO(2n-k)) >Z EL0tt = AW).
t = o

Therefore the element v' e E„ is the image of z'=f*x' e H*(Z2n>k) by the

projection H*(Z2n>k) >ZE°'*. These facts and [2, Proposition 8.1 (6)~1
* = o

imply (1.11.3). Since nf*pn^= x/2 by (1.7), we have

*'2=7?*'2=I?*'W*'=P*f^^ Q.E.D.

Now, we study the homomorphism in cohomology induced by the projec
tion ft: X2n>k >Z2n,k in (1.5).

Lemma 1.15. The homomorphism 7r*: H*(Z2n>k) >H*(X2n>k) is a mon-
omorphism and ft*y= y. Moreover, we can choose the classes zh zi9 z and z
such that fi:*Zj=Zj, 7t*ziQ = ZiQ9 ji*z= z and n^z/ = z/.

Proof. Consider the following commutative diagram:

S ——* X2n>k—^—>Z2n>k
ii n pi
S1—L-+L°°(p)-?->CP°°.

The homomorphism i*: H*(L°°(p)) >H*(S1) is an epimorphism and so it
follows that i*:H*(X2„fk) >H*(Sl) is an epimorphism. Therefore each
differential is trivial in the spectral sequence of the fibration S1 >X2n>k
-^-^Z2n>k and the homomorphism fc* is a monomorphism. Q.E.D.

By this lemma, it is sufficient to consider the structure of H*(Z2n>k) for
studying that of H*(X2„tk).
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§ 2. The mod p cohomology of X2n,k and Z2n>k (continued)

We study the homomorphisms induced by the projections vk'. Z2n,k-
Z2rltk_i and vk\ X2n>k >X2n>k_l when k is even.

We notice that, if one of N(n, 2A/) and N(n, 2k'-1) of Theorem 1.11
exists, then the other exists and they are equal.

Lemma 2.1. Let k = 2k'. Then vj: #*(Z2M_i) >H*(Z2n,k) and vj:
H*(X2n>k^i) >H*(X2n,k) are both monomorphic. Moreover

v%zj = zj9 ^zi=z^9 i>tz = z9 vfx = x, \>%y = y.

Proof. Consider the following homotopy commutative diagram:

S n~ > V2n,k —*—* V2n,k-i
ii 'i n

Then the lemma is proved similarly as Lemma 1.15. Q.E.D.
If k= 2k'—1, we obtain the following short exact sequence:

(2.2)

0 >H*(BSO(2n),BSO(2n-k))^H*(BSO(2n))^^H*(BSO(2n-k)) >0.

Since 7t'*jd/ = 0 for n—k'+1<j <n —1, and 7t'*x = 0, there exist unique classes
Uj (n-k' + l<j<n-l) and U in H*(BSO(2n), BSO(2n-k)) such that

(2.3) j*Uj=pj (j=n-k' + l, ..-, n-1), j*U=x.

By the mapping cylinder considerations in the diagram (1.5), we have the
following homotopy commutative diagram:

<2-4) Acv2n,h v2n,k)

(L~(p)y X2n,k) -^ (CP~9Z2n,k) ?»>(BSO(2n)9 BSO(2n-k))

where CV2n,k is the cone over V2n,k.

Lemma 2.5. Let 0<k<2n and k = 2kr—l. Then g*Uj = divj for
n—k' + l<Lj<Ln —l and g*U=div, where g is the map of (2.4) and dii
H*-\V2Htk)-2-+H*(CV2ntk, V2n,k).

Proof. According to [8, Lemma 5.1], the following diagram is com
mutative :
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Jt^H*(BSO(2n), BSO(2n-k))^g.
IH*(BSO(2n))tZ

-t ^^H*(BSO(2n), V2n,k)
H*(BSO(2n), *)^ |

^H*(BS0(2n-k), V2n,k)

H*(CV2„,k, V2„,k)

H*-\V2n,h)

Since xvj—ph we have j9y e j*g* lSiVj. On the other hand j*Uj=pj and /* is
a monomorphism, and so 0}c #*_1<?iity. Therefore g*Uj=d\Vj. Similarly we
have g*U=d1v. Q.E.D.

By the diagram (2.4), we obtain the following commutative diagram of
the exact sequences for odd A;:

0—>H*(BSO(2n), BSO(2n - k))-^H*(BSO(2n)y^H*(BSO(2n - k))—>0
(2.6) n\ f%\ J%\

•H*-\Z: 2n,k) >H*(CP~, Z2n>k)-^H*(CP~) -£-* H*(Z2n>k)

Now, we characterize the classes zh zio and z by the classes in
H*(BSO(2n\ BSO(2n-k)) and the homomorphism /*.

Theorem 2.7. Let 0<k<2n. The classes zh zio9 z and z in H*(Z2n,k) can
be chosen so as to satisfy the following conditions (2.7.1-5).

(2.7.1) z=f*xf if h is even.

For the case (a) of Theorem 1.11,

(2.7.2) SZj=f*Uj-tyyV-»f*U Q=n-k'+l, •••, n-1).
For the case (b) of Theorem 1.11,

dzj=f*Uj-(^)yV-»fZU (j=n-k'+l, ..., ?0, ..., n-1),

Szi=f*Uh-(jg)f*U.
For the case (c) of Theorem 1.11,

(2.7.4) Szj=f^Uj + Xjy2^2i^UiQ

(2.7.5) dz=f*U+X0y»-2i°f*Uh,

(2.7.3)

(j=n —k'+ l9 •-., h, ..., Ti —1),

where Xj satisfies the formula (n. )+xl™Wo mod p.
The generators of H*(X2n,k) are obtained by replacing /* with fi*f* and

/* with n*f* in (2.7.1-5).

Proof. (2.7.1) has been proved in the proof of Theorem 1.11.
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It is sufficient to prove (2.7.2-5) for odd k by Lemma 2.1. By the diagram
(2.6), we have

(2.8) t*f*Uj=f*pJ =Qy2j9 t*j*u=f*x=yn.
Consider the case (a). Then there exists a unique class zs in HAj~l(Z2n>k)

such that

8zj=f*Uj-(^)y2^'f*U9
since the image of the right hand side by t* is zero by (2.8) and d is mon-
omorphic in odd degree. To see that the above classes zj(j=n —k'+ l9 ••-,
7i —l) are generators of (1.11.1), it is sufficient to show that i^Zj —Vj
(j=n —k'+ l, ..., Ti —1). For this purpose we consider the following diagram
induced by (2.4):

H*-\V2nA-±+H*{Cr2n.k, V2n,k)^*
t*\ *•( J^;H*(BSO(2n), BSO(2n-k))

H*-Kz2n,k) -U#*(cp~, Z2n,k)^^
By Lemma 2.5, we have diVj=g*Uj and so we have

8ivj=h*f*Uj=h*(dzj +̂ ^
since h*y2J~n = 0 in H*(CV2ny^. Therefore we obtain i*Zj = vj because dx is
isomorphic.

In the similar way, we can prove the theorem for the other cases.

Q.E.D.

§ 3. Reduced power operations $>{ in H*(X2n>k) and H*(Z2n>k)

In this section, we determine the mod p reduced power operations §>* in
H*(X2n>k) and H*(Z2n>k) for n=pr or 2pr9 and also we notice that they are
computable for any positive integers n and k (Q<k<2n).

A. Borel and J.-P. Serre [4, §14] studied the modp reduced power opera
tions §)' in H*(BSO(2n)):

(3.1) ^%^(-l)qib^+2^pj+qi++Z lptah at eH*(BSO(2n)),

(3.2) §>ix = xCi^pl9 ...,^_l5 x2) (2q=P-l)

where b{p'2j+2<ii is an integer and C'»*(...) is given as follows: Let 6{ be the
j-th elementary symmetric function with respect to indeterminates xu ••-, x„9
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then Ci,q((7u •••> O denotes the polynomial which expresses the symmetric
polynomial of typical term #?...*f.

Moreover, by S. Mukohda and S. Sawaki [10], it is known that

(3.3) bip.n+w=(^J t ^modp.
First of all, we calculate 6Pz' in H*(Z2n>k) and H*(X2n>k) when k= 2k'.

Since z'=f*x' by Theorem 2.7, we have

pzf=Pf^=f^xf=f^(xX^(Pu -,/w-i, *'2))

= z'Ci-'(ftpu -, 7-V-*'-i> 7**'2)

and hence, we obtain

(3.4) w=*'c'-<(iy,-,(Il^ft^1""'>
Therefore we can calculate 5>V for any 7i and even k.

Now let k —2kr—1 and consider the following diagram of the exact se
quences (cf. (2.6)):

0—>H*(BSO(2n\ BSO(2n-k))^H*(BSO(2n))^UH*(BSO(2n-k))—>0
(3.5) /:J /;J Tn\
...^jy*-\Z2M)-L->#*(CP-, Z2n,k)-£-+H*(CP-)—£-+H*{Z2nth) >•••.

Then using (3.1-3), we have

(-i)-/2./-1 \ i+qJ-rl £/,<*, for j+qi^n

(3.6) @'Ur-

(-1)«{2-/ . 1)f/z+'+£~* t/,a; for j+qi = n,
i=j

(3.7) 9iU=UCi-«(pu -,P«-i,x2)

in H*(BSO(2n), BSO(2n-k)), where [/, and [/ are the elements in (2.3):

j*U,=p, (; = »-A' + l, •••, n-1), ;*t/=X.

Mapping (3.6-7) by /*, we have

{-iy{^-V)f*Ui^i+̂ ZlfiU,f*al for j+qi^n

(-ly'QJ^ytUtfx+'^ffU.tfa, for j+qi =n,

(3.9) f*®,U=f*UC><((l)y2, -, (^V2*-2, J2")

(3.8) /*^^=
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Using (3.4), (3.8-9) and Theorem 2.7, we have the following theorem.

Theorem 3.10. Let n=pr or 2pr(r>l) and k be a positive integer such
that k<2n. Then the mod p reduced power operations P in H*(X2ntk) and
H*(Z2n>k) are given by

[(_l)^2y-l\ j<n-qi
(3.10.1) g>*Zj= ' V l J

0 for j"^n-qi,

(3.10.2) 5>V=0 for £>0,

where 2q=p—l.

Proof. Assume that k= 2k\ then we have

J z'C''9(0, .'••, 0) if n=pr or 2pr, k'>pr
\ z'C''*(0, ..., 0, 2y2p\ 0, ..., 0) if n=2Pr and k'<.p%

by (3.4). According to Theorem 1.11 and Remark 1.12, we have y2pr = 0 in
H*(X2n>k) and H*(Z2n>k), and so we obtain (3.10.2).

We shall prove (3.10.1) for odd k. Then (3.10.1) for even k follows from
Lemma 2.1.

Now at eH*(BSO(2n)) is apolynomial of #(/=l, ...,*) and/*/>y=(*)y2y.
Therefore /*«/ has a common factor y2/>r and so we notice that

p*f*cti = 0 for at e H*(BSO(2n))>

since P*y2pr = 0 in H*(Z2n%k).
By (2.7.2-3) and Remark 1.12, we have

f 2 if n = 2Pr and j=pr
dzj=f*Uj-af*U, a=

{ 0 otherwise.

Using (3.8-9) and the above facts, we have

dPzj = g)i(f*Uj-af*U)

if j + qi^n

(-iy'(2JTXy*Uf*x+'Tf7*U,f*a,-af*UC^((l)y\ ..., (»)^»)
if j + qi —n
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'(-iy'(2JT1yzj+qi+d^+9f\p*f*al)zi\ +Af*U if j+qi

8^+t£~\p*f*a,)z,} +A'f*U if j+qi =n

(-ly'^K^dzj^+AffU if j+qi^n
M'ffU if j + qi=n,

where ,4, J' e H*(CP~). Mapping this equality by t* and using (2.8), we have
A = 0 and A'=0. Since d is monomorphic in odd degree, (3.10.1) follows.

Q.E.D.

Theorem 3.11. Let n and k be positive integers with k<2n, satisfying
n = n'pr, r^l, rc'^3, (p, n')= l and n-[(& +1)/2] + 1^pr. Then the
cohomology algebras of X2„>k and Z2„ik are the case (c) of Theorem 1.11 with
N(n, fe) = 4jDr<2re andthe modp reduced power operations §)'(i>0) in H*(X2„ik)
and H*(Z2tttk) are given by

(3.H.1) q»z,=
_ ((-1)"(2' . 1)^+S(- /or j<n-qi, j^Pr-qi

0 otherwise,

=¥»

(3.11.2) Pz= (

©J2'** for pr +qi^>n,
(3.11.3)

where 2q=p—l.

Proof. It is clear that N(n, k)= ^pr —U0<2n by the assumptions and
so y2pr = 0 in H*(Z2„,k). Hence we have

p*f*a,=0 for a, e H*(BSO(2n)),

similarly to the proof of Theorem 3.10.
We notice that the integers A,- of (2.7.4) are zero if j^lpr (1= 2, •••, n'— 1),

and A0 of (2.7.5) is equal to -1/V. Therefore, using (2.7.4-5), (3.8-9) and
j2*r = 0, we have

'(-ly'^JT^dzj^+Af*^ for j+qi<n,j+qi*io
A'f* Ui0 otherwise,

9'V=0,
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d@iz = §)i(f*U+Xoyn-2i°f*Uh)

'Qy^dz-t^^ for i,+qi <n

(f)y2qidz+A'f*UiQ for iQ +qi>n.
Here A, A\ A and Af are some elements of H*(CP°°), and we see that these
elements are zero in the same way as the proof of (3.10.1). Hence (3.11.1)
and (3.11.2) follow.

(3.11.3) is obtained similarly to (3.10.2). Q.E.D.
In general, the mod p reduced power operations @>* in H*(X2n,k) and

H*(Z2n,k) are given by the following

Proposition 3.12. For any positive integers n and k (k<2n), the mod p
reduced power operations @>* in H*(X2n,k) and H*(Z2n,k) are given as follows:

(3.12.1) ^y=(-l)«{2/Y1)*i+«'+Sa/y2y+2''-%,
/ n + 2qi-2l

Zh(3.12.2) @lz =(n:)y2«z+ '°if a\y

(3.12.3) ^z'=z'C'-'{^)y\ -, (nlV)y*H-h) (k=2k'\
where 2 in (3.12.1) is the sum of l=j, •••,j+qi —l for the case (a), (b) and

i

1= min {j, i'o + I}, •••,j+qi—l for the case (c) of Theorem 1.11, and ah a', are
some integers.

Proof. We have already proved (3.12.3) in (3.4).
For the case (c) of Theorem 1.11, we have

d@,zJ = @ldzj = ®,(f*UJ+ Xjy2>-2i'f*UlJ

{(_i)«<(2./-i)^,.+So,yw-«dz,+Af*Uh for j-^n-qi

(-iyiQJT1y'y"dz+Tiaiy2i+2lli-2'dzl+Af*Uia for j=n-qi,
d§)'z = @'dz=&{J* U+ A0 y-2,'f* £/«,)

=(f)y2«idz+ "£' aiy'+W-t'dzt+A'ffU,,y*o>

by (2.7.4-5) and (3.8-9), where ah at and a\ are some integers and A9 A and
A' are some elements in H*(CP°°). In the similar way to the proof of
Theorem 3.10, we have (3.12.1) and (3.12.2).
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For the case (a) or (b) of Theorem 1.11, we have (3.12.1) similarly.
Q.E.D.

§ 4. Bockstein homomorphisms fi in H*(X2n,k) and H*(Z2n,k)

P. F. Baum and W. Browder [1] determined the mod p cohomology
algebra of the projective unitary group PU(n)=U(ji)/Sl and the reduced
power operations §>l when n= nrp\ (p9 n/)= l and r^l. Moreover, they
determined the Bockstein homomorphism /? in degree <2prl. According to
[1, Main Theorem Q, the mod p cohomology structure of PU(n) is the follow
ing:

Let n= n'pr, (p, n') —l and r>l. Then

H*(PU(n))=A(wu ...,wpr, •••,wn)^Zp[_yy(yn

where deg wj = 2j—l and deg y = 2,

[ juypr~\ A^Omodp, for j = p'"1
(4.1) Pwj=

[ 0 for j<pr-\

Remark. It is proved that (3wj=0 for j<pr~1 of (4.1), in the proof of
Main Theorem I in [1, p. 324].

First, we shall extend (4.1) for all / (1<j^ n, j^pr). For this purpose,
we use the properties of generators wj in H*(PU(n)).

Let EU(n) be a contractible space such that U(n) acts freely, then
EU(n)/U(n) = BU(n) is a classifying space of U(n), and there is the follow
ing homotopy commutative diagram ([12, §§1-2]):

(4.2)

where fn is a classifying map of n£. Then we obtain the following diagram
induced by (4.2):

0-^H2j-\PU(n))-J^H2KCP^9PU(n))~~^H2^CPn-^-

(4.3) r\ 7*J ^\# ^\{»
H2j-\U(n))-^H2j(EU(n\ U(n))^-H2j(BU(n\ *)=#2>(S[/(,*)).

The cohomology algebras of BU(n) and U(n) are given as follows:

H*(BU(n)) = ZPlcu ..., cj, H*(U(n))=A(uu ..., un\
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where the element c, is the universal ;-th Chern class and the element uj is
transgressive and vuj = cj.

Since the ;-th Chern class of ng over CP™ is (^)yy> we obtain t*f*cj

=/*cy=(jyin(4.3).
Lemma 4.4. Let n= npr, (p9 nr) = l and r^>l. We can choose the genera-

tors Wj e H*(PU(n)) (y'=l, -,pr, •••, n) such that

\ f?c'--Mni)ftci>r if J=lpr> l=2>'~>n'(4.4.1) dwj= i n \l/
KfnCj otherwise.

Proof. If pr does not divide /, then t*f*cj= 0. Therefore we have a
unique element wj e H2j-l(PU(n)) such that dwj=f*Cj. If j=lp% we have a

unique element wj eH2j~l (PU(n)) such that Swj=f^cJ-—7j(n jf£clpr. Using
the diagram (4.3), we have i*Wj=iij. Therefore the lemma follows from the
proof of [1, Corollary 4.2]. Q.E.D.

Lemma 4.5. Let n= n'pr, (p9 n) = l and rl>l. Then the Bockstein homo
morphism /? in H*(PU(n)) is given as follows:

{ Hiyj for j=lpr~l (Z = l, ...,/>-1)

{ 0 otherwise,

where ^i =~-r\P1~Z^)fJL and /x is the one of (4.1).

Proof. By Lemma 4.4, we have d0wj = Oand so 0wj e p*H*(CP-). There
fore fiwj = Qfor j>pr.

Assume that//-1 <j<pr. Now, we use the same notations in the integral
cohomology H*( ; Z) of BU(n) and CP°°. Set k=pr~l and consider the

element Xj=af*cj-ajyJ-kf*ck in #2'(CP~, PU(n);Z), where a=—-(*) =*'
modp and aj =̂ -fn\ Since ***y=a(*y-a,(£)y>=0 in H2j(CP°°; Z), there
exists an element x'j e H2j'l(PU(n)\ Z) such that tf#J = .*y. Therefore we
have

dppx'j = pp6x'j = pp(af*Cj-ajyJ-kf*Ck)

= af*cj-ajyJ-kf*ck= d(awj-ajyj-kwk)

in H2j(CP°°, PU(n)) by Lemma 4.4, where pp is the mod p reduction. Since d
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is monomorphic in degree 2/— 1, we obtain ppx'j = awj—ajyj~kwk. Using (4.1)
and the fact @pp=0, we obtain 0= @ppXj = at3wj—cijjuyJ. Therefore we have

0Wj = a~1ajjuyJ'.

By the simple calculations it is proved that

_i '-/-r
p ("';>

bVp-1
(?Il) if J=lP'~l> Z=1'= ) I

0 otherwise

>-l

mod p. Therefore we have the lemma. Q.E.D.
Let h: U(n) >SO(2n) be the natural inclusion. Then, we have the

following homotopy commutative diagram of fibrations:

(4.6)

U(n)- -»PU(n) • CP"

'I
SO(2n) >SO(2n)/Sl=Z2ni2„_1-^CP"

and the commutative diagram of the exact sequences induced by the map h:

>H*-\Z2H,au-0-±-+H*(£P-tZ2H,tH-0-£+H*(pp-) ••••

(4.7)

(4.8)

(4.9)

H*(BSO(2n), *)=^H*(BSO(2n))
r\ r\

H*(BU(n), *)=H*(BU(n))

>H*-\PU(n)) -J->H*(CP~, PU(n))-?->H*(CP-)

The homomorphism h*: H*(BSO(2n)) >H*(BU{n)) is given as follows
(e.g. TO):

h*Pi= 2 (-l)'+*c*c/,
k+l=2j

h*X~- - cn.

Lemma 4.10. Let n = n'pr, (p, nf)= 1 and r^>l. Then the homomorphism
%*: H*(Z2n,2n-i) >H*(PU(n)) is given by

(4.10.1)

(4.10.2)

(4.10.3)

%*y = y9

0

%*zj= < -

h*Z = Wn.

for j>n/2

Awn for j = n/29 n= 2pr

, (— iy'2w2j otherwise,
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Moreover, S* is a monomorphism in degree smaller than 2pr.

Proof. Assume that n>3. Then N(n, 2n-l) = Apr = AiQ and
H*(Z2n,2n-i) is the case (c) of Theorem 1.11. Furthermore, in the equality
(2.7.4):'

8zj=f*Uj + Xjy2J-2i°f*Uio (j = l, ..-, i0, ..-, n-1),

we have Xj=0 mod p if j^lpr (1 = 2, .., n'-l). On the other hand,

f?(c2j-8C8)=f*C2j-sf?C8=(fy

where Aj>s eH*(CP°°), by (4.4.1). In this equality, (^)^O modp if s^lpr
(l>0) and dw2j-sys = d(w2j-sys) = 0 if s = lpr(l>0). By these facts and
(4.7-8), we have

8K*zj = h*8zj=f*h* Uj + Xjyv-2i°f*h* Uio

=f*(z (-iy+sc2^sCs)-xjy2^-2i^(2i: (-iyC2i0-tct)
\s=o / \t=0 /

((-lY28w2j + Af*ciQ if j<n/2

U'A*c,0 if j>n/2,
where A, A e H*(CP°°). Mapping this equality by t* and using the fact
^ffa^n'y^^O, we have A= 0 and A' = 0. Since d is a monomorphism in
odd degree, we have (4.10.2) for rc'>3.

For the case n'= 2, N(n, 2n —l) = Apr = 2n and H*(Z2n,2n-i) is the case (b)
of Theorem 1.11. Therefore

dh^z^h^f^-^y^ftU)

\(-iy2dw2j-(^)y2j-ndwn if j<n/2
l<> if y>»/2,

by (2.7.3) and (4.7-9), and so we have (4.10.2) for n' = 29 similarly. (4.10.2)
for n/ = l and (4.10.3) are proved in the same way. Q.E.D.

There exists a fibration F2„-*+2,2 • V2n,k -^-> V2n,k-29 where vk is the

natural projection. This fibration induces fibrations V2n-k+2,2 >Z2nik-^->
Z2n,k-2 and V2n-k+2,2 >X2Htk-^-> X2Hik-2. If k = 2kr-1, vf: H*(V2n,k-2)
= A(vH-k'+29 ••-, v„-i9v) >H*(V2n,k) = A(vH-k'+i, •••, fif-i, *0 is given as
follows ([2, §10]):
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And so we have the following lemma.

Lemma 4.11. Let k—2k'—\. If N(n, k) = 4:i0 exists, then assume that
io>n/2 or i0^n —k'+ l. Then the homomorphisms v*: H*(Z2n,k-2) •
H*(Z2n,k), H*(X2n,k-2) >H*(X2n>k) are given as follows:

vfzj = zj for n—k'+ 2<j<n —l,

v*z= z, tfx = x9 v*y=y-

Moreover v* are monomorphic.

By the induction on k, we determine the Bockstein homomorphism /? in
H*(Z2n,k) and H*(X2n,k) when n, k satisfy (*) of below.

Theorem 4.12. Let n and k be positive integers with k<2n, satisfying

(*) n = n'pr, r>l, (p, n') = V, rc-[(fc + l)/2] + l <pr if n'>S.

Then the Bockstein homomorphisms in H*(X2n,k) and H*(Z2n,k) are given by

\Hiy2j for j<n/2,j= lf-l(l = l,--.,P-l)
(4.12.1) 0zj=\

(0 otherwise,

(4.12.2) ^ = 0, 0z' = O9 $x = y, (3y= 0,

where jui is the same as in Lemma 4.5.

Proof. The last two relations of (4.12.2) follow from (1.10). It follows
easily that @z' = 0 by the dimensional reason. According to Theorem 2.7, we
have d@Zj = 0 and d(3z = 0 and so @zj and 0z are the elements of p*H*(CP°°).
Therefore @zj = Qfor j>pr and @z = Q, since y2pr = 0 in H*(Z2n>k) under the
assumption (*) (cf. the proof of Theorems 3.10 and 3.11).

By Lemmas 2.1 and 4.11, it is sufficient to prove (4.12.1) in H*(Z2Ht2n-{)
for j<pr. By Lemmas 4.5 and 4.10, we have

[-2ii2y2pr~l for j=p^
K*ezj=(-iy20w2J={

{ 0 for j<prl

(-2jU2h*y2prl for j=pr~l

\ 0 for j<pr~\
Since —2ju2= —(p —l)/t=ju mod p, h*y= y and %* is monomorphic in degree
smaller than 2pr, it follows that
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[ny2pr~l for j=prl
(4.13) (3zj=\

{ 0 for j<pr-\

Replace Cj e H*(BU(n); Z) and y eH*(CP°°; Z) in the proof of Lemma 4.5
with UjeH*(BSO(2n),*;Z) and y2 e H*(CP°°; Z), then we obtain (4.12.1)
for j<pr by the entirely same technique as the proof of Lemma 4.5, using
(4.13) and (2.7.2-4) in place of (4.1) and (4.4.1). Q.E.D.

Remark. If n=pr in Theorem 4.12, then (4.12.1) is shown by Lemmas
4.5 and 4.10 only.

§ 5. The relations between X2n,k and X2n+2m>k and between
Z2n,k and Z2n+2m>k

We consider the following homotopy commutative diagram:

Z2n,k-+->Z2n,k XZ2n,k-^Z2n,k XCP~ >
(5.1) P\ ^\* Uxi

Z2n+2m,k^CP- d- >CP~ XCP~ >
hlhL., BSO(2n-k) XBSO(2m)-£->BSO(2n + 2m-k)

fnXfm >BSO(2n) x BSO(2m)-*->BSO(2n + 2m).

Here d is the diagonal map, ju and jur are the multiplications, /„ and fm are
classifying maps of n$ and m$, respectively. Then (2n + 2m)-plane bundle
(n + m)p*$ has a map ju(fnxfm)dp as a classifying map and £i(fnXfm)dp is
lifted to n'(JnXfm)d,'.Z2n,k >BSO(2n + 2m-k), where d/= (lxP)d: Z2n,k

>Z2n,kXCP00. Therefore the associated F2w+2m,*-bundle of (n + m)p*$ over
Z2n,k has a cross section and so we obtain a map p: Z2n,k >Z2n+2tnfk such that
p*//*? =/?*?. Similarly, we have a map p: X2„,* >X2n+2tnfk.

In this section, we use the same notations for the generators of H*(Z2n,k)
(resp. H*(X2n,k)) and H*(Z2n+2m,k) (resp. H*(X2n+2mtk)).

Theorem 5.2. Let 0<k<2n and set N= N(n + m, k)=4i0, N'= N(n, k)
= Uq, and K(j)={s\j—n + l<s<m}, K'(]) = {s\j—n + l<,s<,m9 s^j —i'0}.
Then the homomorphisms p*: H*(Z2n+2mtk) >H*(Z2njk) and p*: H*(X2n+2mtk)

>H*(X2n,k) are given as follows:->j

(5.2.1) p*x= x. p*j=j?

(a) If Nexists and 2n + 2m>N= 4i0, then
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(5.2.2) p*zj= Z (m)y2sz^s +Xj S (7)j2/-2,'»+2^.„-<
when N' exists and 2n>N',

(5.2.3) p*Zj= L (™)y2szj_s +Xj L ("V'"2''*2'*,,-, otherwise,

ymz +X0 Z (m)yn+m'2io+2tziQ-t when N' exists and 2n>N'
(5.2.4) p*z =

*o S (?Vw+m_2''0+2^w otherwise,

wfeere ^ satisfies the formula ^ .mJ+Xj(n.mj=0 mod p.
(&) 7/ iV e;m£s and 2n + 2m<^Nor Ndoes not exist, then

(5.2.5) p*zj= Z (m)y2sZj-s-(n +m)y2J-nz when N'exists and 2n>Nf,

(5.2.6) p*z,- = 2 (m)y2szj_s otherwise.
s€K(jA s /

Proof. (5.2.1) follows from y/p ^±p. From the diagram (5.1) and the
mappings-cylinder considerations, we have thej followingjcommutative dia
gram:

(5.3)

H^1(Z2n+2m,k)-^H^CP-, Z2n+2m,k)<^H*(BSO(2n +2m), BSO(2n +2m-k))

*• H*((BSO(2n), BSO(2n - *)) XBSO(2m))

H*-\Z2ttik)-°->H*(CP-, Z2M)« £ -H*((CP-, Z2n,h) x CP~).

It is well-known that

M*pj= L'p'.xp', M*x = x'xx",

where ph p'h p) and x, %', x" are the y-th Pontr jagin classes and the Euler
classes of the universal oriented (2n + 2m)-, 2n-, 2rci-plane bundles. Therefore
we obtain

(5.4) /l*Uj= L U/J_sxP:+U,2xp^n= 2 U'jsXps+Wx'xp'j-n,

(5.5) fi*U=U'xx//,

where U, JJh Uf and U'j are the elements determined by (2.2-3).
Consider the case (a). Using (2.7.4) for n + m and (5.3-5), we have

H*-i(CP~)
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8p*z, = p*dzj = p*(f?+mUj+ Xjy2J-2i°f*+mlIio)

= d*(f„x Ur^Ui+hy^'^Cfn x fm)*fi*Uio

= 2 f?U'j^ps(mi)+f*U'y>'pjUm?)

+Xjy2J-2i'\ 2 ??U'it-,pt(me)+f*U'y'ph-n(.md .
Assume that Nf exists and 2n>N' = 4i'0. Then, using the fact yndz

= d(ynz) = 0 and (2.7.4), we have

sp*zj= s P,(me)8zj-,- s AV,r2y-2s-2>X^)A*^a+py-^(^)A*^a

+ y'p,-n(jne)dz-X'ay*n-*%-.{m?)J*U'{>t

+JLjy2,-2i>\ 2 Pt(m$)dzh_t- E M0-iy^-2,-2iiMmi)f*U'ii

+p._.(m^

=s\ X ps(mp*$)zj_s +Xjy2j-2i° 2 ptimp^ZiX +AfVJ'^

for some A e H*(CP°°). In the same way as the proof of (3.11.1), we have
A= 0. Since 8 is monomorphic in degree 4; —1, we have

p*zj= s (myszj-s+*j 2 ("V+2'-2,%„-,.
«ejf'(y) \5 / t€K'u0A t/

Assume that N' exists and 2n<,N' or N' does not exist. Then we have

8p*zj= 2 />.(iitf)**y-.+ Z (.n )y2j-2s-nps(m$)f*U'

+rV.W)/.*P'+^2M',| 2 pt(jne)8ziQ-t

+ 2 (,.re,)j2,V2'->(^)/„*^+j>„-»(^)/„*^}

=tfj 2 />s(Vf)*/-+%2y'~2,'° 2 pt(mp*^zitJ +A'f*ir,
for some A e H*(CP°°) by (2.7.2-3). In the similar way to the above, we
obtain

p*zr- S My2szjs +Xjt s (7)jv-Wb+2Vi,
and (5.2.3) follows.

In the similar way to the proof of (5.2.2-3), we have (5.2.4-6). Q.E.D.
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Remark. In §§3-4, we determined explicitly the reduced power opera
tions §>* and the Bockstein homomorphism /? under the assumption (*) of
Theorem 4.12. Using the results of this section, we can expect to study $>*
and 0 for other n and k.

§6. Applications to the immersion problem for the lens spaces

We denote Ln(p) the mod p lens space of dimension 2n +1, and rjn the
restriction of v over L~(p) to Ln(p). By Ln(p)^R\ we mean that Ln(p) can
be immersed in the real &-space Rk. The next theorem for immersion was
proved in [7, Theorem 1].

Theorem 6.1 (Kobayashi). Let n =(p —l)s +r (0<Xjo—1) and k be a
positive integer with k<,2n + l and let a be a positive integer such that
2aps+€>4n + 3, where e=0 or 1 according as r<l or >1. The necessary and
sufficient condition for Ln(p)^R2n+l+k is that the bundle {aps+e-(n+ l)}r]n has
2aps+e —(2n + k+ 2) independent cross sections.

One of our main theorems is the following

Theorem 6.2. Let r and n' be positive integers such that r>2 and
(p, n') —\ and let m and t be non-negative integers satisfying

(*) 0<t<,m, m-t+(p-l)/2<f-\ t<pr~\ (y^Omodp.
Then, the bundle (n'pr' + m)y„ over Ln(p) does not have k independent cross

sections for

(**) k= 2n'pr-2lpr-1 + 2t+ l9 2lpr-1 + 2m-2t+p-l<n<2pr,

l = l,...,p-l.

Before proving Theorem 6.2, we consider the applications.

Theorem 6.3. Let r (>2), m and t be non-negative integers satisfying (*)
of Theorem 6.2, then

(6.3.1) Lpr-m-l(p)^R3Pr-Pr-l-2t-2 {f ^ ^ [(^"1 _p+2^/3],

(6.3.2) L2pr-m-l(p)^R6Pr-2pr-l-2t-2 {f m^(^p^1-p+ 2t)/SJ

Proof. Assume that m<[_(pr-l-p+2t)/2r\ and Lpr-m-\p)<zR3pr-pr~l-2t-2.
By Theorem 6.1, the bundle (nfpr + m)r/Pr_m_1 has 2n'pr-(p-l)pr-1 + 2t + l
independent cross sections, where nf=aps+€~r —l for some integer a. By the
assumption m<[_(pr~l —p + 20/3], we have (p— l)pr~l + 2m— 2t + (p— 1)
<^pr—m —l. This contradicts to Theorem 6.2 and so (6.3.1) follows. The
proof of (6.3.2) is similar. Q.E.D.
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Now, we use the following results to prove Theorem 6.2.

Proposition 6.4. Let r, n' and k= 2k'—l be positive integers with r>2,
(p5 nr) = l and m be a non-negative integer such that m<nrpr + m—kf + Kpr.
Then &1 and 0 in H*(X2n>pr+2m,k) are given by

Q

s = l
(6.4.1) §)1zj = (-iy(2j-l)zj,q+Z (-iy+s2my2szj+q.s

for n'pr + m-k' + l<,j<pr-q,

(6.4.2) 0zj='Z{j_fpr-i)M,y2i for n'f+m-k>+l<.j<pr,

where jui=—j—(P~^)ju^0 mod pis the same as in Lemma 4.5 and 2q=p —l.

Proof. The homomorphism p*: H*(X2„'Pr+2m>k) >H*(X2n<Prik) is given
by (5.2.2) if rc'^3, since N(n'pr + m, k) = N(n'pr, k)= 4pr<2n'pr;and by (5.2.3)
or (5.2.6) if n'<,2, since N(2pr, k)=4pr and N(pr, k) does not exist. There
fore

P*z,= t("f)y2Mzj-t for n'pr +m-k'+l^j<pr,

since (n'Pr.+ mS)=0 and so A,=0 mod pfor m<j<pr.

Now ^zj has the form §>1zJ= £ a,y2%-+9_,(a0 =(-l)«(2/-l)) by (3.12.1).
Therefore

p*§>iZj=k ta(™)y2t+2szj+q^s for j+q<pr.
t=o s=o \* /

On the other hand

@lP*zj= t(™){2sy2s+2«zj^s +(-iy(2j-2s-1) y2sz^s+q},
by (3.10.1) or (3.11.1). Comparing the coefficients of these equations, we have

ao(7)+--+as(j)-(-l)^(2y-25-l)(^)modp for 5=0, ..., q.

Therefore we have as= (—l)q+s2m for 5= 1, ..., q, by the induction on s and
we have (6.4.1).

If j<pr, then

»*--K.li,(:>-*'-)-.?i(:y^-I0-v-)*''"-

"-1' m



336 Tsutomu Yasui

by (4.12.1). Therefore (6.4.2) follows. Q.E.D.

Lemma 6.5. Suppose there is a mapf: Ln(p) >X2m,k suchthat thefollow
ing diagram is commutative:

f X2m,k*

Ln(P) C L~(p).

If 2j<:n and $zj=juy2J, then f*zj=Juxy2j-1 in H"j~l(Ln(p)).

Proof. By the commutativity of the diagram, we have f*x = x and
f*y=y. Assume f*Zj=p!xy2J~\ then /x'y2j=0f*zj=f*0zj=juy2j'.

Q.E.D.

Corollary 6.6. Set mof Lemma 6.5be n'pr + m. Under the assumptions
of Proposition 6.4, we have

/^^^[(y-^-i)^^-1 for n'pr+m-k'+l^j<pr.
Proof of Theorem 6.2. Assume that (n'pr + m,)^ over Ln(p) has k inde

pendent cross sections, where k=2n'pr—2lpr~1 + 2t+ l. Then its associated
V2n'pr+2m,k-bundle has a cross section and so there exists a map /: Ln(p) •
X2n'pr+2m,k such that the following diagram is commutative:

* X2n'pr +2m,k p

Ln(P) C L~(p).

Let j=lpr~l + m—t and 2q=p—l. By (6.4.1), we have

(6.7) @lzj=(-m2j-l)zj+q+h(-l)g+s2my2szj+g„s.

Since 2(j + q)<!n and n'pr + m—A' + l<^j + q <pr by the assumption (**),
f*zj+q-8(0<.s<C,q) is given by Corollary 6.6, and its coefficient is

Tx[ n 7/n r-i , , W'- In this summation, the binomial coefficients
i'=i\(l —l)p + q—s + m—tj
are zero if V=V I by the condition (*). Therefore we have

(6.8) r^-^^+^W2''^-2*-1 for O^s^q.
If O^t^q —1, we have

Q

=2m(m-1yiXyV+2^=(2m-2t)(™yixyV+2«-\
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by (6.7-8) and the simple calculations of the binomial coefficients. On the
other hand, we obtain

^1/*^=(?)A^1(*yv-1)=(7)(2/-l)A,*jv+2«-1

=(2m-2t-l)(jyiXy2>+2«-\

by (6.8). Since (™)^° mod? and A;^0 mod p, we have /*^>1z/=V^,1/*zy,
which is a contradiction.

If t= q, we obtain similarly

f*91zj={(-in2j-l)+i^-l)^'2m(^)}u,xy2'+2'-1

=(2m-l)(™yiXy2^-\

^f*Zj=2m(^yiXy2^-\
which is a contradiction.

Finally, if t>q, we have similarly a contradiction:

f*^zj=(2m-2t)(jy^

§>1f*zJ=(2m-2t-l)(^yiXy2^^-\ Q.E.D.

,xyW-\

Remark 6.9. Comparing Theorem 6.3 with D. Sjerve's Theorem for im
mersions C14, Theorem 4.7 (i)J, we have, e.g., thefollowing results:

Ln(p)<£RZn-t>+l, L"{p)^R3n-^3

if n= n'P'-\i(n'p>-1-p + 2t)/31-l

= n'pr-(n'pr-1-p + 2t)/3-l, n'=l or 2;

L"(p)£R3"-p, Ln(p)<^R3n-<>+i

if n= n'pr-l(.n'pr-1-p + 2t)/?r\-l

= n'pr-(n,pr-1-p + 2t-l)/S-l, n'=l or 2.
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