On the Cohomology of Certain Quotient Manifolds of the Real Stiefel Manifolds and Their Applications

Tsutomu Yasui
(Received September 19, 1970)

§ 0. Introduction

Throughout this paper, p will denote an odd prime integer.
Let $S^{2 n+1}$ be the unit ($2 n+1$)-sphere in the complex ($n+1$)-space. Then the free actions of $S^{1}=\left\{e^{i \theta} \mid 0 \leq \theta<2 \pi\right\}$ and $Z_{p}=\left\{e^{i \theta} \mid \theta=2 \pi h / p, h=0, \ldots, p-1\right\}$ on $S^{2 n+1}$ are defined by $e^{i \theta}\left(z_{0}, \ldots, z_{n}\right)=\left(e^{i \theta} z_{0}, \ldots, e^{i \theta} z_{n}\right)$.

Let $V_{2 n, k}$ be the Stiefel manifold of orthonormal k-frames in the real $2 n$-space $R^{2 n}$. We define free actions of S^{1} and Z_{p} on $V_{2 n, k}$ such that $e^{i \theta}$ operates on each vector of k-frame as above. We consider the quotient manifolds

$$
Z_{2 n, k}=V_{2 n, k} / S^{1}, \quad X_{2 n, k}=V_{2 n, k} / Z_{p} .
$$

Then $Z_{2 n, 1}=C P^{n-1}$, the real $2 n-2$ dimensional complex projective space, and $X_{2 n, 1}=L^{n-1}(p)$, the $2 n-1$ dimensional $\bmod p$ lens space.

Let ξ and η be the canonical complex line bundles over $C P^{\infty}$ and $L^{\infty}(p)$, respectively. Then the above manifolds $Z_{2 n, k}$ and $X_{2 n, k}$ are homotopy equivalent to the total spaces of the associated $V_{2 n, k}$-bundles of $n \xi$ and $n \eta$, respectively, as is shown in Proposition 1.3. Consequently, it is expected that the cohomology structures of $Z_{2 n, k}$ and $X_{2 n, k}$ give us the informations about the structures of $n \xi$ and $n \eta$ and so the immersion problem for lens spaces $L^{n}(p)$.

Recently, S. Gitler and D. Handel [5] have considered the projective Stiefel manifolds, which are the above manifolds $X_{n, k}$ for $p=2$ (in this case, n need not be even), and determined their mod 2 cohomology algebras and the actions of the Steenrod squares up to a small indeterminancy. Also, P. F. Baum and W. Browder [1] have determined completely the actions of the Steenrod squares when n is a power of 2 . Moreover S. Gitler [6] has applied these results to the immersion problem for the real projective spaces.

The purpose of this paper is to study the $\bmod p$ cohomology structures of $Z_{2 n, k}$ and $X_{2 n, k}$ and to apply these results to the problems of independent cross sections of $n \eta$ and immersions of $L^{n}(p)$.

In $\S 1$, we prove Theorem 1.11, which determines the mod p cohomology algebras $H^{*}\left(Z_{2 n, k}\right)$ and $H^{*}\left(X_{2 n, k}\right)$. Furthermore the generators are given in

Theorem 2.7, using the universal Pontrjagin classes p_{j} and Euler class χ, which is proved by the analogous method in [5]. The mod p reduced power operations \mathscr{D}^{i} in these algebras are studied in §3, using Theorem 2.7 and the well-known results on $\mathscr{D}^{i} p_{j}$ and $\mathscr{D}^{i} x$. Also we study the Bockstein homomorphism β in $\S 4$, using the results of [1, Main Theorem I (7.12)]. \mathscr{D}^{i} and β are determined explicitly in Theorems $3.10-11$ and 4.12 for $n=n^{\prime} p^{r}(r \geq 1)$ and some k.

For the applications, we study the relations between $Z_{2 n, k}$ and $Z_{2 n+2 m, k}$ in §5 and prove Proposition 6.4. Finally, we apply Proposition 6.4 to Theorem 6.2 which is a non-existance theorem of k independent cross sections of the bundle $m \eta$ over $L^{n}(p)$. By Theorem 6.2 and T. Kobayashi's Theorem [7, Theorem 1], we obtain Theorem 6.3, which is a non-immersion theorem for lens spaces $L^{n}(p)$.

The author thanks Professors M. Sugawara and T. Kobayashi for their kind advice.

§ 1. The $\bmod p$ cohomology of $X_{2 n, k}$ and $\boldsymbol{Z}_{2 n, k}$

In this paper, the cohomology $H^{*}(\quad)$ will be understood to have Z_{p} for coefficients, unless otherwise stated.

Let $V_{2 n, k}$ be the Stiefel manifold of orthonormal k-frames in the real $2 n$ space $R^{2 n}$ and define a free action of $S^{1}=\left\{e^{i \theta} \mid 0 \leq \theta<2 \pi\right\}$ on $V_{2 n, k}$ by considering

$$
e^{i \theta}=\left(\begin{array}{ccc}
e^{i \theta} & & \\
& & 0 \\
& \ddots & \\
& & \\
e^{i \theta}
\end{array}\right) \epsilon U(n) \subset S O(2 n) .
$$

We consider the following quotient manifolds:

$$
Z_{2 n, k}=V_{2 n, k} / S^{1}, \quad X_{2 n, k}=V_{2 n, k} / Z_{p}
$$

where $Z_{p}=\left\{e^{i \theta} \mid \theta=2 \pi h / p, h=0,1, \ldots, p-1\right\} \subset S^{1}$.
Let ξ and η be the canonical complex line bundles over the infinite dimensional complex projective space $C P^{\infty}$ and the $\bmod p$ lens space $L^{\infty}(p)$, respectively, and $n \xi$ (resp. $n \eta$) the Whitney sum of n copies of ξ (resp. η). The real restriction of $n \xi$ (resp. $n \eta$) is denoted by the same notation $n \xi$ (resp. $n \eta$). The associated $V_{2 n, k}$-bundles of $n \xi$ and $n \eta$ are the following:

$$
\begin{align*}
& V_{2 n, k} \longrightarrow S^{\infty} \times_{\mathcal{S}^{1}} V_{2 n, k} \longrightarrow C P^{\infty}, \tag{1.1}\\
& V_{2 n, k} \longrightarrow S^{\infty} \times_{z_{p}} V_{2 n, k} \longrightarrow L^{\infty}(p), \tag{1.2}
\end{align*}
$$

where S^{∞} is the infinite dimensional sphere and the projections are defined by
the natural projections $S^{\circ} \longrightarrow S^{\circ} / S^{1}=C P^{\infty}$ and $S^{\circ} \longrightarrow S^{\infty} / Z_{p}=L^{\infty}(p)$, respectively.

Proposition 1.3. The manifolds $Z_{2 n, k}\left(\right.$ resp. $X_{2 n, k}$) and $S^{\circ}<{ }_{s^{1}} V_{2 n, k}$ (resp. $\left.S^{\circ} \aleph_{z_{p}} V_{2 n, k}\right)$ are of the same homotopy type and the natural projection $V_{2 n, k} \longrightarrow Z_{2 n, k}$ (resp. $V_{2 n, k} \longrightarrow X_{2 n, k}$) can be identified with the inclusion.

Proof. The following diagram is commutative:

where vertical maps are the projections. The projection $S^{\circ} \times V_{2 n, k} \longrightarrow V_{2 n, k}$ is obviously a homotopy equivalence and the inclusion map $V_{2 n, k} \longrightarrow S^{\circ} \times V_{2 n, k}$ is its homotopy inverse. Hence, by the homotopy exact sequences of the fibrations and the five lemma, the projection $S^{\circ}{ }{ }_{s^{1}} V_{2 n, k} \longrightarrow Z_{2 n, k}$ induces isomorphisms of all homotopy groups, and we obtain $S^{\circ} \times{ }_{S^{1}} V_{2 n, k} \simeq Z_{2 n, k}$. Similarly it follows that $S^{\circ} \times{ }_{z_{p}} V_{2 n, k} \simeq X_{2 n, k}$.
Q.E.D.

According to Proposition 1.3, we identify the space $S^{\circ} \times{ }_{s^{1}} V_{2 n, k}$ with $Z_{2 n, k}$ and $S^{\circ} \times_{z_{p}} V_{2 n, k}$ with $X_{2 n, k}$.

Now, let $f_{n}: C P^{\infty} \longrightarrow B S O(2 n)$ be a classifying map of $n \xi$. Then $f_{n} \pi$ is a classifying map of $n \eta$, since $\eta=\pi^{*} \xi$, where $\pi: L^{\infty}(p) \longrightarrow C P^{\infty}$ is the natural projection. Therefore we obtain the following homotopy commutative diagram:

The mod p cohomology structures of $V_{2 n, k}$ and $B S O(n)$ are the following ([2], [3] and [9, Theorem 32]):

$$
H^{*}\left(V_{2 n, k}\right)= \begin{cases}\wedge\left(v_{n-k^{\prime}+1}, \cdots, v_{n-1}, v\right) & \text { if } \quad k=2 k^{\prime}-1 \tag{1.6}\\ \wedge\left(v_{n-k^{\prime}+1}, \cdots, v_{n-1}, v, v^{\prime}\right) & \text { if } \quad k=2 k^{\prime},\end{cases}
$$

where deg $v_{j}=4 j-1$, $\operatorname{deg} v=2 n-1$ and $\operatorname{deg} v^{\prime}=2 n-k$.

$$
H^{*}(B S O(n))= \begin{cases}Z_{p}\left[p_{1}, \cdots, p_{n^{\prime}-1}, x\right] & \text { if } n=2 n^{\prime} \tag{1.7}\\ Z_{p}\left[p_{1}, \cdots, p_{n^{\prime}-1}\right] & \text { if } n=2 n^{\prime}-1,\end{cases}
$$

where p_{j} is the j-th Pontrjagin class of the universal oriented n-plane bundle, χ is its Euler class. Notice that $\chi^{2}=p_{n^{\prime}}$, for $n=2 n^{\prime}$. Moreover the elements v_{j} and v are transgressive in the fibration $V_{2 n, k} \longrightarrow B S O(2 n-k) \longrightarrow B S O(2 n)$,
and

$$
\begin{equation*}
\tau v_{j}=p_{j}, \quad \tau v=x \tag{1.8}
\end{equation*}
$$

Also, it is well-known that

$$
\begin{gather*}
H^{*}\left(C P^{\infty}\right)=Z_{p}[y], \quad \text { where deg } y=2, \tag{1.9}\\
H^{*}\left(L^{\infty}(p)\right)=\wedge(x) \otimes Z_{p}[y], \tag{1.10}
\end{gather*}
$$

where deg $x=1$, deg $y=2$ and $\beta x=y$ (β denotes the Bockstein homomorphism).

Theorem 1.11. Suppose $0<k<2 n$ and set $k^{\prime}=[(k+1) / 2]$. Let

$$
N=N(n, k)=\min \left\{4 i \mid n-k^{\prime}+1 \leq i \leq n-1,\binom{n}{i} \neq 0 \bmod p\right\} .
$$

Then the $\bmod p$ cohomology algebras of $X_{2 n, k}$ and $Z_{2 n, k}$ are as follows:
(a) If N does not exist or if N exists and $2 n<N$,

$$
\begin{align*}
& H^{*}\left(Z_{2 n, k}\right)= \begin{cases}\wedge\left(z_{n-k^{\prime}+1}, \ldots, z_{n-1}\right) \otimes Z_{p}[y] /\left(y^{n}\right) & \text { for odd } k \\
\vee\left(z_{n-k^{\prime}+1}, \ldots, z_{n-1}, z^{\prime}\right) \otimes Z_{p}[y] /\left(y^{n}\right) & \text { for even } k,\end{cases} \tag{1.11.1}\\
& H^{*}\left(X_{2 n, k}\right)= \begin{cases}\wedge\left(z_{n-k^{\prime}+1}, \ldots, z_{n-1}\right) \otimes \wedge(x) \otimes Z_{p}[y] /\left(y^{n}\right) & \text { for odd } k \\
\vee\left(z_{n-k^{\prime}+1}, \ldots, z_{n-1}, z^{\prime}\right) \otimes \wedge(x) \otimes Z_{p}[y] /\left(y^{n}\right) & \text { for even } k .\end{cases}
\end{align*}
$$

(b) If N exists and $2 n=N=4 i_{0}$,

$$
\begin{gather*}
H^{*}\left(Z_{2 n, k}\right)=\left\{\begin{array}{lr}
\wedge\left(z_{n-k^{\prime}+1}, \ldots, \hat{z}_{i_{0}}, \ldots, z_{n-1}\right) \otimes Z_{p}[y] /\left(y^{n}\right) \otimes \wedge\left(\bar{z}_{i_{0}}\right) \\
& \text { for odd } k \\
\vee\left(z_{n-k^{\prime}+1}, \ldots, \hat{z}_{i_{0}}, \ldots, z_{n-1}, z^{\prime}\right) \otimes Z_{p}[y] /\left(y^{n}\right) \otimes \wedge\left(\bar{z}_{i_{0}}\right) \\
\text { for even } k,
\end{array}\right. \tag{1.11.3}\\
H^{*}\left(X_{2 n, k}\right)=\left\{\begin{array}{cc}
\wedge\left(z_{n-k^{\prime}+1}, \ldots, \hat{z}_{i_{0}}, \ldots, z_{n-1}\right) & \text { for odd } k \\
\otimes \wedge(x) \otimes Z_{p}[y] /\left(y^{n}\right) \otimes \wedge\left(\bar{z}_{i_{0}}\right) & \\
\vee\left(z_{n-k^{\prime}+1}, \ldots, \hat{z}_{i_{0}}, \ldots, z_{n-1}, z^{\prime}\right) & \text { for even } k .
\end{array}\right.
\end{gather*}
$$

(c) If N exists and $2 n>N=4 i_{0}$,
(1.11.5) $\quad H^{*}\left(Z_{2 n, k}\right)=\left\{\begin{array}{l}\wedge\left(z_{n-k^{\prime}+1}, \cdots, \hat{z}_{i_{0}}, \cdots, z_{n-1}, z\right) \otimes Z_{p}[y] /\left(y^{2 i_{0}}\right) \\ \text { for odd } k\end{array}\right.$

$$
\begin{align*}
& \mid \vee\left(z_{n-k^{\prime}+1}, \ldots, \hat{z}_{i_{0}}, \ldots, z_{n-1}, z, z^{\prime}\right) \otimes Z_{p}[y] /\left(y^{2 i_{0}}\right) \\
& \text { for even } k \text {, } \\
& H^{*}\left(X_{2 n, k}\right)=\left\{\begin{array}{r}
\wedge\left(z_{n-k^{\prime}+1}, \ldots, \hat{z}_{i_{0}}, \ldots, z_{n-1}, z\right) \otimes \wedge(x) \otimes Z_{p}[y] /\left(y^{2 i_{0}}\right) \\
\text { for odd } k \\
\vee\left(z_{n-k^{\prime}+1}, \cdots, \hat{z}_{i_{0}}, \ldots, z_{n-1}, z, z^{\prime}\right) \otimes \wedge(x) \otimes Z_{p}[y] /\left(y^{2 i_{0}}\right) \\
\text { for even } k .
\end{array}\right. \tag{1.11.6}
\end{align*}
$$

Here $\operatorname{deg} z_{j}=4 j-1$, deg $\bar{z}_{i_{0}}=4 i_{0}-1$, deg $z=2 n-1$, deg $z^{\prime}=2 n-k$, deg $x=1$, $\operatorname{deg} y=2$ and $\vee\left(h_{1}, \ldots, h_{s}\right)$ means the algebra with h_{1}, \ldots, h_{s} as the simple system of generators, and $\hat{z}_{i_{0}}$ indicates that $z_{i_{0}}$ has been omitted. Moreover, we have the following relations:

$$
\begin{cases}i^{*} z_{j}=v_{j}, & i^{*} \bar{z}_{i_{0}}=v_{i_{0}}-\binom{n}{i_{0}} v, \quad i^{*} z=v, \quad i^{*} z^{\prime}=v^{\prime} \tag{1.11.7}\\ p^{*} x=x, & p^{*} y=y ; \quad z^{\prime 2}=\binom{n}{n-k^{\prime}} y^{2 n-k}\end{cases}
$$

where p and i are the maps in (1.5).
Remark 1.12. When $n=p^{r}$ or $2 p^{r}(r \geq 1)$, the case (c) does not appear and $\vee(\ldots)$ are $\wedge(\ldots)$. In fact, $N\left(p^{r}, k\right)$ does not exist for any k, and $N\left(2 p^{r}, k\right)=4 p^{r}$ if $k^{\prime}>p^{r}$ and $N\left(2 p^{r}, k\right)$ does not exist if $k^{\prime} \leq p^{r}$. Moreover $z^{\prime 2}=0$, since $y^{2 n-k}=y^{n}=0$ if $n=2 p^{r}=k$, and $\binom{n}{n-k^{\prime}} \equiv 0 \bmod p$ otherwise.

Remark 1.13. By (2.7.3) of Theorem 2.7, the element $\bar{z}_{i_{0}}$ will be denoted simply by $z_{i_{0}}$ in §§3-5.

Proof of Theorem 1.11. We shall prove (1.11.3) and the others are proved similarly. Let $\left\{E_{r}, d_{r}\right\}$ be the $\bmod p$ cohomology spectral sequence of the bundle (1.1). Since $n \xi$ is orientable, the local system of the bundle (1.1) is trivial and we have $E_{2}=H^{*}\left(V_{2 n, k}\right) \otimes H^{*}\left(C P^{\infty}\right)$.

If k is odd, $E_{2}=\wedge\left(v_{n-k^{\prime}+1}, \ldots, v_{n-1}, v\right) \otimes Z_{p}[y]$. From (1.8) and the naturality of the transgression, we have

$$
\begin{equation*}
\tau v_{j}=p_{j}(n \xi)=\binom{n}{j} y^{2 j}, \quad \tau v=x(n \hat{\xi})=y^{n} . \tag{1.14}
\end{equation*}
$$

Hence, the first non-zero differential is $d_{2 n}=d_{4 i_{0}}$ and

$$
d_{2 n} v_{i_{0}}=\binom{n}{i_{0}} y^{2 i_{0}}, d_{2 n} v=y^{n}, d_{2 n} v_{j}=0\left(j=n-k^{\prime}+1, \ldots, \hat{i}_{0}, \cdots, n-1\right)
$$

$$
E_{2 n+1}=\wedge\left(v_{n-k^{\prime}+1}, \ldots, \hat{v}_{i_{0}}, \ldots, v_{n-1}\right) \otimes \wedge\left(v_{i_{0}}-\binom{n}{i_{0}} v\right) \otimes Z_{p}[y] /\left(y^{n}\right)
$$

Since $y^{n}=0$ in $E_{2 n+1}$, we have $d_{r}=0$ for $r \geq 2 n+1$ and $E_{2 n+1}=E_{\infty}$. Therefore we have (1.11.3) and (1.11.7) by [3, Proposition 7.4].

If k is even, $E_{2}=\wedge\left(v_{n-k^{\prime}+1}, \ldots, v_{n-1}, v, v^{\prime}\right) \otimes Z_{p}[y]$ and

$$
E_{\infty}=\wedge\left(v_{n-k^{\prime}+1}, \cdots, \hat{v}_{i_{0}}, \ldots, v_{n-1}, v^{\prime}\right) \otimes \wedge\left(v_{i_{0}}-\binom{n}{i_{0}} v\right) \otimes Z_{p}[y] /\left(y^{n}\right),
$$

similarly. Now let $\left\{E_{r}^{\prime}, d_{r}^{\prime}\right\}$ be the $\bmod p$ cohomology spectral sequence of the fibration $V_{2 n, k} \longrightarrow B S O(2 n-k) \xrightarrow{\pi^{\prime}} B S O(2 n)$, then we have $E_{\infty}^{\prime}=\wedge\left(v^{\prime}\right)$ $\otimes Z_{p}\left[p_{1}, \cdots, p_{n-k^{\prime}}\right]$ by (1.8). The map \tilde{f}_{n} in (1.5) induces $\tilde{f}_{n}^{*}:\left\{E_{r}^{\prime}, d_{r}^{\prime}\right\} \longrightarrow$ $\left\{E_{r}, d_{r}\right\}$ such that $\tilde{f}_{n}^{*}=1 \otimes f_{n}^{*}: E_{2}^{\prime} \longrightarrow E_{2}$ and $\tilde{f}_{n}^{*} v^{\prime}=v^{\prime}, \tilde{f}_{n}^{*} p_{j}=\binom{n}{j} y^{2 j}$ for \tilde{f}_{n}^{*} : $E_{\infty}^{\prime} \longrightarrow E_{\alpha}$. The element $v^{\prime} \in E_{\infty}^{\prime}$ is the image of $\chi^{\prime} \in H^{*}(B S O(2 n-k))$ $=Z_{p}\left[p_{1}, \cdots, p_{n-k^{\prime}-1}, x^{\prime}\right]$ by the projection $H^{*}(B S O(2 n-k)) \longrightarrow \sum_{t=0}^{\infty} E_{\infty}^{\prime 0, t}=\wedge\left(v^{\prime}\right)$. Therefore the element $v^{\prime} \in E_{\infty}$ is the image of $z^{\prime}=\tilde{f}_{n}^{*} x^{\prime} \epsilon H^{*}\left(Z_{2 n, k}\right)$ by the projection $H^{*}\left(Z_{2 n, k}\right) \longrightarrow \sum_{t=0}^{\infty} E_{\infty}^{0, t}$. These facts and [2, Proposition 8.1 (b)] imply (1.11.3). Since $\pi^{\prime *} p_{n-k^{\prime}}=\chi^{\prime 2}$ by (1.7), we have

$$
z^{\prime 2}=\tilde{f}_{n}^{*} x^{\prime 2}=\tilde{f}_{n}^{*} \pi^{\prime *} p_{n-k^{\prime}}=p^{*} f_{n}^{*} p_{n-k^{\prime}}=\binom{n}{n-k^{\prime}} y^{2 n-k} . \quad \text { Q.E.D. }
$$

Now, we study the homomorphism in cohomology induced by the projection $\tilde{\pi}: X_{2 n, k} \longrightarrow Z_{2 n, k}$ in (1.5).

Lemma 1.15. The homomorphism $\tilde{\pi}^{*}: H^{*}\left(Z_{2 n, k}\right) \longrightarrow H^{*}\left(X_{2 n, k}\right)$ is a monomorphism and $\tilde{\pi}^{*} y=y$. Moreover, we can choose the classes $z_{j}, \bar{z}_{i_{0}}$, z and z^{\prime} such that $\tilde{\pi}^{*} z_{j}=z_{j}, \tilde{\pi}^{*} \bar{z}_{i_{0}}=\bar{z}_{i_{0}}, \tilde{\pi}^{*} z=z$ and $\tilde{\pi}^{*} z^{\prime}=z^{\prime}$.

Proof. Consider the following commutative diagram:

The homomorphism $i^{*}: H^{*}\left(L^{\infty}(p)\right) \longrightarrow H^{*}\left(S^{1}\right)$ is an epimorphism and so it follows that $i^{*}: H^{*}\left(X_{2 n, k}\right) \longrightarrow H^{*}\left(S^{1}\right)$ is an epimorphism. Therefore each differential is trivial in the spectral sequence of the fibration $S^{1} \longrightarrow X_{2 n, k}$ $\xrightarrow{\tilde{\pi}} Z_{2 n, k}$ and the homomorphism $\tilde{\pi}^{*}$ is a monomorphism.
Q.E.D.

By this lemma, it is sufficient to consider the structure of $H^{*}\left(Z_{2 n, k}\right)$ for studying that of $H^{*}\left(X_{2 n, k}\right)$.

§ 2. The $\bmod \boldsymbol{p}$ cohomology of $\boldsymbol{X}_{2 n, k}$ and $\boldsymbol{Z}_{2 n, k}$ (continued)

We study the homomorphisms induced by the projections $\nu_{k}: Z_{2 n, k} \longrightarrow$ $Z_{2 n, k-1}$ and $\nu_{k}: X_{2 n, k} \longrightarrow X_{2 n, k-1}$ when k is even.

We notice that, if one of $N\left(n, 2 k^{\prime}\right)$ and $N\left(n, 2 k^{\prime}-1\right)$ of Theorem 1.11 exists, then the other exists and they are equal.

Lemma 2.1. Let $k=2 k^{\prime}$. Then $\nu_{k}^{*}: H^{*}\left(Z_{2 n, k-1}\right) \longrightarrow H^{*}\left(Z_{2 n, k}\right)$ and ν_{k}^{*} : $H^{*}\left(X_{2 n, k-1}\right) \longrightarrow H^{*}\left(X_{2 n, k}\right)$ are both monomorphic. Moreover

$$
\nu_{k}^{*} z_{j}=z_{j}, \quad \nu_{k}^{*} \bar{z}_{i_{0}}=\bar{z}_{i_{0}}, \quad \nu_{k}^{*} z=z, \quad \nu_{k}^{*} x=x, \quad \nu_{k}^{*} y=y .
$$

Proof. Consider the following homotopy commutative diagram:

Then the lemma is proved similarly as Lemma 1.15.
Q.E.D.

If $k=2 k^{\prime}-1$, we obtain the following short exact sequence:

$$
\begin{equation*}
0 \longrightarrow H^{*}(B S O(2 n), B S O(2 n-k)) \xrightarrow{j^{*}} H^{*}(B S O(2 n)) \xrightarrow{\pi^{\prime *}} H^{*}(B S O(2 n-k)) \longrightarrow 0 . \tag{2.2}
\end{equation*}
$$

Since $\pi^{\prime *} p_{j}=0$ for $n-k^{\prime}+1 \leq j \leq n-1$, and $\pi^{\prime *} x=0$, there exist unique classes $U_{j}\left(n-k^{\prime}+1 \leq j \leq n-1\right)$ and U in $H^{*}(B S O(2 n), B S O(2 n-k))$ such that

$$
\begin{equation*}
j^{*} U_{i}=p_{j} \quad\left(j=n-k^{\prime}+1, \cdots, n-1\right), \quad j^{*} U=x . \tag{2.3}
\end{equation*}
$$

By the mapping cylinder considerations in the diagram (1.5), we have the following homotopy commutative diagram:

where $C V_{2 n, k}$ is the cone over $V_{2 n, k}$.
Lemma 2.5. Let $0<k<2 n$ and $k=2 k^{\prime}-1$. Then $g^{*} U_{j}=\delta_{1} v_{j}$ for $n-k^{\prime}+1 \leq j \leq n-1$ and $g^{*} U=\delta_{1} v$, where g is the map of (2.4) and δ_{1} : $H^{*-1}\left(V_{2 n, k}\right) \underset{ }{\approx} H^{*}\left(C V_{2 n, k}, V_{2 n, k}\right)$.

Proof. According to [8, Lemma 5.1], the following diagram is commutative:

Since $\tau v_{j}=p_{j}$, we have $p_{j} \epsilon j^{*} g^{*-1} \delta_{1} v_{j}$. On the other hand $j^{*} U_{j}=p_{j}$ and j^{*} is a monomorphism, and so $U_{j} \epsilon g^{*-1} \delta_{1} v_{j}$. Therefore $g^{*} U_{j}=\delta_{1} v_{j}$. Similarly we have $g^{*} U=\delta_{1} v$.
Q.E.D.

By the diagram (2.4), we obtain the following commutative diagram of the exact sequences for odd k :

Now, we characterize the classes $z_{j}, \bar{z}_{i_{0}}$ and z by the classes in $H^{*}(B S O(2 n), B S O(2 n-k))$ and the homomorphism \bar{f}_{n}^{*}.

Theorem 2.7. Let $0<k<2 n$. The classes $z_{j}, \bar{z}_{i_{0}}, z$ and z^{\prime} in $H^{*}\left(Z_{2 n, k}\right)$ can be chosen so as to satisfy the following conditions (2.7.1-5).

$$
\begin{equation*}
z^{\prime}=\tilde{f}_{n}^{*} x^{\prime} \quad \text { if } k \text { is even. } \tag{2.7.1}
\end{equation*}
$$

For the case (a) of Theorem 1.11,

$$
\begin{equation*}
\delta z_{j}=\bar{f}_{n}^{*} U_{j}-\binom{n}{j} y^{2 j-n} \bar{f}_{n}^{*} U \quad\left(j=n-k^{\prime}+1, \ldots, n-1\right) . \tag{2.7.2}
\end{equation*}
$$

For the case (b) of Theorem 1.11,

$$
\left\{\begin{array}{l}
\delta z_{j}=\bar{f}_{n}^{*} U_{j}-\binom{n}{j} y^{2 j-n} \bar{f}_{n}^{*} U \quad\left(j=n-k^{\prime}+1, \ldots, \hat{i_{0}}, \ldots, n-1\right), \tag{2.7.3}\\
\delta \bar{z}_{i_{0}}=\bar{f}_{n}^{*} U_{i_{0}}-\binom{n}{i_{0}} \bar{f}_{n}^{*} U .
\end{array}\right.
$$

For the case (c) of Theorem 1.11,

$$
\begin{align*}
& \delta z_{j}=\bar{f}_{n}^{*} U_{j}+\lambda_{j} y^{2 j-2 i_{0} \bar{f}_{n}^{*} U_{i_{0}}} \quad\left(j=n-k^{\prime}+1, \ldots, \hat{i}_{0}, \ldots, n-1\right), \tag{2.7.4}\\
& \delta z=\bar{f}_{n}^{*} U+\lambda_{0} y^{n-2 i_{i_{0}}} \bar{f}_{n}^{*} U_{i_{0}},
\end{align*}
$$

where λ_{j} satisfies the formula $\binom{n}{j}+\lambda_{j}\binom{n}{i_{0}} \equiv 0 \bmod p$.
The generators of $H^{*}\left(X_{2 n, k}\right)$ are obtained by replacing \tilde{f}_{n}^{*} with $\tilde{\pi}^{*} \tilde{f}_{n}^{*}$ and \bar{f}_{n}^{*} with $\bar{\pi}^{*} \bar{f}_{n}^{*}$ in (2.7.1-5).

Proof. (2.7.1) has been proved in the proof of Theorem 1.11.

It is sufficient to prove (2.7.2-5) for odd k by Lemma 2.1. By the diagram (2.6), we have

$$
\begin{equation*}
t^{*} \bar{f}_{n}^{*} U_{j}=f_{n}^{*} \dot{p}_{j}=\binom{n}{j} y^{2 j}, \quad t^{*} \bar{f}_{n}^{*} U=f_{n}^{*} x=y^{n} \tag{2.8}
\end{equation*}
$$

Consider the case (a). Then there exists a unique class z_{j} in $H^{4 j-1}\left(Z_{2 n, k}\right)$ such that

$$
\delta z_{j}=\bar{f}_{n}^{*} U_{j}-\binom{n}{j} y^{2 j-n} \bar{f}_{n}^{*} U
$$

since the image of the right hand side by t^{*} is zero by (2.8) and δ is monomorphic in odd degree. To see that the above classes $z_{j}\left(j=n-k^{\prime}+1, \ldots\right.$, $n-1)$ are generators of (1.11.1), it is sufficient to show that $i^{*} z_{j}=v_{j}$ ($j=n-k^{\prime}+1, \ldots, n-1$). For this purpose we consider the following diagram induced by (2.4):

By Lemma 2.5, we have $\delta_{1} v_{j}=g^{*} U_{j}$ and so we have

$$
\delta_{1} v_{j}=h^{*} \bar{f}_{n}^{*} U_{j}=h^{*}\left(\delta z_{j}+\binom{n}{j} y^{2 j-n} \bar{f}_{n}^{*} U\right)=\delta_{1} i^{*} z_{j}+\binom{n}{j} h^{*} y^{2 j-n} h^{*} \bar{f}_{n}^{*} U=\delta_{1} i^{*} z_{j},
$$

since $h^{*} y^{2 j-n}=0$ in $H^{*}\left(C V_{2 n, k}\right)$. Therefore we obtain $i^{*} z_{j}=v_{j}$ because δ_{1} is isomorphic.

In the similar way, we can prove the theorem for the other cases.
Q.E.D.
§ 3. Reduced power operations \mathscr{D}^{i} in $\boldsymbol{H}^{*}\left(\boldsymbol{X}_{2 n, k}\right)$ and $\boldsymbol{H}^{*}\left(\boldsymbol{Z}_{2 n, k}\right)$
In this section, we determine the $\bmod p$ reduced power operations \mathscr{D}^{i} in $H^{*}\left(X_{2 n, k}\right)$ and $H^{*}\left(Z_{2 n, k}\right)$ for $n=p^{r}$ or $2 p^{r}$, and also we notice that they are computable for any positive integers n and $k(0<k<2 n)$.
A. Borel and J. - P. Serre $[4, \S 14]$ studied the $\bmod p$ reduced power operations \mathscr{D}^{i} in $H^{*}(B S O(2 n))$:

$$
\begin{align*}
& \mathscr{D}^{i} p_{j}=(-1)^{q i} b_{p}^{i, 2 j+2 q i} p_{j+q i}+\sum_{l=j}^{j+q i-1} p_{l} \alpha_{l}, \quad \alpha_{l} \in \tilde{H}^{*}(B S O(2 n)), \tag{3.1}\\
& \mathscr{D}^{i} x=x C^{i, q}\left(p_{1}, \cdots, p_{n-1}, x^{2}\right) \quad(2 q=p-1) \tag{3.2}
\end{align*}
$$

where $b_{p}^{i, 2 j+2 q i}$ is an integer and $C^{i, q}(\ldots)$ is given as follows: Let σ_{i} be the i-th elementary symmetric function with respect to indeterminates x_{1}, \ldots, x_{n},
then $C^{i, q}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ denotes the polynomial which expresses the symmetric polynomial of typical term $x_{1}^{q} \cdots x_{i}^{q}$.

Moreover, by S. Mukohda and S. Sawaki [10], it is known that

$$
\begin{equation*}
b_{p}^{i, 2 j+2 q i} \equiv\binom{2 j-1}{i} \bmod p \tag{3.3}
\end{equation*}
$$

First of all, we calculate $\mathscr{D}^{i} z^{\prime}$ in $H^{*}\left(Z_{2 n, k}\right)$ and $H^{*}\left(X_{2 n, k}\right)$ when $k=2 k^{\prime}$. Since $z^{\prime}=\tilde{f}_{n}^{*} x^{\prime}$ by Theorem 2.7, we have

$$
\begin{aligned}
\mathscr{P}^{i} z^{\prime} & =\mathscr{D}^{i} \tilde{f}_{n}^{*} x^{\prime}=\tilde{f}_{n}^{*} \mathscr{D}^{i} x^{\prime}=\tilde{f}_{n}^{*}\left(x^{\prime} C^{i, q}\left(p_{1}, \cdots, p_{n-k^{\prime}-1}, x^{\prime 2}\right)\right) \\
& =z^{\prime} C^{i, q}\left(\tilde{f}_{n}^{*} p_{1}, \cdots, \tilde{f}_{n}^{*} p_{n-k^{\prime}-1}, \tilde{f}_{n}^{*} x^{\prime 2}\right)
\end{aligned}
$$

and hence, we obtain

$$
\begin{equation*}
\mathscr{P}^{i} z^{\prime}=z^{\prime} C^{i, q}\left(\binom{n}{1} y^{2}, \ldots,\binom{n}{n-k^{\prime}} y^{2 n-k}\right) . \tag{3.4}
\end{equation*}
$$

Therefore we can calculate $\mathscr{D}^{i} z^{\prime}$ for any n and even k.
Now let $k=2 k^{\prime}-1$ and consider the following diagram of the exact sequences (cf. (2.6)):

$$
0 \longrightarrow H^{*}(B S O(2 n), B S O(2 n-k)) \xrightarrow{j^{*}} H^{*}(B S O(2 n)) \xrightarrow{\pi^{\prime *}} H^{*}(B S O(2 n-k)) \longrightarrow 0
$$

$$
\begin{equation*}
\cdots \longrightarrow H^{*-1}\left(Z_{2 n, k}\right) \xrightarrow{\delta} H^{*}\left(\stackrel{\downarrow}{C} P^{\infty}, Z_{2 n, k}\right) \xrightarrow{t^{*}} H^{*}\left(\underset{C}{C} P^{\infty}\right) \longrightarrow \xrightarrow{p^{*}} H^{*}\left(Z_{2 n, k}\right) \longrightarrow \cdots . \tag{3.5}
\end{equation*}
$$

Then using (3.1-3), we have

$$
\begin{align*}
& \mathscr{D}^{i} U_{j}= \begin{cases}\left.(-1)^{q^{i}(2 j-1} \begin{array}{c}
i
\end{array}\right) U_{j+q i}+\sum_{l=j}^{j+q i-1} U_{l} \alpha_{l} & \text { for } \quad j+q i \neq n \\
(-1)^{q i}\binom{2 j-1}{i} U x+\sum_{l=j}^{j+q i-1} U_{l} \alpha_{l} & \text { for } j+q i=n,\end{cases} \tag{3.6}\\
& \mathscr{D}^{i} U=U C^{i, q}\left(p_{1}, \cdots, p_{n-1}, x^{2}\right) \tag{3.7}
\end{align*}
$$

in $H^{*}(B S O(2 n), B S O(2 n-k))$, where U_{j} and U are the elements in (2.3):

$$
j^{*} U_{j}=p_{j}\left(j=n-k^{\prime}+1, \ldots, n-1\right), \quad j^{*} U=\chi .
$$

Mapping (3.6-7) by \bar{f}_{n}^{*}, we have

$$
\bar{f}_{n}^{* \mathscr{D}} U_{j}= \begin{cases}(-1)^{q i}\binom{2 j-1}{i} \bar{f}_{n}^{*} U_{j+q i}+\sum_{l=j}^{j+q i-1} \bar{f}_{n}^{*} U_{l} f_{n}^{*} \alpha_{l} & \text { for } \quad j+q i \neq n \tag{3.8}\\ (-1)^{q i}\binom{2 j-1}{i} \bar{f}_{n}^{*} U f_{n}^{*} x+\sum_{l=j}^{j+q i-1} \bar{f}_{n}^{*} U_{l} f_{n}^{*} \alpha_{l} & \text { for } \quad j+q i=n\end{cases}
$$

$$
\begin{equation*}
\bar{f}_{n}^{* \mathscr{D}}{ }^{i} U=\bar{f}_{n}^{*} U C^{i, q}\left(\binom{n}{1} y^{2}, \ldots,\binom{n}{n-1} y^{2 n-2}, y^{2 n}\right) . \tag{3.9}
\end{equation*}
$$

Using (3.4), (3.8-9) and Theorem 2.7, we have the following theorem.
Theorem 3.10. Let $n=p^{r}$ or $2 p^{r}(r \geq 1)$ and k be a positive integer such that $k<2 n$. Then the mod p reduced power operations \mathscr{D}^{i} in $H^{*}\left(X_{2 n, k}\right)$ and $H^{*}\left(Z_{2 n, k}\right)$ are given by

$$
\mathscr{D}^{i} z_{j}= \begin{cases}(-1)^{q i}\left(\frac{2 j-1}{i}\right) z_{j+q i} & \text { for } \\ 0 & j<n-q i \tag{3.10.2}\\ 0 & \text { for } \quad j \geq n-q i\end{cases}
$$

where $2 q=p-1$.
Proof. Assume that $k=2 k^{\prime}$, then we have

$$
\mathscr{P}^{i} z^{\prime}= \begin{cases}z^{\prime} C^{i, q}(0, \ldots, 0) & \text { if } n=p^{r} \text { or } 2 p^{r} ; k^{\prime}>p^{r} \\ z^{\prime} C^{i, q}\left(0, \ldots, 0,2 y^{2 p^{r}}, 0, \ldots, 0\right) & \text { if } n=2 p^{r} \text { and } k^{\prime} \leq p^{r}\end{cases}
$$

by (3.4). According to Theorem 1.11 and Remark 1.12, we have $y^{2 p^{r}}=0$ in $H^{*}\left(X_{2 n, k}\right)$ and $H^{*}\left(Z_{2 n, k}\right)$, and so we obtain (3.10.2).

We shall prove (3.10.1) for odd k. Then (3.10.1) for even k follows from Lemma 2.1.

Now $\alpha_{l} \in \tilde{H}^{*}(B S O(2 n))$ is a polynomial of $p_{j}(j=1, \cdots, n)$ and $f_{n}^{*} p_{j}=\binom{n}{j} y^{2 j}$. Therefore $f_{n}^{*} \alpha_{l}$ has a common factor $y^{2 p^{r}}$ and so we notice that

$$
p^{*} f_{n}^{*} \alpha_{l}=0 \quad \text { for } \quad \alpha_{l} \in \tilde{H}^{*}(B S O(2 n))
$$

since $p^{*} y^{2 p^{r}}=0$ in $H^{*}\left(Z_{2 n, k}\right)$.
By (2.7.2-3) and Remark 1.12, we have

$$
\delta z_{j}=\bar{f}_{n}^{*} U_{j}-a \bar{f}_{n}^{*} U, \quad a= \begin{cases}2 & \text { if } n=2 p^{r} \text { and } j=p^{r} \\ 0 & \text { otherwise }\end{cases}
$$

Using (3.8-9) and the above facts, we have

$$
\left.\begin{array}{l}
\delta \mathscr{D}^{i} z_{j}=\mathscr{D}^{i}\left(\bar{f}_{n}^{*} U_{j}-a \bar{f}_{n}^{*} U\right) \\
\quad=\left\{\begin{array}{r}
(-1)^{q i}\binom{2 j-1}{i} \bar{f}_{n}^{*} U_{j+q i}+\sum_{l=j}^{j+q i-1} \bar{f}_{n}^{*} U_{l} f_{n}^{*} \alpha_{l}-a \bar{f}_{n}^{*} U C^{i, q}\left(\binom{n}{1} y^{2}, \ldots,\binom{n}{n} y^{2 n}\right) \\
(-1)^{q i}\binom{2 j-1}{i} \bar{f}_{n}^{*} U f_{n}^{*} x+\sum_{l=j}^{j+q i-1} \bar{f}_{n}^{*} U_{l} f_{n}^{*} \alpha_{l}-a \bar{f}_{n}^{*} U C^{i, q}\left(\binom{n}{1} y^{2}, \ldots,\binom{n}{n} y^{2 n}\right.
\end{array}\right) \\
\text { if } j+q i=n
\end{array}\right] .
$$

$$
\begin{aligned}
& =\left\{\begin{array}{ll}
(-1)^{q i}(2 j-1 \\
i
\end{array}\right) \delta z_{j+q i}+\delta \begin{cases}\left.\sum_{l=j}^{j+q i-1}\left(p^{*} f_{n}^{*} \alpha_{l}\right) z_{l}\right\}+A \bar{f}_{n}^{*} U & \text { if } j+q i \neq n \\
\delta\left\{\begin{array}{l}
\left.\sum_{l=j}^{j+q i-1}\left(p^{*} f_{n}^{*} \alpha_{l}\right) z_{l}\right\}+A^{\prime} \bar{f}_{n}^{*} U
\end{array}\right. & \text { if } j+q i=n\end{cases} \\
& =\left\{\begin{array}{ll}
(-1)^{q i}(2 j-1 \\
i
\end{array}\right) \delta z_{j+q i}+A \bar{f}_{n}^{*} U \\
& A^{\prime} \text { if }_{n}^{*} U+q i \neq n
\end{aligned}
$$

where $A, A^{\prime} \in H^{*}\left(C P^{\infty}\right)$. Mapping this equality by t^{*} and using (2.8), we have $A=0$ and $A^{\prime}=0$. Since δ is monomorphic in odd degree, (3.10.1) follows.

Q.E.D.

Theorem 3.11. Let n and k be positive integers with $k<2 n$, satisfying $n=n^{\prime} p^{r}, r \geq 1, n^{\prime} \geq 3,\left(p, n^{\prime}\right)=1$ and $n-[(k+1) / 2]+1 \leq p^{r}$. Then the cohomology algebras of $X_{2 n, k}$ and $Z_{2 n, k}$ are the case (c) of Theorem 1.11 with $N(n, k)=4 p^{r}<2 n$ and the $\bmod p$ reduced power operations D $^{i}(i>0)$ in $H^{*}\left(X_{2 n, k}\right)$ and $H^{*}\left(Z_{2 n, k}\right)$ are given by

$$
\begin{align*}
& \mathscr{D}^{i} z_{j}= \begin{cases}(-1)^{q i}\binom{2 j-1}{i} z_{j+q i} & \text { for } j<n-q i, j \neq p^{r}-q i \\
0 & \text { otherwise, }\end{cases} \tag{3.11.1}\\
& \mathscr{D}^{i} z= \begin{cases}\binom{n}{i} y^{2 q i} z-\frac{(-1)^{q i}}{n^{\prime}}\binom{2 p^{r}-1}{i} y^{n-2 p^{r}} z_{p^{r}+q i} & \text { for } p^{r}+q i<n \\
\binom{n}{i} y^{2 q i} z & \text { for } p^{r}+q i \geq n,\end{cases} \tag{3.11.2}\\
& \mathscr{D}^{i} z^{\prime}=0, \tag{3.11.3}
\end{align*}
$$

where $2 q=p-1$.
Proof. It is clear that $N(n, k)=4 p^{r}=4 i_{0}<2 n$ by the assumptions and so $y^{2 p^{r}}=0$ in $H^{*}\left(Z_{2 n, k}\right)$. Hence we have

$$
p^{*} f_{n}^{*} \alpha_{l}=0 \quad \text { for } \quad \alpha_{l} \in \tilde{H}^{*}(B S O(2 n))
$$

similarly to the proof of Theorem 3.10.
We notice that the integers λ_{j} of (2.7.4) are zero if $j \neq l p^{r}\left(l=2, \ldots, n^{\prime}-1\right)$, and λ_{0} of (2.7.5) is equal to $-1 / n^{\prime}$. Therefore, using (2.7.4-5), (3.8-9) and $y^{2 p^{r}}=0$, we have

$$
\begin{aligned}
\delta \mathscr{D}^{i} z_{j} & =\mathscr{D}^{i}\left(\bar{f}_{n}^{*} U_{j}+\lambda_{j} y^{2 j-2 i_{0}} \bar{f}_{n}^{*} U_{i_{0}}\right) \\
& = \begin{cases}(-1)^{q i}\binom{2 j-1}{i} \delta z_{j+q i}+A \bar{f}_{n}^{*} U_{i_{0}} & \text { for } j+q i<n, j+q i \neq i_{0} \\
A^{\prime} \bar{f}_{n}^{*} U_{i_{0}} & \text { otherwise, }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\delta \mathscr{D}^{i} z & =\mathscr{D}^{i}\left(\bar{f}_{n}^{*} U+\lambda_{0} y^{n-2 i_{0}} \bar{f}_{n}^{*} U_{i_{0}}\right) \\
& = \begin{cases}\binom{n}{i} y^{2 q i} \delta z-\frac{(-1)^{q i}}{n^{\prime}}\binom{2 p^{r}-1}{i} y^{n-2 p^{r}} \delta z_{p^{r}+q i}+\bar{A} \bar{f}_{n}^{*} U_{i_{0}} & \text { for } \quad i_{0}+q i<n \\
\binom{n}{i} y^{2 q i} \delta z+\bar{A}^{\prime} \bar{f}_{n}^{*} U_{i_{0}} & \text { for } \quad i_{0}+q i \geq n .\end{cases}
\end{aligned}
$$

Here A, A^{\prime}, \bar{A} and \bar{A}^{\prime} are some elements of $H^{*}\left(C P^{\infty}\right)$, and we see that these elements are zero in the same way as the proof of (3.10.1). Hence (3.11.1) and (3.11.2) follow.
(3.11.3) is obtained similarly to (3.10.2). Q.E.D.

In general, the $\bmod p$ reduced power operations \mathscr{D}^{i} in $H^{*}\left(X_{2 n, k}\right)$ and $H^{*}\left(Z_{2 n, k}\right)$ are given by the following

Proposition 3.12. For any positive integers n and $k(k<2 n)$, the $\bmod p$ reduced power operations \mathscr{D}^{i} in $H^{*}\left(X_{2 n, k}\right)$ and $H^{*}\left(Z_{2 n, k}\right)$ are given as follows:

$$
\begin{align*}
& \mathscr{D}^{i} z_{j}=(-1)^{q i}\binom{2 j-1}{i} z_{j+q i}+\sum_{l} a_{l} y^{2 j+2 q i-2 l} z_{l}, \tag{3.12.1}\\
& \mathscr{D}^{i} z=\binom{n}{i} y^{2 q i} z+\sum_{l=i_{0}+1}^{i_{0}+q i} a_{l}^{\prime} y^{n+2 q i-2 l} z_{l}, \tag{3.12.2}\\
& \mathscr{D}^{i} z^{\prime}=z^{\prime} C^{i, q}\left(\binom{n}{1} y^{2}, \ldots,\binom{n}{n-k^{\prime}} y^{2 n-k}\right) \quad\left(k=2 k^{\prime}\right), \tag{3.12.3}
\end{align*}
$$

where \sum_{l} in (3.12.1) is the sum of $l=j, \ldots, j+q i-1$ for the case (a), (b) and $l=\min \left\{j, i_{0}+1\right\}, \cdots, j+q i-1$ for the case (c) of Theorem 1.11, and a_{l}, a_{l}^{\prime} are some integers.

Proof. We have already proved (3.12.3) in (3.4).
For the case (c) of Theorem 1.11, we have

$$
\begin{aligned}
\delta \mathscr{D}^{i} z_{j} & =\mathscr{D}^{i} \delta z_{j}=\mathscr{D}^{i}\left(\bar{f}_{n}^{*} U_{j}+\lambda_{j} y^{2 j-2 i_{0}} \bar{f}_{n}^{*} U_{i_{0}}\right) \\
& =\left\{\begin{array}{cll}
(-1)^{q i}\binom{2 j-1}{i} \delta z_{j+q i}+\sum_{l} a_{l} y^{2 j+2 q i-2 l} \delta z_{l}+A \bar{f}_{n}^{*} U_{i_{0}} & \text { for } & j \neq n-q i \\
(-1)^{i}\binom{2 j-1}{i} a^{\prime} y^{n} \delta z+\sum_{l} \bar{a}_{l} y^{2 j+2 q i-2 l} \delta z_{l}+\bar{A} \bar{f}_{n}^{*} U_{i_{0}} & \text { for } & j=n-q i,
\end{array}\right. \\
\delta \mathscr{D}^{i} z & =\mathscr{D}^{i} \delta z=\mathscr{D}^{i}\left(\bar{f}_{n}^{*} U+\lambda_{0} y^{\left.n-2 i_{0} \bar{f}_{n}^{*} U_{i_{0}}\right)}\right. \\
& =\binom{n}{i} y^{2 q i} \delta z+\sum_{l=i_{0}+1}^{i_{0}+q i} a_{l}^{\prime} y^{n+2 q i-2 l} \delta z_{l}+A^{\prime} \bar{f}_{n}^{*} U_{i_{0}},
\end{aligned}
$$

by (2.7.4-5) and (3.8-9), where a_{l}, \bar{a}_{l} and a_{l}^{\prime} are some integers and A, \bar{A} and A^{\prime} are some elements in $H^{*}\left(C P^{\infty}\right)$. In the similar way to the proof of Theorem 3.10, we have (3.12.1) and (3.12.2).

For the case (a) or (b) of Theorem 1.11, we have (3.12.1) similarly.
Q.E.D.

§ 4. Bockstein homomorphisms $\boldsymbol{\beta}$ in $\boldsymbol{H}^{*}\left(\boldsymbol{X}_{2 n, k}\right)$ and $\boldsymbol{H}^{*}\left(\boldsymbol{Z}_{2 n, k}\right)$

P. F. Baum and W. Browder [1] determined the mod p cohomology algebra of the projective unitary group $P U(n)=U(n) / S^{1}$ and the reduced power operations \mathscr{D}^{i} when $n=n^{\prime} p^{\gamma},\left(p, n^{\prime}\right)=1$ and $r \geq 1$. Moreover, they determined the Bockstein homomorphism β in degree $\leq 2 p^{r-1}$. According to [$1, \mathrm{Main}_{\text {aneorem }} \mathrm{I}$], the $\bmod p$ cohomology structure of $P U(n)$ is the following:

Let $n=n^{\prime} p^{r},\left(p, n^{\prime}\right)=1$ and $r \geq 1$. Then

$$
H^{*}(P U(n))=\wedge\left(w_{1}, \ldots, \hat{w}_{p^{r}}, \ldots, w_{n}\right) \otimes Z_{p}[y] /\left(y^{p^{r}}\right)
$$

where $\operatorname{deg} w_{j}=2 j-1$ and $\operatorname{deg} y=2$,

$$
\beta w_{j}= \begin{cases}\mu y^{p^{r-1}}, & \mu \neq 0 \bmod p, \tag{4.1}\\ 0 & \text { for } j=p^{r-1} \\ \text { for } j<p^{r-1}\end{cases}
$$

Remark. It is proved that $\beta w_{j}=0$ for $j<p^{r-1}$ of (4.1), in the proof of Main Theorem I in [1, p. 324].

First, we shall extend (4.1) for all $j\left(1 \leq j \leq n, j \neq p^{r}\right)$. For this purpose, we use the properties of generators w_{j} in $H^{*}(P U(n))$.

Let $E U(n)$ be a contractible space such that $U(n)$ acts freely, then $E U(n) / U(n)=B U(n)$ is a classifying space of $U(n)$, and there is the following homotopy commutative diagram ([12, §§1-2]):

where f_{n} is a classifying map of $n \xi$. Then we obtain the following diagram induced by (4.2):

The cohomology algebras of $B U(n)$ and $U(n)$ are given as follows:

$$
H^{*}(B U(n))=Z_{p}\left[c_{1}, \cdots, c_{n}\right], \quad H^{*}(U(n))=\wedge\left(u_{1}, \ldots, u_{n}\right)
$$

where the element c_{j} is the universal j-th Chern class and the element u_{j} is transgressive and $\tau u_{j}=c_{j}$.

Since the j-th Chern class of $n \xi$ over $C P^{\infty}$ is $\binom{n}{j} y^{j}$, we obtain $t^{*} \bar{f}_{n}^{*} c_{j}$ $=f_{n}^{*} c_{j}=\binom{n}{j} y^{j}$ in (4.3).

Lemma 4.4. Let $n=n^{\prime} p^{r},\left(p, n^{\prime}\right)=1$ and $r \geq 1$. We can choose the generators $w_{j} \in H^{*}(\operatorname{PU}(n))\left(j=1, \ldots, \widehat{p^{r}}, \ldots, n\right)$ such that

$$
\delta w_{j}= \begin{cases}\bar{f}_{n}^{*} c_{j}-\frac{1}{n^{\prime \prime}}\binom{n^{\prime}}{l} \bar{f}_{n}^{*} c_{p^{r}}^{l} & \text { if } j=l p^{r}, \quad l=2, \ldots, n^{\prime} \tag{4.4.1}\\ \bar{f}_{n}^{*} c_{j} & \text { otherwise } .\end{cases}
$$

Proof. If p^{r} does not divide j, then $t^{*} \bar{f}_{n}^{*} c_{j}=0$. Therefore we have a unique element $w_{j} \in H^{2 j-1}(P U(n))$ such that $\delta w_{j}=\bar{f}_{n}^{*} c_{j}$. If $j=l p^{r}$, we have a unique element $w_{j} \in H^{2 j-1}(P U(n))$ such that $\delta w_{j}=\bar{f}_{n}^{*} c_{j}-\frac{1}{n^{\prime l}}\binom{n^{\prime}}{l} \bar{f}_{n}^{*} c_{p^{r}}^{l}$. Using the diagram (4.3), we have $i^{*} w_{j}=u_{j}$. Therefore the lemma follows from the proof of [1, Corollary 4.2]. Q.E.D.

Lemma 4.5. Let $n=n^{\prime} p^{r},\left(p, n^{\prime}\right)=1$ and $r \geq 1$. Then the Bockstein homomorphism β in $H^{*}(P U(n))$ is given as follows:

$$
\beta w_{j}= \begin{cases}\mu_{l} y^{j} & \text { for } j=l p^{r-1} \quad(l=1, \cdots, p-1) \\ 0 & \text { otherwise },\end{cases}
$$

where $\mu_{l}=\frac{1}{l}\binom{p-1}{l-1} \mu$ and μ is the one of (4.1).
Proof. By Lemma 4.4, we have $\delta \beta w_{j}=0$ and so $\beta w_{j} \in p^{*} H^{*}\left(C P^{\infty}\right)$. Therefore $\beta w_{j}=0$ for $j>p^{r}$.

Assume that $p^{r-1}<j<p^{r}$. Now, we use the same notations in the integral cohomology $H^{*}(; Z)$ of $B U(n)$ and $C P^{\infty}$. Set $k=p^{r-1}$ and consider the element $x_{j}=a \bar{f}_{n}^{*} c_{j}-a_{j} y^{j-k} \bar{f}_{n}^{*} c_{k}$ in $H^{2 j}\left(C P^{\infty}, P U(n) ; Z\right)$, where $a=\frac{1}{p}\binom{n}{k} \equiv n^{\prime}$ $\bmod p$ and $a_{j}=\frac{1}{p}\binom{n}{j} . \quad$ Since $t^{*} x_{j}=a\binom{n}{j} y^{j}-a_{j}\binom{n}{k} y^{j}=0$ in $H^{2 j}\left(C P^{\infty} ; Z\right)$, there exists an element $x_{j}^{\prime} \in H^{2 j-1}(P U(n) ; Z)$ such that $\delta x_{j}^{\prime}=x_{j}$. Therefore we have

$$
\begin{aligned}
\delta \rho_{p} x_{j}^{\prime} & =\rho_{p} \delta x_{j}^{\prime}=\rho_{p}\left(a \bar{f}_{n}^{*} c_{j}-a_{j} y^{j-k} \bar{f}_{n}^{*} c_{k}\right) \\
& =a \bar{f}_{n}^{*} c_{j}-a_{j} y^{j-k} \bar{f}_{n}^{*} c_{k}=\delta\left(a w_{j}-a_{j} y^{j-k} w_{k}\right)
\end{aligned}
$$

in $H^{2 j}\left(C P^{\infty}, P U(n)\right)$ by Lemma 4.4, where ρ_{p} is the $\bmod p$ reduction. Since δ
is monomorphic in degree $2 j-1$, we obtain $\rho_{p} x_{j}^{\prime}=a w_{j}-a_{j} y^{j-k} w_{k}$. Using (4.1) and the fact $\beta \rho_{p}=0$, we obtain $0=\beta \rho_{p} x_{j}^{\prime}=a \beta w_{j}-a_{j} \mu y^{j}$. Therefore we have

$$
\beta w_{j}=a^{-1} a_{j} \mu y^{j} .
$$

By the simple calculations it is proved that

$$
\frac{1}{p}\binom{n^{\prime} p^{r}}{j} \equiv \begin{cases}\frac{n^{\prime}}{l}\binom{p-1}{l-1} & \text { if } j=l p^{r-1}, \quad l=1, \ldots, p-1 \\ 0 & \text { otherwise }\end{cases}
$$

$\bmod p$. Therefore we have the lemma.
Q.E.D.

Let $h: U(n) \longrightarrow S O(2 n)$ be the natural inclusion. Then, we have the following homotopy commutative diagram of fibrations:

and the commutative diagram of the exact sequences induced by the map h :

The homomorphism $\hat{h}^{*}: H^{*}(B S O(2 n)) \longrightarrow H^{*}(B U(n))$ is given as follows (e.g. [9]):

$$
\begin{align*}
& \hat{h}^{*} p_{j}=\sum_{k+l=2 j}(-1)^{j+k} c_{k} c_{l} \tag{4.8}\\
& \hat{h}^{*} \chi=c_{n} . \tag{4.9}
\end{align*}
$$

Lemma 4.10. Let $n=n^{\prime} p^{r},\left(p, n^{\prime}\right)=1$ and $r \geq 1$. Then the homomorphism $\widetilde{h}^{*}: H^{*}\left(Z_{2 n, 2 n-1}\right) \longrightarrow H^{*}(P U(n))$ is given by

$$
\begin{equation*}
\tilde{h}^{*} y=y \tag{4.10.1}
\end{equation*}
$$

$$
\tilde{h}^{*} z_{j}= \begin{cases}0 & \text { for } j>n / 2 \tag{4.10.2}\\ -4 w_{n} & \text { for } j=n / 2, n=2 p^{r} \\ (-1)^{j} 2 w_{2 j} & \text { otherwise }\end{cases}
$$

$$
\begin{equation*}
\widetilde{h}^{*} z=w_{n} \tag{4.10.3}
\end{equation*}
$$

Moreover, \tilde{h}^{*} is a monomorphism in degree smaller than $2 p^{r}$.
Proof. Assume that $n^{\prime} \geq 3$. Then $N(n, 2 n-1)=4 p^{r}=4 i_{0} \quad$ and $H^{*}\left(Z_{2 n, 2 n-1}\right)$ is the case (c) of Theorem 1.11. Furthermore, in the equality (2.7.4):

$$
\delta z_{j}=\bar{f}_{n}^{*} U_{j}+\lambda_{j} y^{2 j-2 i_{0}} \bar{f}_{n}^{*} U_{i_{0}} \quad\left(j=1, \ldots, \hat{i}_{0}, \ldots, n-1\right),
$$

we have $\lambda_{j} \equiv 0 \bmod p$ if $j \neq l p^{r}\left(l=2, \ldots, n^{\prime}-1\right)$. On the other hand,

$$
\bar{f}_{n}^{*}\left(c_{2 j-s} c_{s}\right)=\bar{f}_{n}^{*} c_{2 j-s} f_{n}^{*} c_{s}=\binom{n}{s} \delta w_{2 j-s} y^{s}+A_{j, s} \bar{f}_{n}^{*} c_{i_{0}}
$$

where $A_{j, s} \in H^{*}\left(C P^{\infty}\right)$, by (4.4.1). In this equality, $\binom{n}{s} \equiv 0 \bmod p$ if $s \neq l p^{r}$ $(l>0)$ and $\delta w_{2 j-s} y^{s}=\delta\left(w_{2 j-s} y^{s}\right)=0$ if $s=l p^{r}(l>0) . \quad$ By these facts and (4.7-8), we have

$$
\begin{aligned}
\delta \widetilde{h}^{*} z_{j} & =\bar{h}^{*} \delta z_{j}=\bar{f}_{n}^{*} \hat{h}^{*} U_{j}+\lambda_{j} y^{2 j-2 i_{0}} \bar{f}_{n}^{*} \hat{h}^{*} U_{i_{0}} \\
& =\bar{f}_{n}^{*}\left(\sum_{s=0}^{2 j}(-1)^{j+s} c_{2 j-s} c_{s}\right)-\lambda_{j} y^{2 j-2 i_{0}} \bar{f}_{n}^{*}\left(\sum_{t=0}^{2 i_{0}}(-1)^{t} c_{2 i_{0}-t} c_{t}\right) \\
& = \begin{cases}(-1)^{j} 2 \delta w_{2 j}+A \bar{f}_{n}^{*} c_{i_{0}} & \text { if } \quad j \leq n / 2 \\
A^{\prime} \bar{f}_{n}^{*} c_{i_{0}} & \text { if } j>n / 2,\end{cases}
\end{aligned}
$$

where $A, A^{\prime} \in H^{*}\left(C P^{\infty}\right)$. Mapping this equality by t^{*} and using the fact $t^{*} \bar{f}_{n}^{*} c_{i_{0}}=n^{\prime} y^{i_{0}} \neq 0$, we have $A=0$ and $A^{\prime}=0$. Since δ is a monomorphism in odd degree, we have (4.10.2) for $n^{\prime} \geq 3$.

For the case $n^{\prime}=2, N(n, 2 n-1)=4 p^{r}=2 n$ and $H^{*}\left(Z_{2 n, 2 n-1}\right)$ is the case (b) of Theorem 1.11. Therefore

$$
\begin{aligned}
\delta \tilde{h}^{*} z_{j} & =\bar{h}^{*}\left(\bar{f}_{n}^{*} U_{j}-\binom{n}{j} y^{2 j-n} \bar{f}_{n}^{*} U\right) \\
& = \begin{cases}(-1)^{j} 2 \delta w_{2 j}-\binom{n}{j} y^{2 j-n} \delta w_{n} & \text { if } j \leq n / 2 \\
0 & \text { if } j>n / 2\end{cases}
\end{aligned}
$$

by (2.7.3) and (4.7-9), and so we have (4.10.2) for $n^{\prime}=2$, similarly. (4.10.2) for $n^{\prime}=1$ and (4.10.3) are proved in the same way.
Q.E.D.

There exists a fibration $V_{2 n-k+2,2} \longrightarrow V_{2 n, k} \xrightarrow{\nu_{k}} V_{2 n, k-2}$, where ν_{k} is the natural projection. This fibration induces fibrations $V_{2 n-k+2,2} \longrightarrow Z_{2 n, k} \xrightarrow{\nu_{k}}$ $Z_{2 n, k-2}$ and $V_{2 n-k+2,2} \longrightarrow X_{2 n, k} \xrightarrow{\nu_{k}} X_{2 n, k-2}$. If $k=2 k^{\prime}-1, \nu_{k}^{*}: H^{*}\left(V_{2 n, k-2}\right)$ $=\wedge\left(v_{n-k^{\prime}+2}, \ldots, v_{n-1}, v\right) \longrightarrow H^{*}\left(V_{2 n, k}\right)=\wedge\left(v_{n-k^{\prime}+1}, \ldots, v_{n-1}, v\right)$ is given as follows ([2, §10]):

$$
\nu_{k}^{*} v_{j}=v_{j}, \quad \nu_{k}^{*} v=v .
$$

And so we have the following lemma.
Lemma 4.11. Let $k=2 k^{\prime}-1$. If $N(n, k)=4 i_{0}$ exists, then assume that $i_{0} \geq n / 2$ or $i_{0} \neq n-k^{\prime}+1$. Then the homomorphisms $\nu_{k}^{*}: H^{*}\left(Z_{2 n, k-2}\right) \longrightarrow$ $H^{*}\left(Z_{2 n, k}\right), H^{*}\left(X_{2 n, k-2}\right) \longrightarrow H^{*}\left(X_{2 n, k}\right)$ are given as follows:

$$
\begin{array}{ll}
\nu_{k}^{*} z_{j}=z_{j} & \text { for } \quad n-k^{\prime}+2 \leq j \leq n-1, \\
\nu_{k}^{*} z=z, & \nu_{k}^{*} x=x, \quad \nu_{k}^{*} y=y
\end{array}
$$

Moreover ν_{k}^{*} are monomorphic.
By the induction on k, we determine the Bockstein homomorphism β in $H^{*}\left(Z_{2 n, k}\right)$ and $H^{*}\left(X_{2 n, k}\right)$ when n, k satisfy ($*$) of below.

Theorem 4.12. Let n and k be positive integers with $k<2 n$, satisfying

$$
\begin{equation*}
n=n^{\prime} p^{r}, r \geq 1,\left(p, n^{\prime}\right)=1 ; n-[(k+1) / 2]+1 \leq p^{r} \text { if } n^{\prime} \geq 3 \tag{*}
\end{equation*}
$$

Then the Bockstein homomorphisms in $H^{*}\left(X_{2 n, k}\right)$ and $H^{*}\left(Z_{2 n, k}\right)$ are given by

$$
\begin{gather*}
\beta z_{j}= \begin{cases}\mu_{l} y^{2 j} & \text { for } j<n / 2, j=l p^{r-1}(l=1, \ldots, p-1) \\
0 & \text { otherwise }\end{cases} \tag{4.12.1}\\
\beta z=0, \quad \beta z^{\prime}=0, \quad \beta x=y, \quad \beta y=0, \tag{4.12.2}
\end{gather*}
$$

where μ_{l} is the same as in Lemma 4.5.
Proof. The last two relations of (4.12.2) follow from (1.10). It follows easily that $\beta z^{\prime}=0$ by the dimensional reason. According to Theorem 2.7, we have $\delta \beta z_{j}=0$ and $\delta \beta z=0$ and so βz_{j} and βz are the elements of $p^{*} H^{*}\left(C P^{\infty}\right)$. Therefore $\beta z_{j}=0$ for $j \geq p^{r}$ and $\beta z=0$, since $y^{2 p^{r}}=0$ in $H^{*}\left(Z_{2 n, k}\right)$ under the assumption (*) (cf. the proof of Theorems 3.10 and 3.11).

By Lemmas 2.1 and 4.11, it is sufficient to prove (4.12.1) in $H^{*}\left(Z_{2 n, 2 n-1}\right)$ for $j<p^{r}$. By Lemmas 4.5 and 4.10, we have

$$
\begin{aligned}
\tilde{h}^{*} \beta z_{j} & =(-1)^{j} 2 \beta w_{2 j}=\left\{\begin{array}{rr}
-2 \mu_{2} y^{2 p^{r-1}} & \text { for } \\
0 & \text { for } j<p^{r-1} \\
0 & j<p^{r-1}
\end{array}\right. \\
& = \begin{cases}-\mathbf{2} \mu_{2} \tilde{h}^{*} y^{2 p^{r-1}} & \text { for } j=p^{r-1} \\
0 & \text { for } j<p^{r-1} .\end{cases}
\end{aligned}
$$

Since $-2 \mu_{2}=-(p-1) \mu \equiv \mu \bmod p, \tilde{h}^{*} y=y$ and \tilde{h}^{*} is monomorphic in degree smaller than $2 p^{r}$, it follows that

$$
\beta z_{j}=\left\{\begin{array}{lll}
\mu y^{2 p^{r-1}} & \text { for } & j=p^{r-1} \tag{4.13}\\
0 & \text { for } & j<p^{r-1}
\end{array}\right.
$$

Replace $c_{j} \epsilon H^{*}(B U(n) ; Z)$ and $y \in H^{*}\left(C P^{\infty} ; Z\right)$ in the proof of Lemma 4.5 with $U_{j} \in H^{*}(B S O(2 n), * ; Z)$ and $y^{2} \in H^{*}\left(C P^{\infty} ; Z\right)$, then we obtain (4.12.1) for $j<p^{r}$ by the entirely same technique as the proof of Lemma 4.5, using (4.13) and (2.7.2-4) in place of (4.1) and (4.4.1).
Q.E.D.

Remark. If $n=p^{r}$ in Theorem 4.12, then (4.12.1) is shown by Lemmas 4.5 and 4.10 only.

§ 5. The relations between $\boldsymbol{X}_{2 n, k}$ and $\boldsymbol{X}_{2 n+2 m, k}$ and between $\boldsymbol{Z}_{2 n, k}$ and $\boldsymbol{Z}_{2 n+2 m, k}$

We consider the following homotopy commutative diagram:

Here d is the diagonal map, μ and μ^{\prime} are the multiplications, f_{n} and f_{m} are classifying maps of $n \xi$ and $m \xi$, respectively. Then ($2 n+2 m$)-plane bundle $(n+m) p^{*} \xi$ has a map $\mu\left(f_{n} \times f_{m}\right) d p$ as a classifying map and $\mu\left(f_{n} \times f_{m}\right) d p$ is lifted to $\mu^{\prime}\left(\tilde{f}_{n} \times f_{m}\right) d^{\prime}: Z_{2 n, k} \longrightarrow B S O(2 n+2 m-k)$, where $d^{\prime}=(1 \times p) d: Z_{2 n, k}$ $\longrightarrow Z_{2 n, k} \times C P^{\infty}$. Therefore the associated $V_{2 n+2 m, k}$-bundle of $(n+m) p^{*} \xi$ over $Z_{2 n, k}$ has a cross section and so we obtain a map $\rho: Z_{2 n, k} \longrightarrow Z_{2 n+2 m, k}$ such that $\rho^{*} p^{\prime *} \xi=p^{*} \xi$. Similarly, we have a map $\rho: X_{2 n, k} \longrightarrow X_{2 n+2 m, k}$.

In this section, we use the same notations for the generators of $H^{*}\left(Z_{2 n, k}\right)$ (resp. $\left.H^{*}\left(X_{2 n, k}\right)\right)$ and $H^{*}\left(Z_{2 n+2 m, k}\right)\left(r e s p . H^{*}\left(X_{2 n+2 m, k}\right)\right)$.

Theorem 5.2. Let $0<k<2 n$ and set $N=N(n+m, k)=4 i_{0}, N^{\prime}=N(n, k)$ $=4 i_{0}^{\prime}$, and $K(j)=\{s \mid j-n+1 \leq s \leq m\}, K^{\prime}(j)=\left\{s \mid j-n+1 \leq s \leq m, s \neq j-i_{0}^{\prime}\right\}$. Then the homomorphisms $\rho^{*}: H^{*}\left(Z_{2 n+2 m, k}\right) \longrightarrow H^{*}\left(Z_{2 n, k}\right)$ and $\rho^{*}: H^{*}\left(X_{2 n+2 m, k}\right)$ $\longrightarrow H^{*}\left(X_{2 n, k}\right)$ are given as follows:

$$
\begin{equation*}
\rho^{*} x=x . \quad \rho^{*} y=y \tag{5.2.1}
\end{equation*}
$$

(a) If N exists and $2 n+2 m>N=4 i_{0}$, then

$$
\begin{equation*}
\rho^{*} z_{j}=\sum_{s \in K^{\prime}(j)}\binom{m}{s} y^{2 s} z_{j-s}+\lambda_{j} \sum_{t \in K^{\prime}\left(i i_{0}\right)}\binom{m}{t} y^{2 j-2 i_{0}+2 t} z_{i_{0}-t} \tag{5.2.2}
\end{equation*}
$$

when N^{\prime} exists and $2 n>N^{\prime}$,

$$
\begin{align*}
& \rho^{*} z_{j}=\sum_{s \in K^{(j)}}\binom{m}{s} y^{2 s} z_{j-s}+\lambda_{j} \sum_{t \in K\left(i_{0}\right)}\binom{m}{t} y^{2 j-2 i_{0}+2 t} z_{i_{0}-t} \quad \text { otherwise, } \tag{5.2.3}\\
& \rho^{*} z=\left\{\begin{array}{l}
y^{m} z+\lambda_{0} \sum_{t \in K^{\prime}\left(i_{0}\right)}\binom{m}{t} y^{n+m-2 i_{0}+2 t} z_{i_{0}-t} \text { when } N^{\prime} \text { exists and } 2 n>N^{\prime} \\
\lambda_{0} \sum_{t \in K_{\left(i i_{0}\right)}}\binom{m}{t} y^{n+m-2 i_{0}+2 t} z_{i_{0}-t} \quad \text { otherwise, }
\end{array}\right. \tag{5.2.4}
\end{align*}
$$

where λ_{j} satisfies the formula $\binom{n+m}{j}+\lambda_{j}\binom{n+m}{i_{0}} \equiv 0 \bmod p$.
(b) If N exists and $2 n+2 m \leq N$ or N does not exist, then

$$
\begin{equation*}
\rho^{*} z_{j}=\sum_{s \in K^{\prime}(j)}\binom{m}{s} y^{2 s} z_{j-s}-\binom{n+m}{j} y^{2 j-n} z \quad \text { when } N^{\prime} \text { exists and } 2 n>N^{\prime} \tag{5.2.5}
\end{equation*}
$$

$$
\begin{equation*}
\rho^{*} z_{j}=\sum_{s \in K_{(j)}}\binom{m}{s} y^{2 s} z_{j-s} \quad \text { otherwise } \tag{5.2.6}
\end{equation*}
$$

Proof. (5.2.1) follows from $p^{\prime} \rho \simeq p$. From the diagram (5.1) and the mapping cylinder considerations, we have the following commutative diagram:

It is well-known that

$$
\mu^{*} p_{j}=\sum_{s+t=j} p_{s}^{\prime} \times p_{t}^{\prime \prime}, \quad \mu^{*} x=x^{\prime} \times x^{\prime \prime}
$$

where $p_{j}, p_{j}^{\prime}, p_{j}^{\prime \prime}$ and $\chi, x^{\prime}, \chi^{\prime \prime}$ are the j-th Pontrjagin classes and the Euler classes of the universal oriented $(2 n+2 m)$-, $2 n-, 2 m$-plane bundles. Therefore we obtain

$$
\begin{gather*}
\bar{\mu}^{*} U_{j}=\sum_{s \in K^{(j)}} U_{j-s}^{\prime} \times p_{s}^{\prime \prime}+U^{\prime 2} \times p_{j-n}^{\prime \prime}=\sum_{s \in K(j)} U_{j-s}^{\prime} \times p_{s}+U^{\prime} x^{\prime} \times p_{j-n}^{\prime \prime} \tag{5.4}\\
\bar{\mu}^{*} U=U^{\prime} \times x^{\prime \prime} \tag{5.5}
\end{gather*}
$$

where U, U_{j}, U^{\prime} and U_{j}^{\prime} are the elements determined by (2.2-3).
Consider the case (a). Using (2.7.4) for $n+m$ and (5.3-5), we have

$$
\begin{aligned}
\delta \rho^{*} z_{j}= & \bar{\rho}^{*} \delta z_{j}=\bar{\rho}^{*}\left(\bar{f}_{n+m}^{*} U_{j}+\lambda_{j} y^{2 j-2 i_{0}} \bar{f}_{n+m}^{*} U_{i_{0}}\right) \\
= & \bar{d}^{*}\left(\bar{f}_{n} \times f_{m}\right)^{*} \bar{\mu}^{*} U_{j}+\lambda_{j} y^{2 j-2 i_{0}} \bar{d}^{*}\left(\bar{f}_{n} \times f_{m}\right)^{*} \bar{\mu}^{*} U_{i_{0}} \\
= & \sum_{s \in K(j)} \bar{f}_{n}^{*} U_{j-s}^{\prime} p_{s}(m \xi)+\bar{f}_{n}^{*} U^{\prime} y^{n} p_{j-n}(m \xi) \\
& +\lambda_{j} y^{2 j-2 i_{0}}\left\{\begin{array}{l}
t \in K\left(i_{0}\right) \\
\bar{f}_{n}^{*}
\end{array} U_{i_{0}-t}^{\prime} p_{t}(m \xi)+\bar{f}_{n}^{*} U^{\prime} y^{n} p_{i_{0}-n}(m \xi)\right\} .
\end{aligned}
$$

Assume that N^{\prime} exists and $2 n>N^{\prime}=4 i_{0}^{\prime}$. Then, using the fact $y^{n} \delta z$ $=\delta\left(y^{n} z\right)=0$ and (2.7.4), we have

$$
\begin{aligned}
\delta \rho^{*} z_{j}= & \sum_{s \in K^{\prime}(j)} p_{s}(m \xi) \delta z_{j-s}-\sum_{s \in K^{\prime}(j)} \lambda_{j-s}^{\prime} y^{2 j-2 s-2 i_{0}^{\prime}} p_{s}(m \xi) \bar{f}_{n}^{*} U_{i_{0}^{\prime}}^{\prime}+p_{j-i_{0}^{\prime}}(m \xi) \bar{f}_{n}^{*} U_{i_{0}^{\prime}}^{\prime} \\
& +y^{n} p_{j-n}(m \xi) \delta z-\lambda_{0}^{\prime} y^{2 n-2 i_{0}^{\prime}} p_{j-n}(m \xi) \bar{f}_{n}^{*} U_{i_{0}^{\prime}}^{\prime} \\
& +\lambda_{j} y^{2 j-2 i_{0}}\left\{\sum_{t \in K^{\prime}\left(i_{0}\right)} p_{t}(m \xi) \delta z_{i_{0}-t}-\sum_{t \in K^{\prime}\left(i_{0}\right)} \lambda_{i_{0}-t}^{\prime} y^{2 i_{0}-2 t-2 i_{0}^{\prime}} p_{t}(m \xi) \bar{f}_{n}^{*} U_{i_{0}^{\prime}}^{\prime}\right. \\
& \left.+p_{i_{0}-i_{0}^{\prime}}(m \xi) \bar{f}_{n}^{*} U_{i_{0}^{\prime}}^{\prime}+y^{n} p_{i_{0}-n}(m \xi) \delta z-\lambda_{0}^{\prime} y^{2 n-2 i_{0}^{\prime}} p_{i_{0}-n}(m \xi) \bar{f}_{n}^{*} U_{i_{0}^{\prime}}^{\prime}\right\} \\
= & \delta\left\{\sum_{s \in K_{K^{\prime}(j)}} p_{s}\left(m p^{* \xi}\right) z_{j-s}+\lambda_{j} y^{2 j-2 i_{0}} \sum_{t \in K^{\prime}\left(i_{0}\right)} p_{t}\left(m p^{* \xi}\right) z_{i_{0}-t}\right\}+A \bar{f}_{n}^{*} U_{i_{0}^{\prime}}^{\prime},
\end{aligned}
$$

for some $A \in H^{*}\left(C P^{\infty}\right)$. In the same way as the proof of (3.11.1), we have $A=0$. Since δ is monomorphic in degree $4 j-1$, we have

$$
\rho^{*} z_{j}=\sum_{s \in K^{\prime}(j)}\binom{m}{s} y^{2 s} z_{j-s}+\lambda_{j} \sum_{t \in K^{\prime}\left(i i_{0}\right)}\binom{m}{t} y^{2 j+2 t-2 i_{0} z_{i_{0}-t}} .
$$

Assume that N^{\prime} exists and $2 n \leq N^{\prime}$ or N^{\prime} does not exist. Then we have

$$
\begin{aligned}
\delta \rho^{*} z_{j}= & \sum_{s \in K(j)} p_{s}(m \xi) \delta z_{j-s}+\sum_{s \in K(j)}\binom{n}{j-s} y^{2 j-2 s-n} p_{s}(m \xi) \bar{f}_{n}^{*} U^{\prime} \\
& +y^{n} p_{j-n}(m \xi) \bar{f}_{n}^{*} U^{\prime}+\lambda_{j} y^{2 j-2 i_{0}}\left\{\sum_{t \in K\left(i_{0}\right)} p_{t}(m \xi) \delta z_{i_{0}-t}\right. \\
& \left.+\sum_{t \in K\left(i_{0}\right)}\binom{n}{i_{0}-t} y^{2 i_{0}-2 t-n} p_{t}(m \xi) \bar{f}_{n}^{*} U^{\prime}+y^{n} p_{i_{0}-n}(m \xi) \bar{f}_{n}^{*} U^{\prime}\right\} \\
= & \delta\left\{\sum_{s \in K(j)} p_{s}\left(m p^{* \xi)}\right) z_{j-s}+\lambda_{j} y^{2 j-2 i_{0}} \sum_{t \in K\left(i_{0}\right)} p_{t}\left(m p^{* \xi}\right) z_{i_{0}-t}\right\}+A^{\prime} \bar{f}_{n}^{*} U^{\prime},
\end{aligned}
$$

for some $A^{\prime} \in H^{*}\left(C P^{\infty}\right)$ by (2.7.2-3). In the similar way to the above, we obtain

$$
\rho^{*} z_{j}=\sum_{s \in K(j)}\binom{m}{s} y^{2 s} z_{j-s}+\lambda_{j} \sum_{t \in K\left(i_{0}\right)}\binom{m}{t} y^{2 j-2 i_{0}+2 t} z_{i_{0}-t},
$$

and (5.2.3) follows.
In the similar way to the proof of (5.2.2-3), we have (5.2.4-6). Q.E.D.

Remark. In §§3-4, we determined explicitly the reduced power operations \mathscr{D}^{i} and the Bockstein homomorphism β under the assumption (*) of Theorem 4.12. Using the results of this section, we can expect to study \mathscr{D}^{i} and β for other n and k.

§ 6. Applications to the immersion problem for the lens spaces

We denote $L^{n}(p)$ the $\bmod p$ lens space of dimension $2 n+1$, and η_{n} the restriction of η over $L^{\infty}(p)$ to $L^{n}(p)$. By $L^{n}(p) \subseteq R^{k}$, we mean that $L^{n}(p)$ can be immersed in the real k-space R^{k}. The next theorem for immersion was proved in [7, Theorem 1].

Theorem 6.1 (Kobayashi). Let $n=(p-1) s+r(0 \leq r<p-1)$ and k be a positive integer with $k \leq 2 n+1$ and let a be a positive integer such that $2 a p^{s+\varepsilon}>4 n+3$, where $\varepsilon=0$ or 1 according as $r \leq 1$ or >1. The necessary and sufficient condition for $L^{n}(p) \subseteq R^{2 n+1+k}$ is that the bundle $\left\{a p^{s+\varepsilon}-(n+1)\right\} \eta_{n}$ has $2 a p^{s+\varepsilon}-(2 n+k+2)$ independent cross sections.

One of our main theorems is the following
Theorem 6.2. Let r and n^{\prime} be positive integers such that $r \geq 2$ and (p, n^{\prime}) $=1$ and let m and t be non-negative integers satisfying

$$
\begin{equation*}
0 \leq t \leq m, \quad m-t+(p-1) / 2<p^{r-1}, \quad t<p^{r-1}, \quad\binom{m}{t} \neq 0 \bmod p . \tag{*}
\end{equation*}
$$

Then, the bundle $\left(n^{\prime} p^{r}+m\right) \eta_{n}$ over $L^{n}(p)$ does not have k independent cross sections for

$$
\begin{align*}
k=2 n^{\prime} p^{r}-2 l p^{r-1}+2 t+1, \quad 2 l p^{r-1}+2 m-2 t+p-1 \leq n<2 p^{r} & \tag{**}\\
& l=1, \ldots, p-1 .
\end{align*}
$$

Before proving Theorem 6.2, we consider the applications.
Theorem 6.3. Let $r(\geq 2), m$ and t be non-negative integers satisfying (*) of Theorem 6.2, then

$$
\begin{array}{lll}
L^{p^{r-m-1}}(p) \nsubseteq R^{3 p^{r}-p^{r-1}-2 t-2} & \text { if } \quad m \leq\left[\left(p^{r-1}-p+2 t\right) / 3\right] \\
L^{2 p^{r-m-1}}(p) \nsubseteq R^{6 p^{r-2 p^{r-1}-2 t-2}} & \text { if } \quad m \leq\left[\left(2 p^{r-1}-p+2 t\right) / 3\right] \tag{6.3.2}
\end{array}
$$

Proof. Assume that $m \leq\left[\left(p^{r-1}-p+2 t\right) / 3\right]$ and $L^{p^{r-m-1}}(p) \subseteq R^{3 p^{r-p^{r-1}-2 t-2}}$. By Theorem 6.1, the bundle ($\left.n^{\prime} p^{r}+m\right) \eta_{p^{r-m-1}}$ has $2 n^{\prime} p^{r}-(p-1) p^{r-1}+2 t+1$ independent cross sections, where $n^{\prime}=a p^{s+\varepsilon-r}-1$ for some integer a. By the assumption $m \leq\left[\left(p^{r-1}-p+2 t\right) / 3\right]$, we have $(p-1) p^{r-1}+2 m-2 t+(p-1)$ $\leq p^{r}-m-1$. This contradicts to Theorem 6.2 and so (6.3.1) follows. The proof of (6.3.2) is similar.
Q.E.D.

Now, we use the following results to prove Theorem 6.2.
Proposition 6.4. Let r, n^{\prime} and $k=2 k^{\prime}-1$ be positive integers with $r \geq 2$, (p, n^{\prime}) $=1$ and m be a non-negative integer such that $m<n^{\prime} p^{r}+m-k^{\prime}+1<p^{r}$. Then \mathscr{D}^{1} and β in $H^{*}\left(X_{2 n^{\prime} p^{r}+2 m, k}\right)$ are given by

$$
\begin{align*}
& \mathscr{D}^{1} z_{j}=(-1)^{q}(2 j-1) z_{j+q}+\sum_{s=1}^{q}(-1)^{q+s} 2 m y^{2 s} z_{j+q-s} \tag{6.4.1}\\
& \quad \text { for } \quad n^{\prime} p^{r}+m-k^{\prime}+1 \leq j<p^{r}-q,
\end{align*}
$$

$$
\begin{equation*}
\beta z_{j}=\sum_{l=1}^{p-1}\binom{m}{j-l p^{r-1}} \mu_{l} y^{2 j} \quad \text { for } \quad n^{\prime} p^{r}+m-k^{\prime}+1 \leq j<p^{r}, \tag{6.4.2}
\end{equation*}
$$

where $\mu_{l}=\frac{1}{l}\binom{p-1}{l-1} \mu \neq 0 \bmod p$ is the same as in Lemma 4.5 and $2 q=p-1$.
Proof. The homomorphism $\rho^{*}: H^{*}\left(X_{2 n^{\prime} p^{r}+2 m, k}\right) \longrightarrow H^{*}\left(X_{2 n^{\prime} p^{r}, k}\right)$ is given by (5.2.2) if $n^{\prime} \geq 3$, since $N\left(n^{\prime} p^{r}+m, k\right)=N\left(n^{\prime} p^{r}, k\right)=4 p^{r}<2 n^{\prime} p^{r}$; and by (5.2.3) or (5.2.6) if $n^{\prime} \leq 2$, since $N\left(2 p^{r}, k\right)=4 p^{r}$ and $N\left(p^{r}, k\right)$ does not exist. Therefore

$$
\rho^{*} z_{j}=\sum_{s=0}^{m}\binom{m}{s} y^{2 s} z_{j-s} \quad \text { for } \quad n^{\prime} p^{r}+m-k^{\prime}+1 \leq j<p^{r},
$$

since $\binom{n^{\prime} p^{r}+m}{j} \equiv 0$ and so $\lambda_{j} \equiv 0 \bmod p$ for $m<j<p^{r}$.
Now $\mathscr{P}^{1} z_{j}$ has the form $\mathscr{D}^{1} z_{j}=\sum_{t=0}^{q} a_{t} y^{2 t} z_{j+q-t}\left(a_{0}=(-1)^{q}(2 j-1)\right)$ by (3.12.1). Therefore

$$
\rho^{*} \mathcal{D}^{1} z_{j}=\sum_{t=0}^{q} \sum_{s=0}^{m} a_{t}\binom{m}{s} y^{2 t+2 s} z_{j+q-t-s} \quad \text { for } \quad j+q<p^{r} .
$$

On the other hand

$$
\mathscr{D}^{1} \rho^{*} z_{j}=\sum_{s=0}^{m}\binom{m}{s}\left\{2 s y^{2 s+2 q} z_{j-s}+(-1)^{q}(2 j-2 s-1) y^{2 s} z_{j-s+q}\right\},
$$

by (3.10.1) or (3.11.1). Comparing the coefficients of these equations, we have

$$
a_{0}\binom{m}{s}+\cdots+a_{s}\binom{m}{0} \equiv(-1)^{q}(2 j-2 s-1)\binom{m}{s} \bmod p \quad \text { for } \quad s=0, \ldots, q .
$$

Therefore we have $a_{s}=(-1)^{q+s} 2 m$ for $s=1, \ldots, q$, by the induction on s and we have (6.4.1).

If $j<p^{r}$, then

$$
\beta \rho^{*} z_{j}=\beta\left(\sum_{s=0}^{m}\binom{m}{s} y^{2 s} z_{j-s}\right)=\sum_{s=0}^{m}\binom{m}{s} y^{2 s} \beta z_{j-s}=\sum_{l=1}^{p-1}\binom{m}{j-l p^{r-1}} \mu_{l} y^{2 j},
$$

by (4.12.1). Therefore (6.4.2) follows.
Q.E.D.

Lemma 6.5. Suppose there is a map $f: L^{n}(p) \longrightarrow X_{2 m, k}$ such that the following diagram is commutative:

If $2 j \leq n$ and $\beta z_{j}=\mu y^{2 j}$, then $f^{*} z_{j}=\mu x y^{2 j-1}$ in $H^{4 j-1}\left(L^{n}(p)\right)$.
Proof. By the commutativity of the diagram, we have $f^{*} x=x$ and $f^{*} y=y$. Assume $f^{*} z_{j}=\mu^{\prime} x y^{2 j-1}$, then $\mu^{\prime} y^{2 j}=\beta f^{*} z_{j}=f^{*} \beta z_{j}=\mu y^{2 j}$.
Q.E.D.

Corollary 6.6. Set mof Lemma 6.5 be $n^{\prime} p^{r}+m$. Under the assumptions of Proposition 6.4, we have

$$
f^{*} z_{j}=\sum_{l=1}^{p-1}\binom{m}{j-l p^{r-1}} \mu_{l} x y^{2 j-1} \quad \text { for } \quad n^{\prime} p^{r}+m-k^{\prime}+1 \leq j<p^{r} .
$$

Proof of Theorem 6.2. Assume that $\left(n^{\prime} p^{r}+m\right) \eta_{n}$ over $L^{n}(p)$ has k independent cross sections, where $k=2 n^{\prime} p^{r}-2 l p^{r-1}+2 t+1$. Then its associated $V_{2 n^{\prime} p^{r}+2 m, k}$-bundle has a cross section and so there exists a map $f: L^{n}(p) \longrightarrow$ $X_{2 n^{\prime} p^{r}+2 m, k}$ such that the following diagram is commutative:

Let $j=l p^{r-1}+m-t$ and $2 q=p-1$. By (6.4.1), we have

$$
\begin{equation*}
\mathscr{P}^{1} z_{j}=(-1)^{q}(2 j-1) z_{j+q}+\sum_{s=1}^{q}(-1)^{q+s} 2 m y^{2 s} z_{j+q-s} \tag{6.7}
\end{equation*}
$$

Since $2(j+q) \leq n$ and $n^{\prime} p^{r}+m-k^{\prime}+1 \leq j+q<p^{r}$ by the assumption (**), $f^{*} z_{j+q-s}(0 \leq s \leq q)$ is given by Corollary 6.6, and its coefficient is $\sum_{l^{\prime}=1}^{p-1}\binom{m}{\left(l-l^{\prime}\right) p^{r-1}+q-s+m-t} \mu_{l^{\prime}}$. In this summation, the binomial coefficients are zero if $l^{\prime} \neq l$ by the condition (*). Therefore we have

$$
\begin{equation*}
f^{*} z_{j+q-s}=\binom{m}{t-q+s} \mu_{l} x y^{2 j+2 q-2 s-1} \quad \text { for } \quad 0 \leq s \leq q \tag{6.8}
\end{equation*}
$$

If $0 \leq t \leq q-1$, we have

$$
\begin{aligned}
f^{* \mathscr{D}^{1} z_{j}} & =2 m\left\{\sum_{s=q-t}^{q}(-1)^{q+s}\binom{m}{t-q+s} \mu_{l}\right\} x y^{2 j+2 q-1} \\
& =2 m\binom{m-1}{t} \mu_{l} x y^{2 j+2 q-1}=(2 m-2 t)\binom{m}{t} \mu_{l} x y^{2 j+2 q-1},
\end{aligned}
$$

by (6.7-8) and the simple calculations of the binomial coefficients. On the other hand, we obtain

$$
\begin{aligned}
\mathscr{D}^{1} f^{*} z_{j} & =\binom{m}{t} \mu_{l} \mathcal{D}^{1}\left(x y^{2 j-1}\right)=\binom{m}{t}(2 j-1) \mu_{l} x y^{2 j+2 q-1} \\
& =(2 m-2 t-1)\binom{m}{t} \mu_{l} x y^{2 j+2 q-1},
\end{aligned}
$$

by (6.8). Since $\binom{m}{t} \neq 0 \bmod p$ and $\mu_{l} \equiv 0 \bmod p$, we have $f^{*} \mathscr{D}^{1} z_{j} \neq \mathcal{D}^{1} f^{*} z_{j}$, which is a contradiction.

If $t=q$, we obtain similarly

$$
\begin{aligned}
f^{* D^{1} z_{j}} & =\left\{(-1)^{q}(2 j-1)+\sum_{s=1}^{q}(-1)^{q+s} 2 m\binom{m}{s}\right\} \mu_{l} x y^{2 j+2 q-1} \\
& =(2 m-1)\binom{m}{q} \mu_{l} x y^{2 j+2 q-1}, \\
\mathscr{D}^{1} f^{*} z_{j} & =2 m\binom{m}{q} \mu_{l} x y^{2 j+2 q-1},
\end{aligned}
$$

which is a contradiction.
Finally, if $t>q$, we have similarly a contradiction:

$$
\begin{aligned}
& f^{*} \mathscr{D}^{1} z_{j}=(2 m-2 t)\binom{m}{t} \mu_{l} x y^{2 j+2 q-1}, \\
& \mathscr{D}^{1} f^{*} z_{j}=(2 m-2 t-1)\binom{m}{t} \mu_{l} x y^{2 j+2 q-1} .
\end{aligned}
$$

Remark 6.9. Comparing Theorem 6.3 with D. Sjerve's Theorem for immersions [14, Theorem 4.7 (i)], we have, e.g., the following results:
$i f$

$$
L^{n}(p) \nsubseteq R^{3 n-p+1}, \quad L^{n}(p) \subseteq R^{3 n-p+3}
$$

$$
\begin{aligned}
& n=n^{\prime} p^{r}-\left[\left(n^{\prime} p^{r-1}-p+2 t\right) / 3\right]-1 \\
& =n^{\prime} p^{r}-\left(n^{\prime} p^{r-1}-p+2 t\right) / 3-1, n^{\prime}=1 \text { or } 2 ; \\
& \quad L^{n}(p) \nsubseteq R^{3 n-p}, \quad L^{n}(p) \subseteq R^{3 n-p+4}
\end{aligned}
$$

$i f$

$$
\begin{aligned}
n & =n^{\prime} p^{r}-\left[\left(n^{\prime} p^{r-1}-p+2 t\right) / 3\right]-1 \\
& =n^{\prime} p^{r}-\left(n^{\prime} p^{r-1}-p+2 t-1\right) / 3-1, n^{\prime}=1 \text { or } 2
\end{aligned}
$$

References

[1] P.F. Baum and W. Browder, The cohomology of quotients of classical groups, Topology 3 (1965), 305-336.
[2] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogénes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207.
[3] , Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math., 76 (1954), 273-342.
[4] and J.-P. Serre, Groupes de Lie et puissances reduites de Steenrod, Amer. J. Math., 75 (1953), 409-448.
[5] S. Gitler and D. Handel, The projective Stiefel manifolds-I, Topology 7 (1968), 39-46.
[6] S. Gitler, The projective Stiefel manifolds-II, Applications, Topology 1 (1968), 47-53.
[7] T. Kobayashi, Non-immersion theorems for lens spaces, J. Math. Kyoto Univ., 6 (1966), 91-108.
[8] W.S. Massey and F. P. Peterson, The cohomology structure of certain fiber spaces I, Topology 4 (1965), 47-65.
[9] J. Milnor, Lectures on characteristic classes, (mimeographed notes), Princeton Univ., 1957.
[10] S. Mukohda and S. Sawaki, On the $b_{p}^{k, j}$, Coefficient of a certain symmetric function, J. Fac. Sci. Niigata Univ. Ser. 1.1 (1953), 1-6.
[11] T. Petrie, The K-theory of the projective unitary groups, Bull. Amer. Math. Soc., 72 (1966), 875-878.
[12] ——, The K-theory of the projective unitary groups, Topology 6 (1967), 103-115.
[13] J.-P. Serre, Homologie singuliere des espaces fibrés, Ann. of Math., 54 (1951), 425-505.
[14] D. Sjerve, Vector bundles over orbit manifolds, Trans. Amer. Math. Soc., 138 (1969), 97-106.

> Department of Mathematics, Faculty of Science, Hiroshima University

