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§ 0. Introduction

Throughout this paper, p will denote an odd prime integer.

Let S%"*! be the unit (2n +1)-sphere in the complex (n+1)-space. Then
the free actions of S'= {e’?|0 <0< 2r} and Z,= {e’’|60=27h/p, h=0, ..., p—1}
on S2"*! gre defined by e*(zo, ---, z,)=(e"z, .-, €"’z,).

Let V5, . be the Stiefel manifold of orthonormal k-frames in the real
2n-space R?". We define free actions of S' and Z, on ¥, such that e”
operates on each vector of k-frame as above. We consider the quotient
manifolds

ZZn,k= V2n,k/51, in,k= VZn,k/Zp-

Then Z,,=CP"!, the real 2n—2 dimensional complex projective space, and
Xs4,1=L"""(p), the 2n—1 dimensional mod p lens space.

Let & and 7 be the canonical complex line bundles over CP~ and L*(p),
respectively. Then the above manifolds Z.,, and X,,, are homotopy
equivalent to the total spaces of the associated V3, :-bundles of né and n7,
respectively, as is shown in Proposition 1.3. Consequently, it is expected
that the cohomology structures of Z, . and X, give us the informations
about the structures of n¢ and ny and so the immersion problem for lens
spaces L"(p).

Recently, S. Gitler and D. Handel [5] have considered the projective
Stiefel manifolds, which are the above manifolds X, . for p=2 (in this case,
n need not be even), and determined their mod 2 cohomology algebras and the
actions of the Steenrod squares up to a small indeterminancy. Also,
P. F. Baum and W. Browder [ 1] have determined completely the actions of the
Steenrod squares when n is a power of 2. Moreover S. Gitler [6] has applied
these results to the immersion problem for the real projective spaces.

The purpose of this paper is to study the mod p cohomology structures
of Zs,,: and X3, . and to apply these results to the problems of independent
cross sections of ny and immersions of L"(p).

In §1, we prove Theorem 1.11, which determines the mod p cohomology
algebras H*(Z,, ;) and H*(X;,,:). Furthermore the generators are given in
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Theorem 2.7, using the universal Pontrjagin classes p; and Euler class x,
which is proved by the analogous method in [5]. The mod p reduced power
operations 9 in these algebras are studied in §38, using Theorem 2.7 and the
well-known results on 9’p; and P*x. Also we study the Bockstein homomor-
phism @ in §4, using the results of [1, Maix THeEorem I (7.12)]. 9 and
are determined explicitly in Theorems 3.10-11 and 4.12 for n=n'p" (r>1)
and some k.

For the applications, we study the relations between Z,, . and Zs,,2m, : in
§5 and prove Proposition 6.4. Finally, we apply Proposition 6.4 to Theorem
6.2 which is a non-existance theorem of % independent cross sections of the
bundle m7z over L"(p). By Theorem 6.2 and T. Kobayashi’s Theorem [7,
Theorem 17, we obtain Theorem 6.3, which is a non-immersion theorem for
lens spaces L*(p).

The author thanks Professors M. Sugawara and T. Kobayashi for their
kind advice.

§ 1. The mod p cohomology of X, ; and Z,,

In this paper, the cohomology H*( ) will be understood to have Z, for
coefficients, unless otherwise stated.

Let V., be the Stiefel manifold of orthonormal k-frames in the real 2n-
space R*" and define a free action of S'={e’’|0<0<2r} on V3, , by consider-
ing

. eie

0
elf= ( ) € U(n)_SO(2n).
0
\ ei& J
We consider the following quotient manifolds:

ZZn,k: VZn,k/Sla AXZn,k: VZN,k/Zp

where Z,={¢'’|0=2nh/p, h=0, 1, ..., p— 1} C S™

Let ¢ and » be the canonical complex line bundles over the infinite
dimensional complex projective space CP~ and the mod p lens space L=(p),
respectively, and né (resp. ny) the Whitney sum of n copies of ¢ (resp. ). The
real restriction of né (resp. ny) is denoted by the same notation né (resp.
ny). The associated V', ,-bundles of né and ny are the following:

1.1) Vone — S X 51V 20 — CP~,
(12) VZn,k — 57X Zy V2n,k - Lw(P)s

where S~ is the infinite dimensional sphere and the projections are defined by
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the natural projections S*——S°/S'=CP~ and S*——S~/Z,=L~(p), respec-
tively.

Prorosition 1.3.  The manifolds Zz, ;. (resp. Xzn 1) and S s1Va, , (Tesp.
873 z,Vans) are of the same homotopy type and the mnatural projection
Vonv——Zonr (resp. Vay r——> Xou 1) can be identified with the inclusion.

Proor. The following diagram is commutative:

Sl———>S” X Vz,,,k——nS"" X SlVZﬂ,k

(1.4) |
Sl*"”" V2n,k7 > ZZn,ka

where vertical maps are the projections. The projection S* Vs, ,——Vons
is obviously a homotopy equivalence and the inclusion map V;, ,——S" % Vi s
is its homotopy inverse. Hence, by the homotopy exact sequences of the
fibrations and the five lemma, the projection S~ s1V;, ,——Z5, induces
isomorphisms of all homotopy groups, and we obtain S*X s1V 2, =224
Similarly it follows that S~ x 2,Von 1 = Xonp Q.E.D.

According to Proposition 1.3, we identify the space S*x 51V, with Z;,
and S$”x z, Vz,,,k with Xz,,,k.

Now, let f,: CP>——BSO0(2n) be a classifying map of n¢. Then f,7 is a
classifying map of n7, since y=rn*§, where n: L*(p)——CP~ is the natural
projection. Therefore we obtain the following homotopy commutative
diagram:

VZp,k_: V@n,k:: VZn,k
oo L
(1.5) Xon p—2—Zon 1—22 BSO(2n — k)
i A it
L=( p)—=—CP~—{», BSO(2n).

The mod p cohomology structures of 7, , and BSO(n) are the following
([2], [3] and [9, Theorem 32]):

/\(Uﬂfk”rla sty Un—1y ’I)) if k=2K—1
16)  HVan)= |
/\(U”_k,+1, crey Un—1, U, ‘U/) lf k:2k/9

where deg v;=4j—1, deg v=2n—1 and deg v'=2n—*¢.
ZP[PI’ sty Pui—1, %] if n=2n’
1.7) H*(BSO(n))= '
Zy[ p1y - pw-1] if n=2n"-1,

where p; is the j-th Pontrjagin class of the universal oriented n-plane bundle,
x is its Euler class. Notice that x*=p,,, for n=2n’". Moreover the elements
v; and v are transgressive in the fibration 7,, ,——BS0(2n—k)—— BS0(2n),
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and
(1.8) TV;= pjs TU=X.
Also, it is well-known that
1.9 H*(CP~)=Z,[y], where deg y=2,
(1.10) HXL=(p)= AN(x)QRZ,[ y],

where deg x=1, deg y=2 and Sx=y (B denotes the Bockstein homomor-
phism).

TueoreMm 1.11.  Suppose 0<k<2n and set k'=[(k+1)/2]. Let
N=N(n, k)= min {4i| ek +1<i<n—1, (?)’*:EO modp}.

Then the mod p cohomology algebras of Xy, and Zs,,, are as follows:
(a) If N does not exist or if N exists and 2n <N,

ANGn_its - 20-)RZLy 1/ (y™) Jor odd k
V(Zntrsry s Znm1y 2)RQZ [ y1/(y")  for even k,
ANGnprsty -5 Z-)QANX)RZ,Ly 1/ (y")  for odd k
V(zn w1y o 201y 2)QNR)KRZ, Ly 1/(y™) for even k.
(b) If N exists and 2n=N=4i,,
AN (Znpri1s s Biggeos 20-1)QZp[Ly /(¥R N (23,)

for odd k
V(Znwi1y o5 Bigy o5 Zn15 2)RQZLy I/ ("R N (Z4,)

for even k,

(1.11.1) H*(Zz,,,k)={

(1.11.2) H*(Xz,,,k)z{

(111.3)  H*(Zyms)=

AZu_pri1y ooy Bip s Zn-1)
QA@RZLyl/(y"RQN(zi)  for odd k
V(Zpoprs1s -+os 2ipy s Zn—1y z’)
RQANX)RZLy 1y N (zi,)  for even k.
(¢) If N exists and 2n>N=4i,,
AN@nopraty ooy Bigy -y Zno1y 2)RZLy1/(y*)
J Sfor odd k

1.114) H*(Xzp )=

1.11.5)  H*(Zanw)=
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V(i1 o Big oo Zno1s 25 2)QZLy /()
for even k,
Aot 1y o Bigy s Zn15 2)QA(X)RZL y /()
for odd k
NV (Znoprsts s Bigy s Zn1 25 2)QA(X)RZ,Ly /()

for even k.

(1.11.6)  H*(Xanp)=

Here deg z;=4j—1, deg z;,=4i,—1, deg z=2n—1, deg z'=2n—k, deg x=1,
deg y=2 and V (h1, -, h;) means the algebra with hi, .-, hs as the simple
system of gemerators, and 2;, indicates that z; has been omitted. Moreover, we
have the following relations:

. e n . .
{l*sz’Uj, L*z;ozvio—<io>v, i*z=v, i*z2'=0';

1.11.7
Lp*x_—_x, P*y:y, Z,Z:<nﬁk/>y2n—k,

where p and i are the maps in (1.5).

Remark 1.12. When n=p" or 2p’ (r>1), the case (c) does not appear
and Vv (...) are A(...). In fact, N(p’, k) does not exist for any #k, and
N@2p", k)y=4p” if k'>p” and N(2p’, k) does not exist if £’ p”. Moreover

z2=0, since y***=y"=0if n=2p"=k, and (nfk’>50 mod p otherwise.

Remark 1.13. By (2.7.3) of Theorem 2.7, the element z;, will be denoted
simply by z;, in §§3-5.

Proor oF Turorem 1.11. We shall prove (1.11.3) and the others are
proved similarly. Let {E,, d,} be the mod p cohomology spectral sequence
of the bundle (1.1). Since né is orientable, the local system of the bundle
(1.1) is trivial and we have E,=H*(V, ) QH*(CP™).

If £ is odd, Es= A @Wn_trs15 - Un-1, )QZ,[ y]. From (1.8) and the natur-
ality of the transgression, we have

(1.14) z’v,-=pj(n$)=<']z.>y2j, to=x(n§)=y".
Hence, the first non-zero differential is d;,= d4;, and

dvaio—:(?o)yZioa dZnU:yn> dZﬂvj—__O (jzn_k/+1a ) 20’ ) n—l)’
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Eonr= Aoty o Big - 00 DDA i, (2 JIBZLy 1/ (5.

Since y"=0 in E,,,1, we have d,=0 for r>2n+1 and E,,,;=E.. Therefore
we have (1.11.3) and (1.11.7) by [3, Proposition 7.47.
If kis even, Ex= A(vp_p 1, - n-1, v, v )RZ,[ y] and

Ee= A1y oo D1 ooy o0y VO A i~ ([ D@2y 1/ (5™,

similarly. Now let {E;, d;} be the mod p cohomology spectral sequence of
the fibration V,,,—— BSO(2n—k)—=» BSO(2n), then we have E.= A (v')
®Zy[ p1s - pn-w] by (1.8). The map f, in (1.5) induces f*: {E/, d.}—
{E,, d,} such that f*=1Qf¥: E;——E, and f}v'=v/, f;kpj=<;?>y2f for fk:
E.—— E.. The element v»'c E, is the image of x ¢ H*(BSO(2n—k))
=Z[ p1, - pn_t-1, x'] by the projection H*(BSO(2n —k))—> i} EQt= N
i=o
Therefore the element v ¢ E.. is the image of z'=f*x € H*(Z,,,) by the
projection H *(Zz,,,k)——>i EZ*.  These facts and [2, Proposition 8.1 (b)]
i=o

imply (1.11.3). Since 7'*p,_, =x"* by (1.7), we have

oz Zf,;kx’Z:f;kﬂ"*pnfk' :P*f;kpn_k,:<n f k/>y2n~k. QED.

Now, we study the homomorphism in cohomology induced by the projec-
tion 7: XZn,k__’ZZn,k in (15)

Lemma 1.15.  The homomorphism 7t*: H*(Zs, )—— H*(X,, ) is a mon-
omorphism and #*y=y. Moreover, we can choose the classes zj, z;, z and z’
such that *z;=zj, T*z;=2;, T*z=2z and 7*z'=2z".

Proor. Consider the following commutative diagram:

Sl —)i XZn,k ‘_)7? ZZn,k
I el s
St — = L*(p)—Z— CP".

The homomorphism i*: H*(L=(p))—— H*(S") is an epimorphism and so it
follows that i*: H*(X,,:)—— H*(S') is an epimorphism. Therefore each
differential is trivial in the spectral sequence of the fibration S'—— Xy, 1
—~ 573, and the homomorphism 7#* is a monomorphism. Q.E.D.

By this lemma, it is sufficient to consider the structure of H*(Z,,,) for
studying that of H*(X;,, ;).
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§ 2. The mod p cohomology of X, ; and Z;, ; (continued)

We study the homomorphisms induced by the projections y.: Z;, ,——
Zonp-1 and vy Xopp—> Xasr-1 When £ is even.

We notice that, if one of N(n, 2k") and N(n, 2k’—1) of Theorem 1.11
exists, then the other exists and they are equal.

Lemma 21. Let k=2k. Then v¥: H*(Zyyp1)——> H*(Zss1) and v¥:
H*(Xgp p-1)— H*(X2,,1) are both monomorphic. Moreover

V;:zj:zfa V;!(Z,'DZZ,'O, Vtz:za VEx=x, v;ky:y
Proor. Consider the following homotopy commutative diagram:

ST Van —t, Von -1
I i} i)

2n—k v
S — Zonp —2> Zon p-1.

Then the lemma is proved similarly as Lemma 1.15. Q.E.D.
If k=2k'—1, we obtain the following short exact sequence:
(2.2)
0——H*(BSO(2n), BSO(2n— k))—Z*>H*(BSO(2n))—=">H*(BSO(2n— k))—0.

Since 7*p;=0 for n—k'+1<j<n—1, and 7*x=0, there exist unique classes
U;(n—k'+1<j<n—1) and U in H*(BSO(2n), BSO(2n—k)) such that

(2.3) P*Ui=p; (j=n—k+1, ..., n=1), J¥U=x.

By the mapping cylinder considerations in the diagram (1.5), we have the
following homotopy commutative diagram:

(24) (C V2n, ks VZn,k)
hl g
(L=(p), Xons) == (CP,Z30p) — L2 3 (BSO(2n), BSO(2n—k))

where CV;, ; is the cone over V,, ;.

Lemma 25. Let 0<k<2n and k=2k'—1. Then g*U;=0v; for
n—k'+1<j<n—1 and g*U= 0,0, where g 1is the map of (2.4) and 0::
H*_I(VZn,k)_z“)H*(CVZn,ka VZn,k)-

Proor. According to [8, Lemma 5.1, the following diagram is com-
mutative:
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i« H*(BSO(2n), BSO2n—k))__ g+
/ J' T H*(CVZn.k, Vz»,k)

\H*(BSO(zn), V2n,k) '\SH*illT(zV )
2n,k

™~ H*(BSO(2n—k), Vz,,,k)‘/“/

H*(BSO(2n))

H *(B:90(2n),

Since tv;=pj, we have p; € j*g* '010;. On the other hand j*U,=p; and j* is
a monomorphism, and so U; € g* '0,v;. Therefore g*U;=01v;. Similarly we
have g*U=0,v. Q.E.D.

By the diagram (2.4), we obtain the following commutative diagram of
the exact sequences for odd %:

0—s H*(BSO(2n), BSO(2n— k)% H¥(BSO(2n))=" H*(BSO(2n— k))—0
(2.6) 7l ) )
s H* Y Zgy )2 H¥(CP*, Zyy 1) L H¥(CP™) —2— H*(Zyp1)—>---.

Now, we characterize the classes z;, z; and z by the classes in
H *(BSO(2n), BSO(2n—k)) and the homomorphism f*.

Tueorem 2.7. Let 0<k<2n. The classes zj, z;, z and z’ in H¥(Z;, ;) can
be chosen so as to satisfy the following conditions (2.7.1-5).

2.7.1) 2= fxx if k is even.
For the case (a) of Theorem 1.11,

(2.7.2) Oz;=fXU;—(" )y%*f*U  (j=n—k+1, ..., n—1).
j y J
For the case (b) of Theorem 1.11,

[6z,~=f";"Uj—(';)y2f“”f_;"U (j=n—K+1, . fo, -y n—1),
(2.7.3)

5. — % n\ rx
L(?z,—u— 7*U, —(io) 7rU.
For the case (¢) of Theorem 1.11,

A

(2.7.4) 0zj= [ Ui+ 4y¥*of}U;,  (j=n—k+1, ., o, -, n=1),
(2.7.5) Oz=fXU~+ Ao y" 2f}*U,,

where 1; satisfies the formula <;7.'>+/I,-<?O>EO mod p.

The generators of H*(X,a,1) are obtained by replacing f¥ with #*f¥ and
f¥ with z*f¥ in (2.7.1-5).

Proor. (2.7.1) has been proved in the proof of Theorem 1.11,
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It is sufficient to prove (2.7.2-5) for odd £ by Lemma 2.1. By the diagram
(2.6), we have

2.8) R = f 'j=(;%>y2f, EU=fFr=y".

Consider the case (¢). Then there exists a unique class z; in H¥~1(Z,, ;)
such that

5Zj:fof—<;%>}’2j_"f—fU,
since the image of the right hand side by ¢* is zero by (2.8) and ¢ is mon-
omorphic in odd degree. To see that the above classes z; (j=n—k+1, ...,
n—1) are generators of (1.11.1), it is sufficient to show that i*z;=v;
(j=n—k+1, ..., n—1). For this purpose we consider the following diagram
induced by (2.4):

H*Y(Vu,1) —‘S;,L’ H*(CVzn iy Vanp)

i h

H* Y (Z30,1) —> H*(CP™, Zz,,,,,)‘/f'%

'g\H*(BSO(Zn), BSO(2n—k))

By Lemma 2.5, we have ¢,v,= g*U; and so we have
5lvf=h*f_ij=h*(5Zi+<’;)y2i7" -ZkU)=51i*zf+<?>h*y2j_"h*f_;kl]=51i*zf,

since h*y*~"=0 in H*(CV, ;). Therefore we obtain i*z;=v; because 0, is
isomorphic.
In the similar way, we can prove the theorem for the other cases.
Q.E.D.

§ 8. Reduced power operations 9" in H*(X,, ;) and H*(Z;,. ;)

In this section, we determine the mod p reduced power operations %' in
H*(Xzn,x) and H*(Z;,,,) for n=p” or 2p’, and also we notice that they are
computable for any positive integers n and £ (0<k<2n).

A. Borel and J.-P. Serre [4, §14] studied the mod p reduced power opera-
tions 9 in H*(BSO(2n)):

jt+ai-1

3.1 @in= (“1)qib};’2j+zqipj+qi+ IZ pic, a; € H*(BSO(2n)),
=Jj

(3.2) Pix=2C""(p1, - pu-1, 2 (2g=p—1)

where 5i:27*2¢/ is an integer and C*4(...) is given as follows: Let ¢; be the
i-th elementary symmetric function with respect to indeterminates x4, ---, x,
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then C*%(g,, .-, 0,) denotes the polynomial which expresses the symmetric
polynomial of typical term x{...x%.
Moreover, by S. Mukohda and S. Sawaki [107, it is known that

(3.3) by 2o =(% 1) mod p.
First of all, we calculate 9z’ in H*(Z,, ) and H*(X;,.) when k=2k".
Since z'= f;*x’ by Theorem 2.7, we have
Pl =Pk =FrPix'=FFE' Cpy, -y prow-1, £'5))
:zlci,q(f;kph Tty f;:kpn—k’—-h f;:kxlz)

and hence, we obtain

(3.4) @fz’zz'c"'a(GL)yZ, o () )

Therefore we can calculate 97z’ for any »n and even k.
Now let k=2k’—1 and consider the following diagram of the exact se-
quences (cf. (2.6)):

0—> H*(BSO(2n), BSO(2n— k))-i*>H*(BSO(2n))-=">H*(B SO(2n — k))—0
(3 5) 7| i) 7
-————)H* (Zz,, k)—-—)H*(CP Zz,, k) H*(CP") — > H*(Zz,, k)——)

Then using (3.1-3), we have
jita i-1
J (— 1)‘“(21 1) gt Z Uca, for j+qi=n
(3.6) PiU;=
X . j+ai-1
L (—vi(%; 1>Ux+ L Ue  for jigi=n,
(3.7) @’UZ Uci'q(pl, cory Pn—1y x )
in H*(BSO(2n), BSO(2n—k)), where U; and U are the elements in (2.3):
J¥*Ui=p; (j=n—k +1, ..., n—1), J¥U=x.

Mapping (8.6-7) by f*, we have

X . _ j+ai—1_
J(—l)q:(zli1>fn"<U]-+q,-+]lZ. XU frey  for j+qien
- . =7
(38 [IPU= .

(2 —1\; jrgio1 o
[(-1)«'(11. )f,’,"Uf,;"x—i- S TRUSFey  for j+qi=n,

i=;

(39) [rPU=[rUC" q<< ) s ey (n21>y2n~2’ y2n>.
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Using (3.4), (3.8-9) and Theorem 2.7, we have the following theorem.

Tueorem 3.10. Let n=p” or 2p"(r>1) and k be a positive integer such
that k<2n. Then the mod p reduced power operations 9 in H*(X,:) and
H*(Zy,,1) are given by

(3.10.1) Py — J(—l)qi<2ji—1>zi+qi for j<n—gqi

l 0 for j>n—gqi,
(3.10.2) PZ’=0  for i>0,
where 2g=p—1.

Proor. Assume that £=2k’, then we have

. Z2'C»(0, ..., 0) if n=p or2p k'>p”
Pz'=

Z/Ci’q(o, ) 0) 2}/21)7) Oa () 0) if n=2P’ and k/gpr’

by (3.4). According to Theorem 1.11 and Remark 1.12, we have y*"=0 in
H*(X3,:) and H*(Z;,,:), and so we obtain (3.10.2).

We shall prove (3.10.1) for odd .. Then (8.10.1) for even % follows from
Lemma 2.1.

Now «a; € H*(BSO0(2n)) is a polynomial of p,(j=1, ..., n) and f¥ j=<7>yzf.

Therefore f;fa; has a common factor y?*" and so we notice that
p*f,’)‘a,——-O for a; € I:I*(BSO(Zn)),

since p*y?”" =0 in H*(Zzn,1).
By (2.7.2-3) and Remark 1.12, we have

. ) 2 if n=2p” and ji=p"

0z;=fFfU;—af XU, a=
0 otherwise.
Using (3.8-9) and the above facts, we have
0Pz = P([ Uy —af FU)

i(2]—1\7 ik 7 i n

(—1)4( ]i ) U, git+ ]§j IXU f¥a—afFUC Jl((i")yz, ey (Z>y2 >
if j+gidn

T g B 20 st arzuen () ()

if j4+qi=n
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/D7 — j+qi-1 _ . . .
(—1)4:(2]i 1)(5‘zj+q,-+6 { 12- (P*f;“a,)z,} +AfXU if j4+qgin
=j
j+ai-1 - . . .
5{ 2 (p*f;"a,)z,}—}—A’f;"U if j+qi=n
i=i
(_1)qi<2f'l__1>6zj+q;+Af,§"U if j4qgi=en

A'f¥U if j+qi=n,

where A, A’ € H*(CP~). Mapping this equality by ¢* and using (2.8), we have
A=0 and 4’=0. Since ¢ is monomorphic in odd degree, (3.10.1) follows.
Q.E.D.

TueoreM 3.11. Let n and k be positive integers with k<2n, satisfying
n=n'p’, r>1, n'>8, (p, n)=1 and n—[(k+1)/2]+1<p". Then the
cohomology algebras of X:n» and Z,, are the case (c) of Theorem 1.11 with
N (n, k)=4p" <2n and the mod p reduced power operations P'(i>0) in H*(X;s,z)
and H*(Z,, ) are given by

0 (T e for j<n—gisjp—gi
(38.11.1)  Piz=
0 otherwise,

(@)yzq;z_(—Tll)‘"’(Zp’.— 1>}’"_2przpf+qi for p'+qi<n

l l

(3.11.2) Pz=

(’:)yz‘”z for p"+qi>n,
(3.11.3) Piz'=0,
where 2g=p—1.

Proor. It is clear that N(n, k)=4p"=4i,<2n by the assumptions and
s0 y**"=0 in H*(Z;,:). Hence we have

p*f¥a=0 for o, € H*(BSO(2n)),

similarly to the proof of Theorem 3.10.

We notice that the integers 2; of (2.7.4) are zero if j=¢Ip” (I=2,...,n'—1),
and 4, of (2.7.5) is equal to —1/n’. Therefore, using (2.7.4-5), (3.8-9) and
y?*"=0, we have

0P z;=Pi(fFU;+ ;95720 f XU, )
(_1)qf<2li—1>6zj+q,-+Af,;"U;o for j+qi<n,j+qi=xio

A'f¥U; otherwise,
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P z=P(f U+ Aoy Hof ¥ U;)

) _1\ai r_ . - . .
<r?>yzq,62_( nl/) (2p. 1>yn—2p 0zpriqi+ Af¥U;, for ip+qi<n

15 l
(3 )y*oz+a7r0, for ig+qi>n.

Here A4, A’, A and A’ are some elements of H*(CP~), and we see that these
elements are zero in the same way as the proof of (3.10.1). Hence (3.11.1)
and (3.11.2) follow.
(8.11.3) is obtained similarly to (3.10.2). Q.E.D.
In general, the mod p reduced power operations 9 in H*(X,,:) and
H*(Z,,,) are given by the following

ProrosiTioN 8.12. For any positive integers n and k (k<2n), the mod p
reduced power operations D' in H*(Xyy 1) and H*(Zz,,:) are given as follows:

(3.12.1) Pizj=(— 1)qi<2ji_ 1>zi+ gt Zalyzﬂzqi_mzb
]
. . i0+di - i
(3.12.2) @’z=('§>y2“’z+1=§ﬂa, yreraicty,
iy i (V)42 n 2n—k oy
(3.12.3) Diy'=2'C q((l)y , ...,(n_k,>y ) (k=2K"),

where Y, in (3.12.1) is the sum of l=j, ..., j+qi—1 for the case (a), (b) and
!

I=min {j, io+1}, -, j+qi—1 for the case (c) of Theorem 1.11, and a;, a; are
some integers.

Proor. We have already proved (8.12.3) in (3.4).
For the case (¢) of Theorem 1.11, we have

0Dizj=Pioz;= P (fFU;+ 3y f¥U;)

(~#(F T ozt Dy 20z, A FU,  for jien—gi

for j=n—gqi,

i

(—1)""<2ji_1>a’ynaz+ Zl:dly2j+2qi_2’6zl+fif:‘[]
0P z=Poz=P (f YU+ 2y " *f}U,)

:<?>y2qiaz+ tugi a;yn+24i—216zl+A/f‘;kUio’
I=iop+1

by (2.7.4-5) and (3.8-9), where a,, a; and a} are some integers and 4, 4 and

A’ are some elements in H*(CP~). In the similar way to the proof of

Theorem 3.10, we have (3.12.1) and (3.12.2).
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For the case (a) or (b) of Theorem 1.11, we have (3.12.1) similarly.
Q.E.D.

§ 4. Bockstein homomorphisms 8 in H*(X;, ;) and H*(Z,, )

P.F. Baum and W. Browder [1] determined the mod p cohomology
algebra of the projective unitary group PU(n)=U(n)/S' and the reduced
power operations 9" when n=n'p’, (p, n’)=1 and r>>1. Moreover, they
determined the Bockstein homomorphism £ in degree <<2p"~'. According to
[1, MaiNn TueorEwM I, the mod p cohomology structure of PU(n) is the follow-
ing:

Let n=n'p’, (p, n’)=1and r=>1. Then

H*(PU(n)): /\(wla Tty ﬁ)p’, Tty wn)®ZP|:y]/(yﬂ7)

where deg w;=2j—1 and deg y =2,

uy? 220 mod p, for j=p !
(4.1) Bw;= {

0 for j<p .

Remark. It is proved that Bw;=0 for j < p’~! of (4.1), in the proof of
MaiNn Tueorem I in [1, p. 324]].

First, we shall extend (4.1) for all j 1<j <m, j2¢p"). For this purpose,
we use the properties of generators w; in H*(PU(n)).

Let EU(n) be a contractible space such that U(n) acts freely, then
EU(n)/U(n)=BU(n) is a classifying space of U(n), and there is the follow-
ing homotopy commutative diagram ([12, §§1-27):

St— U(m) - PU(n) =S xsU(n)

Il ! d ?)
(4.2) S' — EU(n) — EU(n)/S' == CP~
~) i

BU(n)=——= BU(n) In

where f, is a classifying map of n¢&. Then we obtain the following diagram
induced by (4.2):

0——H* Y (PU (1)) H¥(CP", PU (1))~ H¥(CP=)—>--

4.3) | AN
HY(U(n)) ——HY(EU (n), U(n))«=-H¥(BU (n), *)

H?(BU (n)).

The cohomology algebras of BU(n) and U(n) are given as follows:

H*(BU(n)=ZLcy, -5 e,  H¥Um)=A(ury -5 ua),
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where the element c; is the universal j-th Chern class and the element u; is
transgressive and cu;=c;.

Since the j-th Chern class of n& over CP~ is <'; >y", we obtain *fkc;
= fre;= ( >y in (4.3).
Lemma 44. Let n=n'p’, (p, n')=1 and r>1. We can choose the genera-
tors w; € H¥(PU(n)) (j=1, ..., p, .-, n) such that

(fﬂcj ,1( >fncp7 if j=lp, 1=2, .y n’
(4.4.1) Suw=

l f¥e; otherwise.

Proor. If p” does not divide j, then ¢*f¥c;=0. Therefore we have a
unique element w; € H*>~'(PU(n)) such that dw;=/fY¥c;. If j=Ip”, we have a

unique element w; € H*~* (PU(n)) such that éw;=fc;— ,,< >f,, cjr. Using

the diagram (4.3), we have i*w;=u;. Therefore the lemma follows from the
proof of [ 1, Corollary 4.27]. Q.E.D.

Lemma 4.5. Let n=n'p’, (p, n’)=1and r=>1. Then the Bockstein homo-
morphism B in H*(PU(n)) is given as follows:
{ wy’  for j=lpt (=1, ..,p—1)
w;=

0 otherwise,

where u,—i@_l)ﬂ and u 18 the one of (4.1).
Proor. By Lemma 4.4, we have 63w;=0 and so fw; € p*H*(CP~). There-
fore Bw;=0 for j>p".
Assume that p’ ' <j<p’. Now, we use the same notations in the integral
cohomology H*( ; Z) of BU(n) and CP~. Set k=p’ ' and consider the

clement x,=af e,y es in HY(CP*, PU(); 2), where a=——(}) =n

mod p and a,-=%<;f>. Since t*xf=a<;',’>y"—aj<z>y":0 in H*(CP~; Z), there
exists an element x}e€ H?~'(PU(n); Z) such that d0x;=x;. Therefore we

have
00p%;=0s0x)=0y(afFc;—a;y’ " f¥c)
=af_,’,"c,-——ajyj_kf;kck=é‘(awj—a,-yj'kwk)

in H%(CP=, PU(n)) by Lemma 4.4, where p, is the mod p reduction. Since &
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is monomorphic in degree 2j—1, we obtain p,x;=aw;,—a;y’ *w;. Using (4.1)
and the fact Bp,=0, we obtain 0=pp,x;=aBw;—a;uy’. Therefore we have

Bwj=a""a;py’.

By the simple calculations it is proved that

_n_/ P—l i i—[p" ! = —
L(”/P')EJZ —1) I L
PN .
0 otherwise
mod p. Therefore we have the lemma. Q.E.D.

Let h: U(n)——S0O(2n) be the natural inclusion. Then, we have the
following homotopy commutative diagram of fibrations:

U(n) PU(n) — CP~
(4.6) | i |
50(271;)_—%50(2",)/51=Z2n,2n_1~—p—) CP~

and the commutative diagram of the exact sequences induced by the map A:

o H* N(Zop,20-1)——H*(CP", Zgp,2n-1)—L>H*(CP™)—---

I "
H*(BSO(2n), x) H*(BSO(2n))
%) i " ,rl ,rl
H*(BU (n), ¥)=——=H*(BU (n))

| e fa
——H*"Y(PU(n)) 2»H*(CP=, PU(n))—L>H*(CP~)—>---.

The homomorphism A*: H*(BSO(2n))——H*(BU (n)) is given as follows
(e.g. [9]):

(4.8) h¥pi= ¥ (=1)7"chey,

k+1=27
(4.9) h*x=cp.

Lemma 4.10. Let n=n'p’, (p, n')=1 and r=>1. Then the homomorphism
h*: H¥(Zzp 9n-1)——H*(PU (n)) s given by

4.10.1) Fry=y,
0 for j>n/2

(4.10.2) Fz;= { —dw, for j=n/2, n=2p"
(—1)2w,; otherwise,

(4.10.3) h*z=w,.
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Moreover, h* is a monomorphism in degree smaller than 2p’.

Proor. Assume that n’>>8. Then N(n, 2n—1)=4p’=4i, and
H*(Z3p 2n_1) is the case (c) of Theorem 1.11. Furthermore, in the equality
2.74):

R U R SRR )

we have ;=0 mod p if j3xIp” (I=2, ..., n’—1). On the other hand,
fH(ezi-scs) :f;kCZj—sf;kcs=<":>6w2jfsys+ A; sf ¥eiy

where 4;,, ¢ H*(CP~), by (44.1). In this equality, (*)=0 mod p if s3ip’

(1>0) and Owy;_sy°*=0(ws;_sy*) =0 if s=1p” (1>0). By these facts and
(4.7-8), we have

OR*z;=R*0z;= [ h* U+ Ay ¥~ ¥h* U,
2i0

_ /27 . 2724 T

{(—l)lzaij—FAf,:kC,ﬂ if ]Sn/2
A'f¥e, if j>n/2,

where 4, A’ € H*(CP~). Mapping this equality by ¢* and using the fact
t*f¥ci,=n’y"30, we have 4=0 and 4'=0. Since ¢ is a monomorphism in
odd degree, we have (4.10.2) for n’>3.

For the case n’'=2, N(n, 2n—1)=4p"=2n and H*(Zz,,2.-1) is the case (b)
of Theorem 1.11. Therefore

oz =R U= () T3 )
- [(—1)f26w2,-—(’]?)y2f—"aw,, it j<n/2

10 if j>n/2,

by (2.7.83) and (4.7-9), and so we have (4.10.2) for n'=2, similarly. (4.10.2)
for n’=1 and (4.10.3) are proved in the same way. Q.E.D.

There exists a fibration Vi, pi0.2 — Vont —> Vine_2, Where v, is the
natural projection. This fibration induces fibrations Vi, p. 22— Zon si—2—>
Zz,,,k_z and V2n_k+2,2 — XZn,k —u'i—> in,k_z- If k= 2k,—1, V):kl H* (VZn,k—Z)

=AWy -y Vno1, V) —> H¥*(Vaup) = N\ Wn_prs15 -+, Va1, v) is given as
follows ([2, §107)):
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viv,=vj, viv=nu.
And so we have the following lemma.

Lemma 4.11. Let k=2k'—1. If N(n, k)=4i, exists, then assume that
io=>n/2 or ic>xn—k'+1. Then the homomorphisms v}¥: H*(Zsy 4 2) —>
H*(Z33,1), H*(Xan p_2) —> H*(X3n,1) are given as follows:

vi¥zi=z; for n—k'+4+2<j<n-1,
v¥z=z, vix=ux, viy=y.
Moreover v§ are monomorphic.

By the induction on %, we determine the Bockstein homomorphism A in
H*(Z;3,,,) and H*(X3, ;) when n, k satisfy (x) of below.

Tueorem 4.12. Let n and k be positive integers with k<2n, satisfying
(*) n=n'p’, r>1, (p,n)=1; n—[(k+1)/2]4+1<p" if n'>38.
Then the Bockstein homomorphisms in H*(X;, ) and H*(Z,, ) are given by

25 . . r—1 _ _
0y Sfor j<n/2,j=lp" ' (=1, ..., p—1)
4.12.1) Bz;=
0 otherwise,

(4.12.2) Bz=0, Bz'=0, Ppx=y, By=0,
where u; s the same as in Lemma 4.5.

Proor. The last two relations of (4.12.2) follow from (1.10). It follows
easily that fz’=0 by the dimensional reason. According to Theorem 2.7, we
have 08z;=0 and 08z=0 and so Sz; and Bz are the elements of p*H*(CP~).
Therefore 3z;=0 for j>>p” and Bz=0, since y**"=0 in H*(Z;, ) under the
assumption (x) (cf. the proof of Theorems 3.10 and 3.11).

By Lemmas 2.1 and 4.11, it is sufficient to prove (4.12.1) in H*(Z2n,21-1)
for j<p’. By Lemmas 4.5 and 4.10, we have

" . —2py™" for j=p!
h*Bz;=(—1)2Bw,;=
for j<p'!
{_2/‘27L*y2”"" for j=p™!
0 for j<p'_1.

Since —24,=—(p—1)#=x mod p, #*y = y and &* is monomorphic in degree
smaller than 2p’, it follows that
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wy* for j=p
4.13) Bz;=
0 for j<p .

Replace c; € H*(BU(n); Z) and y € H*(CP~; Z) in the proof of Lemma 4.5
with U; € H*(BSO(2n), x; Z) and y® e H*(CP~; Z), then we obtain (4.12.1)
for j<p” by the entirely same technique as the proof of Lemma 4.5, using
(4.13) and (2.7.2-4) in place of (4.1) and (4.4.1). Q.E.D.

Remark. If n=p” in Theorem 4.12, then (4.12.1) is shown by Lemmas
4.5 and 4.10 only.

§ 5. The relations between X, ; and X3, 2, : and between
Z2n,k and Z2n+2m,k

We consider the following homotopy commutative diagram:

Zonk—3Z2n 1 X Zon k222235 1 X CP"—
5.1 ot » 1“1
¥
ZZn+2m,k—L’CPm d > CP*x CP*"—
Faxm , BSO(2n —k) x BSO(2m)——>BSO(2n + 2m— k)

7’ x1 L3

_taxfm__, BSO(2n) x BSO(2m) —£— BSO(2n +2m).

Here d is the diagonal map, # and 4’ are the multiplications, f, and f, are
classifying maps of né and mé, respectively. Then (2n+2m)-plane bundle
(n+m)p*¢ has a map u(f,x fn)dp as a classifying map and u(f.X fn)dp is
lifted to 4/(fuX fm)d': Zons—> BSO(@n+2m—k), where d'=(1X p)d: Zsns
—— Z3u,: X CP~. Therefore the associated 73, ,2n -bundle of (n+m)p*é over
Zsn.; has a cross section and so we obtain a map 0: Z,, s —— Zan.2m,% Such that
o*p*&¢=p*¢. Similarly, we have a map 0: Xzu e —— Xoni2m

In this section, we use the same notations for the generators of H*(Z,, )
(resp. H*(XZn,k)) and H*(ZZn+2m,k) (reSp- H*(X2n+2m,k>)'

TueoreMm 5.2. Let 0<k<2n and set N=N(n+m, k)=4iy, N=N(n, k)
=4i, and K()=1{s|j—n+1<s<m}, K'(j)={s|j—n+1<s<m, s3] —i}.
Then the homomorphisms o*: H*(Zzy, 2m ) —— H*(Z2n 1) and 0*: H*(Xzpi2m.1)
—— H*(X3,,1) are given as follows:

(5.2.1) p*x=x.  p*y=y,

(a) If N exists and 2n+2m>N=4i,, then
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622)  o*z= 5 (Mytaty 5 (M),

SEK’ () tek i\ L

when N’ exists and 2n >N,

m s m i—2ig .
(5.2.3) p*zj=56§(j)(s)y2 Betdy 1§,-0>< P)o M, otherwise,

tek (ig\?t

J y"z+h 2 <m>y”+”“z"°*z‘z,-0_, when N’ exists and 2n >N’

(G24)  p*z=
110 . ;( (’?)y”*”"z""*”z;r, otherwise,
€ i0)

where 1; satisfies the formula ('H]fm>+ /lj<n".l”m>50 mod p.

Lo

(b) If N exists and 2n+2m <N or N does not exist, then

(5.2.5) o*zi= 2, <m>y“z,-_s—(n_ifm>y2"*”z when N’ exists and 2n >N,
SER(H\S J

(5.2.6) p*zj= ;{] (’Z)yzsz,-_s otherwise.
SEK(j)

Proor. (5.2.1) follows from p'o~p. From the diagram (5.1) and the
mappingycylinder considerations, we have thegfollowingfcommutative dia-
gram:

(5.3
H* Y Zspyom ) H*(CP=, Zz,,ﬂ,,,,,,)iﬂ’*_m H*(BSO(2n +2m), BSO(2n +2m—k))
' y:d
H*-1(CP~) e~ p H*((BSO(2n), 3510(2n —k)) x BSO(2m))
* (Faxfm)*

H*"Y(Zy0 )2 H*(CP™, Z3, 4) & H*((CP*, Zz,4) X CP™).
It is well-known that

W= X pixpi,  uwfx=xxx",

s+t=j

where p;, pj, p; and %, x/, x” are the j-th Pontrjagin classes and the Euler
classes of the universal oriented (2n +2m)-, 2n-, 2m-plane bundles. Therefore
we obtain

G4 pU= X U Xpl+UXpl= % Ul sXpst U’ X pl_s

SEK () SEK ()
(5.5) p*U=U x2",

where U, U;, U’ and U} are the elements determined by (2.2-3).
Consider the case (a). Using (2.7.4) for n+m and (5.3-5), we have
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d0*z;=p*0z;=0*(f ¥ mUi+ 4y 2o fimUs)

= d*(fax fu)*p*Ui+ 4y 50 d*(fux fu)*m*Us,

= 3 fXU;_p:(m&)+[ XU y"pi-n(mé)

S€EK(])
+ay8 7 B TV )+ Uy piy-sm)} -

Assume that N exists and 2n>N'=4i.

Then, using the fact y"0z
=0(y"z)=0 and (2.7.4), we have

00*z;= KZ ps(mg)dz; s— 1§< )l’j—syzf’zs‘z“"Ps(mE)fi‘Ufa+Pj—ia(m$)f2‘U£a
SEK’ (7 S€ Jj

+ y"pi-a(m&)dz— Ay y**ip;_,(m&)f UL

+ 2547 S p(me)ds, -

te K (ig)

Y A yzio—Zt—ziBPt(mE)j‘;k U§6

teK'(ig)
+ Py MO FUL+ 5" iy n(mE)0z— Ay Hips,_u(m&)[ XU i}
25{ 5 pmp*®z; s+ Ay Y Pr(mp*5>Zfo—f}+Af’foia’
SEK’ () teK’(ig)

for some 4 € H*(CP=). In the same way as the proof of (3.11.1), we have
A=0. Since 0 is monomorphic in degree 4;—1, we have

_ m 2s m 2j+2t-2i,
o*z;= 2, ( )y zistd X < )y 0Zj ¢+
SEK’(H\S tek Gip\ L

Assume that N’ exists and 2n <N’ or N’ does not exist. Then we have

X, — . n 2j—2s-n FXTT
60 Zj SE;{I(j)PS(mE)azJ_SJ‘_sEZ ) ( . >y ps(mS)f,, U

KGi \]—S

+y"pj_n(mf)f,i"U’+ljy2j‘2i°{ S p(m&)dzi, s

t€ K(ig)
+ ,”;’.0) (io'i t))’Zi"—Zt_”Pt(mf)ff U+ y"pi,—n(mé&)f ¥ U’}

—0{ B Pyt 2y B pmp )z + AT,

1€ K (ig)

for some 4’ € H*(CP~) by (2.7.2-3). In the similar way to the above, we
obtain

*, my\ 2s,_. . my\ = 2j-2iy+2t,,
07z se?(j)(s )y Zi-s T4 tu;(‘ig) ( t>y Zig=ts
and (5.2.3) follows.

In the similar way to the proof of (5.2.2-3), we have (5.2.4-6). Q.E.D.
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Remark. In §§3-4, we determined explicitly the reduced power opera-
tions 9’ and the Bockstein homomorphism g under the assumption (x) of
Theorem 4.12. Using the results of this section, we can expect to study 9
and B for other n and .

§6. Applications to the immersion problem for the lens spaces

We denote L"(p) the mod p lens space of dimension 2n+1, and 7. the
restriction of 7 over L=(p) to L"(p). By L*( p) S R*, we mean that L*( p) can
be immersed in the real k-space R*. The next theorem for immersion was
proved in [7, Theorem 17.

Tueorem 6.1 (Kobayashi). Let n=(p—1)s+r O0<r<p—1) and k be a
positive integer with k<_2n+1 and let a be a positive integer such that
2ap***>4n+38, where e=0 or 1 according as r <1 or >1. The necessary and
sufficient condition for L"(p) S R***'** is that the bundle {ap***—(n+1)}y, has
2ap** ¢ — (2n +k+2) independent cross sections.

One of our main theorems is the following

THEOREM 6.2. Let r and n’ be positive integers such that r>2 and
(p, n")=1 and let m and ¢ be non-negative integers satisfying

(%) 0<t<<m, m—it+(p—1)/2<p"!, t<p}, <Zl>é30 mod p.
Then, the bundle (n'p”+m)y, over L"(p) does not have k independent cross
sections for
(%) k=2n'p"—2Ip" ' +2t+1, 2lp"'+2m—2t+p—1<n<2p’,
1=1, ..., p—1.
Before proving Theorem 6.2, we consider the applications.

THEOREM 6.3. Let r (>2), m and ¢ be non-negative integers satisfying ()
of Theorem 6.2, then

(6.8.1)  Lr-ml(p) & R37T-PTI22 if m<[(p"'—p+20)/3],
(6.82)  L¥# -ml(p) £ ROP-WTISM2 Gf o Z[(2p - p+26)/3].

Proor. Assume that m<[(p"'—p+2¢t)/83]and L*"~""'(p) c R3*"~*"'-2-2,
By Theorem 6.1, the bundle (n'p"+m)yyr_m-1 has 2n'p"—(p—1)p"*+2t+1
independent cross sections, where n'=ap°*¢~"—1 for some integer a. By the
assumption m <[(p"'—p+2t)/8], we have (p—D)p" '+ 2m— 2t + (p—1)
<p"—m—1. This contradicts to Theorem 6.2 and so (6.3.1) follows. The
proof of (6.3.2) is similar. Q.E.D.
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Now, we use the following results to prove Theorem 6.2.
ProposiTiON 6.4. Let r, n’ and k=2k'—1 be positive integers with r>2,
(p, n')=1 and m be a nmon-negative integer such that m<n'p"+m—k+1<p".
Then P and B in H*(Xgp pr i 2m1) AT€ given by
q
(6.4.1) Prz;=(—1)"(2j—D)zj. o+ Z}l (=1)""2m y**zj, 4 s

for n'p"+m—k'+1<j<p"—q,

642)  Br=n( ;T )y for npm—k+1<j<p
B iT A j_lpr—l My np -Tm <j<p’,
where u,z%(f;:i),a*io mod p is the same as in Lemma 4.5 and 2g=p—1.

Proor. The homomorphism o*: H*(Xzp pryome)——H*(Xewpr r) is given
by (6.2.2) if n’ >3, since N(n'p"+m, k)=N(n'p’, k) =4p” <2n'p”; and by (5.2.3)
or (5.2.6) if n’ <2, since N(2p’, k)=4p” and N(p’, k) does not exist. There-
fore

0%z;= ;§0<T>Y “zio  for ap'+m—k+1<j<p’,

since (n P;+m>50 and so ;=0 mod p for m< j<p’.

Now 9'z; has the form P'z;= ti] ary¥zj 41 (@o=(—1)%(2j—1)) by (3.12.1).
=0

Therefore

0*@12‘,.: i ia<m> 2+2s for jdg<p’
R =N 4 jrazt=s JTISP-
On the other hand
Piorz,= 5 (1 ey sy (~ D@2 =Dy 5 cuib,
by (8.10.1) or (3.11.1). Comparing the coefficients of these equations, we have
a()(’:)—{-'~-+as(r3>5(—1)"(2j—2s—1)(’:'> modp for s=0, ..., q.
Therefore we have a,=(—1)?"*2m for s=1, ..., ¢, by the induction on s and

we have (6.4.1).
If j<p’, then

6100 eI ) R (R P
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by (4.12.1). Therefore (6.4.2) follows. Q.E.D.

Lemma 6.5. Suppose there is a map f: L"(p)—— Xom » such that the follow-
wng diagram is commutative

g < LG
If 2j<n and Bz;j=pny", then f*z;=px y*~ in HY=(L"(p)).

Proor. By the commutativity of the diagram, we have f*x=x and
f*y=1y. Assume f*z;=u'xy*"', then 4 y¥=pf*z;=f*pz;= pny¥.
Q.E.D.

CoroLLARY 6.6. Set m of Lemma 6.5be n'p”+m. Under the assumptions
of Proposition 6.4, we have

-1 .
frz=2 ]-_Z)r-1>,a1xy2"1 Sfor n'p+m—k+1<j<p"

I=1

Proor or THEOREM 6.2. Assume that (n'p”+m)y, over L"(p) has k inde-
pendent cross sections, where k=2n'p"—2Ip"~'+2¢+1. Then its associated
Vawpr+2ms-bundle has a cross section and so there exists a map f: L"(p)—>
Xowpri2m,r Such that the following diagram is commutative:

f XZn’p'+Zm,k ?
L*(p) C L=(p).
Let j=Ip"'+m—¢ and 2g=p—1. By (6.4.1), we have
q
6.7 Prz;=(—1)"2j—1)zj, o+ 21 (=) 2m y*z;, 4 5.

Since 2(j+¢)<n and n'p"+m—k'+1<j+q<p" by the assumption (),
[*2j04-s (0<s<q) is given by Corollary 6.6, and its -coefficient is

-
IZ=}11< =1y pr-t f g—s+m— t),a,/. In this summation, the binomial coefficients

are zero if /’2c1 by the condition (x). Therefore we have
6.8) Fraa-e=( . LRy for 0<s<g,
If 0<<t<{¢g—1, we have
q .
r0anl B (e

=2m<m: l)ﬂ,x yHr2-l= (2m— 2t)<rtn>,u;x yirea-1
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by (6.7-8) and the simple calculations of the binomial coefficients. On the
other hand, we obtain

D= (T )P oy =)@ — Dy 20
=2m—2t— 1)(';"),11;96 yEitie-l]

by (6.8). Since (T)xo mod p and x>0 mod p, we have f*P'z;2=P'f*z;,

which is a contradiction.
If t=gq, we obtain similarly

f*@lzj: {(— 1)"(2j— 1)+s§q:1 (—l)qHzm(T)}ﬂ;xyz“zq"l
= (2m_1)<’g>ﬂ1xy2j+24_1,

Prf*z;= 2m<rg>ﬂ1x yHrRel

which is a contradiction.
Finally, if :>g, we have similarly a contradiction:

[¥Pz;=(2m— 2t)<’?>ﬂ;x y2irRasl)

P fz=@m—2— 1) 120, Q.ED.
RemARk 6.9. Comparing T heorem 6.8 with D. Sjerve’s Theorem for im-
mersions [ 14, Theorem 4.7 (i), we have, e.g., the following results:
L (p) £ R¥ 41, L*(p) <R3+
iof n=n'p"—[(n'p"'—p+2t)/3]—1
=n'p"—(n'p" ' —p+2t)/8—1, n'=1 or 2;
Ln(P)g_Riin—p’ Ln(p) gR3n~p+4
if n=n'p"—[(n'p"'—p+2t)/83]—1
=n'p"—(n'p" '—p+2t—1)/8—1, n'=1 or 2.
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