Note on the Enumeration of Embeddings of Real Projective Spaces, II

Tsutomu YASUI (Received October 28, 1975)

Introduction

In the previous note [19], under the same title we studied the enumeration problem of embeddings of the *n*-dimensional real projective space RP^n in the real (2n-2)-space R^{2n-2} for even *n*. In this note, we shall study this problem for odd *n* and prove the following

THEOREM C. Let $n \equiv 1(4)$, $n \neq 2^r + 1$ and let $n \ge 13$. Then there are eight distinct isotopy classes of embeddings of RP^n in R^{2n-2} .

To prove this theorem by applying [19, §5, Proposition], we shall calculate the cohomology group of the reduced symmetric product $(RP^n)^*$ of RP^n for odd n in §8.

As for the case $n \equiv 3(4)$, we now notice the following result in § 10.

PROPOSITION D. Let $n \equiv 3(4)$ and $n \ge 11$. Then

 $16 \leq \# [RP^n \subset R^{2n-2}] \leq 32, \qquad \# [RP^n \subset R^{2n-2}] \equiv 0(4),$

where $[RP^n \subset R^{2n-2}]$ denotes the cardinality of the set of isotopy classes of embeddings of RP^n in R^{2n-2} .

We shall freely use the notations in [19].

§8. Remarks on the cohomology of $(RP^n)^*$ for odd n

According to [7, (2.5-6)], there is a commutative diagram of double coverings

where $V_{n+1,2}$ is the Stiefel manifold of 2-frames in \mathbb{R}^{n+1} , D_4 is the dihedral group of order 8, both f and f' are homotopy equivalences and both $Z_{n+1,2}$ and $SZ_{n+1,2}$ are (2n-1)-dimensional manifolds.

(8.1) For odd n, the integral cohomology group $H^{i}(Z_{n+1,2}; Z) = H^{i}(RP^{n} \times RP^{n} - \Delta; Z)$ ($i \ge 1$) is finite and has no odd torsion.

PROOF. Since *n* is odd, RP^n is orientable and so is $RP^n \times RP^n$. The Poincaré-Lefschetz duality provides the isomorphism $H^{2n-i}(RP^n \times RP^n - \Delta; Z) = H_i(RP^n \times RP^n, \Delta; Z)$ for all *i*. This isomorphism and the split short exact sequence $0 \rightarrow H_i(RP^n; Z) \rightarrow H_i(RP^n \times RP^n; Z) \rightarrow H_i(RP^n \times RP^n, \Delta; Z) \rightarrow 0$ yield (8.1).

Let $\underline{Z} = \{Z\}$ be the local system on $SZ_{n+1,2}$ associated with the double covering $Z_{n+1,2} \rightarrow SZ_{n+1,2}$, and consider the two Thom-Gysin exact sequences ([16, pp. 282-283]) associated with this double covering:

$$\cdots \rightarrow H^{i}(SZ_{n+1,2}; \mathbb{Z}) \rightarrow H^{i}(Z_{n+1,2}; \mathbb{Z}) \rightarrow H^{i}(SZ_{n+1,2}; \mathbb{Z}) \rightarrow H^{i+1}(SZ_{n+1,2}; \mathbb{Z}) \rightarrow \cdots,$$

$$\cdots \rightarrow H^{i}(SZ_{n+1,2}; \mathbb{Z}) \rightarrow H^{i}(Z_{n+1,2}; \mathbb{Z}) \rightarrow H^{i}(SZ_{n+1,2}; \mathbb{Z}) \rightarrow H^{i+1}(SZ_{n+1,2}; \mathbb{Z}) \rightarrow \cdots.$$

By using these exact sequences and (8.1), we see the following result by induction. (8.2) For odd n, $H^{i}(SZ_{n+1,2}; \underline{Z})$ and $H^{i}(SZ_{n+1,2}; Z) = H^{i}((RP^{n})^{*}; Z)$ are finite and have no odd torsion.

Now, let $n=2^r+s$ (≥ 11), $0 < s < 2^r$ and s be odd. Then (6.3) also holds by the same proof as in §6, that is,

(8.3) the mod 2 cohomology group $H^{i}((\mathbb{RP}^{n})^{*}; \mathbb{Z}_{2})$ for $2n-4 \le i \le 2n-1$ is given as follows:

i	$H^i((\mathbb{R}\mathbb{P}^n)^*;\mathbb{Z}_2)$	basis
2n-1	Z ₂	$vx^{2^{r+1}-2}y^s$
2n-2	$Z_2 + Z_2$	$vx^{2^{r+1}-3}y^s, x^{2^{r+1}-2}y^s$
2n-3	$Z_2 + Z_2 + Z_2$	$vx^{2^{r+1}-4}y^s, x^{2^{r+1}-3}y^s, vx^{2^{r+1}-2}y^{s-1}$
2n-4	$Z_2 + Z_2 + Z_2 + Z_2$	$vx^{2^{r+1}-5}y^s$, $x^{2^{r+1}-4}y^s$, $vx^{2^{r+1}-3}y^{s-1}$, $x^{2^{r+1}-2}y^{s-1}$

where deg v = deg x = 1, deg y = 2, $v^2 = vx$, $Sq^1y = xy$ and $x^{2^{r+1}-1} = 0$.

Furthermore, by the result of S. Feder [5, Corollary 4.1] and (6.1),

(8.4) $x^{2i}y^{n-i-1} \neq 0$ if and only if $i=2^t-1$ for some t.

Since s is odd, simple calculations show the relations

 $Sq^{1}(vx^{2^{r+1}-5}y^{s}) = vx^{2^{r+1}-4}y^{s}, \quad Sq^{1}(x^{2^{r+1}-4}y^{s}) = x^{2^{r+1}-3}y^{s},$

222

Note on the Enumeration of Embeddings of Real Projective Spaces, II

$$vx^{2^{r+1}-3}y^{s-1} = Sq^{1}(vx^{2^{r+1}-4}y^{s-1}), \quad x^{2^{r+1}-2}y^{s-1} = Sq^{1}(x^{2^{r+1}-3}y^{s-1}).$$

Consider the Bockstein exact sequence

associated with $0 \longrightarrow Z \xrightarrow{\times 2} Z \xrightarrow{\rho_2} Z_2 \longrightarrow 0$. Then (8.2), (8.3) and the above relations for $Sq^1 = \rho_2\beta_2$ yield the following results:

(8.5) $\rho_2 H^{2n-4}((\mathbb{R}P^n)^*; \mathbb{Z}) = \mathbb{Z}_2 + \mathbb{Z}_2$ generated by $\{vx^{2^{r+1}-3}y^{s-1}, x^{2^{r+1}-2}y^{s-1}\}$ and $H^{2n-3}((\mathbb{R}P^n)^*; \mathbb{Z}) = \mathbb{Z}_2 + \mathbb{Z}_2$ generated by $\{\beta_2(x^{2^{r+1}-4}y^s), \beta_2(vx^{2^{r+1}-5}y^s)\}$.

§9. Proof of Theorem C

Now, we prove the following

THEOREM C. Let $n \equiv 1(4)$, $n \neq 2^r + 1$ and let $n \ge 13$. Then

$$#[RP^n \subset R^{2n-2}] = 8.$$

PROOF. The existence of an embedding of RP^n in R^{2n-2} is shown in [10, Theorem 7.2.2].

Consider the proposition in §5 for $M = RP^n$, where the homomorphisms $\Theta^i: H^{i-1}((RP^n)^*; Z) \longrightarrow H^{i+1}((RP^n)^*; Z_2)$ for i = 2n-2, 2n-3,

$$\Gamma: H^{2n-3}((RP^n)^*; Z_2) \longrightarrow H^{2n-1}((RP^n)^*; Z_2)$$

are given by $\Theta^{i}(a) = Sq^{2}\rho_{2}a$, $\Gamma(b) = Sq^{2}b$ because *n* is odd.

Let $n=2^r+s$, $0 < s < 2^r$. By the relations in (8.3), simple calculations show that $Sq^2(y^t) = ty^{t+1} + {t \choose 2}x^2y^t$, and so we have $\Gamma(vx^{2^{r+1}-4}y^s) = Sq^2(vx^{2^{r+1}-4}y^s)$ $= vx^{2^{r+1}-2}y^s + {s \choose 2}vx^{2^{r+1}-2}y^s = vx^{2^{r+1}-2}y^s$ by (8.4) and the assumption that $s \equiv 1(4)$. Therefore, by (8.3),

(9.1) Γ is an epimorphism.

Also, by the relations in (8.3) and (8.4), we see easily that

$$\Theta^{2n-2}\beta_2(vx^{2^{r+1}-5}y^s) = vx^{2^{r+1}-2}y^s, \ \Theta^{2n-2}\beta_2(x^{2^{r+1}-4}y^s) = 0,$$

since $\Theta^{2n-2}\beta_2 = Sq^2Sq^1$. These relations, (8.3) and (8.5) show that

Furthermore, we see easily that

223

Tsutomu YASUI

$$Sq^{2}(x^{2^{r+1}-2}y^{s-1}) = Sq^{2}(vx^{2^{r+1}-3}y^{s-1}) = 0$$

by the relations in (8.3). Therefore, by (8.5), we have

(9.3) Coker $\Theta^{2n-3} = H^{2n-2}((RP^n)^*; Z_2) = Z_2 + Z_2.$

By (9.1)-(9.3), Theorem C follows from the proposition in §5 for $M = RP^n$.

§10. Proof of Proposition D

Finally, we notice the following

PROPOSITION D. Let $n \equiv 3(4)$ and $n \ge 11$. Then

$$16 \leq \#[RP^n \subset R^{2n-2}] \leq 32, \quad \#[RP^n \subset R^{2n-2}] \equiv 0(4).$$

PROOF. The existence of an embedding of RP^n in R^{2n-2} is shown in [10, Theorem 7.2.2].

By Y. Nomura's theorem [12, Theorem 2.4], we have

(10.1)
$$[RP^n \subset R^{2n-2}] = \bigcup_{\sigma \in \operatorname{Ker} \Theta^{2n-2}} (H^{2n-2}((RP^n)^*; Z_2)/\operatorname{Im} \Theta^{2n-3}) \times \operatorname{Coker} \Phi_{\sigma},$$

where Φ_{σ} : Ker $\Theta^{2n-3} \rightarrow \text{Coker } \Gamma$ is the twisted secondary operation defined in [12, §2, p. 6] and Θ^{i} (i=2n-2, 2n-3) and Γ are the homomorphisms given in the proof of §9.

On the other hand, we have the following relations by the similar calculations to those in §9 noticing that $s \equiv 3(4)$:

$$Sq^{2}(vx^{2^{r+1}-3}y^{s-1}) = Sq^{2}(x^{2^{r+1}-2}y^{s-1}) = 0,$$

$$\Theta^{2n-2}\beta_{2}(vx^{2^{r+1}-5}y^{s}) = \Theta^{2n-2}\beta_{2}(x^{2^{r+1}-4}y^{s}) = 0,$$

$$\Gamma(vx^{2^{r+1}-4}y^{s}) = \Gamma(x^{2^{r+1}-3}y^{s}) = \Gamma(vx^{2^{r+1}-2}y^{s-1}) = 0.$$

Therefore, it follows from (8.3) and (8.5) that

$$H^{2n-2}((RP^n)^*; Z_2)/\text{Im }\Theta^{2n-3} = Z_2 + Z_2,$$

Ker $\Theta^{2n-2} = Z_2 + Z_2,$ Coker $\Gamma = Z_2.$

Hence Coker $\Phi_{\sigma} = 0$ or Z_2 for any $\sigma \in \operatorname{Ker} \Theta^{2n-2}$, and so we have Proposition D by (10.1).

References

(continued from [19])

[16] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.

Note on the Enumeration of Embeddings of Real Projective Spaces, II

- [17] B. Steer, On the embedding of projective spaces in euclidean space, Proc. London Math. Soc. 21 (1970), 489-510.
- [18] R. Thom, Espace fibrés en sphères et carrés de Steenrod, Ann. Sci. Ecole Norm. Sup. 69 (1952), 109–182.
- [19] T. Yasui, Note on the enumeration of embeddings of real projective spaces, Hiroshima Math. J. 3 (1973), 409-418.

Department of Mathematics, Faculty of Education, Yamagata University