Note on the Enumeration of Embeddings of Real Projective Spaces, II

Tsutomu Yasui
(Received October 28, 1975)

Introduction

In the previous note [19], under the same title we studied the enumeration problem of embeddings of the n-dimensional real projective space $R P^{n}$ in the real ($2 n-2$)-space $R^{2 n-2}$ for even n. In this note, we shall study this problem for odd n and prove the following

Theorem C. Let $n \equiv 1(4), n \neq 2^{r}+1$ and let $n \geq 13$. Then there are eight distinct isotopy classes of embeddings of $R P^{n}$ in $R^{2 n-2}$.

To prove this theorem by applying [19, §5, Proposition], we shall calculate the cohomology group of the reduced symmetric product $\left(R P^{n}\right)^{*}$ of $R P^{n}$ for odd n in §8.

As for the case $n \equiv 3(4)$, we now notice the following result in $\S 10$.
Proposition D. Let $n \equiv 3(4)$ and $n \geq 11$. Then

$$
16 \leq \#\left[R P^{n} \subset R^{2 n-2}\right] \leq 32, \quad \#\left[R P^{n} \subset R^{2 n-2}\right] \equiv 0(4)
$$

where $\#\left[R P^{n} \subset R^{2 n-2}\right]$ denotes the cardinality of the set of isotopy classes of embeddings of $R P^{n}$ in $R^{2 n-2}$.

We shall freely use the notations in [19].
§8. Remarks on the cohomology of (RPn $)^{*}$ for odd n
According to [7, (2.5-6)], there is a commutative diagram of double coverings

where $V_{n+1,2}$ is the Stiefel manifold of 2 -frames in R^{n+1}, D_{4} is the dihedral group of order 8 , both f and f^{\prime} are homotopy equivalences and both $Z_{n+1,2}$ and $S Z_{n+1,2}$
are $(2 n-1)$-dimensional manifolds.
(8.1) For odd n, the integral cohomology group $H^{i}\left(Z_{n+1,2} ; Z\right)=H^{i}\left(R P^{n} \times\right.$ $\left.R^{n}-\Delta ; Z\right)(i \geq 1)$ is finite and has no odd torsion.

Proof. Since n is odd, $R P^{n}$ is orientable and so is $R P^{n} \times R P^{n}$. The Poincaré-Lefschetz duality provides the isomorphism $H^{2 n-1}\left(R P^{n} \times R P^{n}-\Delta\right.$; $Z)=H_{i}\left(R P^{n} \times R P^{n}, \Delta ; Z\right)$ for all i. This isomorphism and the split short exact sequence $\quad 0 \rightarrow H_{i}\left(R P^{n} ; Z\right) \rightarrow H_{i}\left(R P^{n} \times R P^{n} ; Z\right) \rightarrow H_{i}\left(R P^{n} \times R P^{n}, \Delta ; Z\right) \rightarrow 0 \quad$ yield (8.1).

Let $\underline{Z}=\{Z\}$ be the local system on $S Z_{n+1,2}$ associated with the double covering $Z_{n+1,2} \rightarrow S Z_{n+1,2}$, and consider the two Thom-Gysin exact sequences ([16, pp. 282-283]) associated with this double covering:

$$
\begin{aligned}
& \cdots \rightarrow H^{i}\left(S Z_{n+1,2} ; Z\right) \rightarrow H^{i}\left(Z_{n+1,2} ; Z\right) \rightarrow H^{i}\left(S Z_{n+1,2} ; \underline{Z}\right) \rightarrow H^{i+1}\left(S Z_{n+1,2} ; Z\right) \rightarrow \cdots, \\
& \cdots \rightarrow H^{i}\left(S Z_{n+1,2} ; \underline{Z}\right) \rightarrow H^{i}\left(Z_{n+1,2} ; Z\right) \rightarrow H^{i}\left(S Z_{n+1,2} ; Z\right) \rightarrow H^{i+1}\left(S Z_{n+1,2} ; \underline{Z}\right) \rightarrow \cdots
\end{aligned}
$$

By using these exact sequences and (8.1), we see the following result by induction. (8.2). For odd $n, H^{i}\left(S Z_{n+1,2} ; \underline{Z}\right)$ and $H^{i}\left(S Z_{n+1,2} ; Z\right)=H^{i}\left(\left(R P^{n}\right)^{*} ; Z\right)$ are finite and have no odd torsion.

Now, let $n=2^{r}+s(\geq 11), 0<s<2^{r}$ and s be odd. Then (6.3) also holds by the same proof as in $\S 6$, that is,
(8.3) the mod 2 cohomology group $H^{i}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$ for $2 n-4 \leq i \leq 2 n-1$ is given as follows:

i	$H^{l}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$	basis
$2 n-1$	Z_{2}	$v x^{2 r+1-2} y^{s}$
$2 n-2$	$Z_{2}+Z_{2}$	$v x^{2 r+1-3} y^{s}, x^{2 r+1-2} y^{s}$
$2 n-3$	$Z_{2}+Z_{2}+Z_{2}$	$v x^{2 r+1-4} y^{s}, x^{2 r+1-3} y^{s}, v x^{2 r+1-2} y^{s-1}$
$2 n-4$	$Z_{2}+Z_{2}+Z_{2}+Z_{2}$	$v x^{2 r+1-5} y^{s}, x^{2 r+1-4} y^{s}, v x^{2 r+1-3} y^{s-1}, x^{2 r+1-2} y^{s-1}$

where $\operatorname{deg} v=\operatorname{deg} x=1, \operatorname{deg} y=2, v^{2}=v x, S q^{1} y=x y$ and $x^{2 r+1-1}=0$.
Furthermore, by the result of S. Feder [5, Corollary 4.1] and (6.1),
(8.4) $x^{2 t} y^{n-i-1} \neq 0$ if and only if $i=2^{t}-1$ for some t.

Since s is odd, simple calculations show the relations

$$
S q^{1}\left(v x^{2 r+1-5} y^{s}\right)=v x^{2 r+1-4} y^{5}, \quad S q^{1}\left(x^{2 r+1-4} y^{s}\right)=x^{2 r+1-3} y^{5}
$$

$$
v x^{2 r+1-3} y^{s-1}=S q^{1}\left(v x^{2 r+1-4} y^{s-1}\right), \quad x^{2 r+1-2} y^{s-1}=S q^{1}\left(x^{2 r+1-3} y^{s-1}\right)
$$

Consider the Bockstein exact sequence

$$
\begin{aligned}
\cdots & H^{2 n-4}\left(\left(R P^{n}\right)^{*} ; Z\right) \xrightarrow{\rho_{2}} H^{2 n-4}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) \xrightarrow{\beta_{2}} H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z\right) \\
& \xrightarrow{\times 2} H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z\right) \xrightarrow{\rho_{2}} H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) \longrightarrow \cdots
\end{aligned}
$$

associated with $0 \longrightarrow Z \xrightarrow{\times 2} Z \xrightarrow{\rho_{2}} Z_{2} \longrightarrow 0$. Then (8.2), (8.3) and the above relations for $S q^{1}=\rho_{2} \beta_{2}$ yield the following results:
(8.5) $\rho_{2} H^{2 n-4}\left(\left(R P^{n}\right)^{*} ; Z\right)=Z_{2}+Z_{2}$ generated by $\left\{v x^{2 r+1-3} y^{s-1}, x^{2 r+1-2} y^{s-1}\right\}$ and $H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z\right)=Z_{2}+Z_{2}$ generated by $\left\{\beta_{2}\left(x^{2 r+1-4} y^{s}\right), \beta_{2}\left(v x^{2 r+1}-5 y^{s}\right)\right\}$.

§9. Proof of Theorem C

Now, we prove the following
Theorem C. Let $n \equiv 1(4), n \neq 2^{r}+1$ and let $n \geq 13$. Then

$$
\#\left[R P^{n} \subset R^{2 n-2}\right]=8 .
$$

Proof. The existence of an embedding of $R P^{n}$ in $R^{2 n-2}$ is shown in [10, Theorem 7.2.2].

Consider the proposition in $\S 5$ for $M=R P^{n}$, where the homomorphisms

$$
\begin{aligned}
& \Theta^{i}: H^{i-1}\left(\left(R P^{n}\right)^{*} ; Z\right) \longrightarrow H^{i+1}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) \quad \text { for } \quad i=2 n-2,2 n-3, \\
& \Gamma: H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) \longrightarrow H^{2 n-1}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)
\end{aligned}
$$

are given by $\Theta^{i}(a)=S q^{2} \rho_{2} a, \Gamma(b)=S q^{2} b$ because n is odd.
Let $n=2^{r}+s, 0<s<2^{r}$. By the relations in (8.3), simple calculations show that $S q^{2}\left(y^{t}\right)=t y^{t+1}+\binom{t}{2} x^{2} y^{t}$, and so we have $\Gamma\left(v x^{2 r+1-4} y^{s}\right)=S q^{2}\left(v x^{2 r+1-4} y^{s}\right)$ $=v x^{2 r+1-2} y^{s}+\binom{s}{2} v x^{2 r+1-2} y^{s}=v x^{2 r+1-2} y^{s}$ by (8.4) and the assumption that $s \equiv 1$ (4). Therefore, by (8.3),
(9.1) Γ is an epimorphism.

Also, by the relations in (8.3) and (8.4), we see easily that

$$
\Theta^{2 n-2} \beta_{2}\left(v x^{2 r+1-5} y^{s}\right)=v x^{2 r+1-2} y^{s}, \Theta^{2 n-2} \beta_{2}\left(x^{2 r+1-4} y^{s}\right)=0,
$$

since $\Theta^{2 n-2} \beta_{2}=S q^{2} S q^{1}$. These relations, (8.3) and (8.5) show that

$$
\begin{equation*}
\operatorname{Ker} \Theta^{2 n-2}=Z_{2} \tag{9.2}
\end{equation*}
$$

Furthermore, we see easily that

$$
S q^{2}\left(x^{2 r+1-2} y^{s-1}\right)=S q^{2}\left(v x^{2 r+1-3} y^{s-1}\right)=0
$$

by the relations in (8.3). Therefore, by (8.5), we have

$$
\begin{equation*}
\operatorname{Coker} \Theta^{2 n-3}=H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)=Z_{2}+Z_{2} \tag{9.3}
\end{equation*}
$$

By (9.1)-(9.3), Theorem C follows from the proposition in $\S 5$ for $M=R P^{n}$.

§ 10. Proof of Proposition D

Finally, we notice the following
Proposition D. Let $n \equiv 3(4)$ and $n \geq 11$. Then

$$
16 \leq \#\left[R P^{n} \subset R^{2 n-2}\right] \leq 32, \quad \#\left[R P^{n} \subset R^{2 n-2}\right] \equiv 0(4) .
$$

Proof. The existence of an embedding of $R P^{n}$ in $R^{2 n-2}$ is shown in [10, Theorem 7.2.2].

By Y. Nomura's theorem [12, Theorem 2.4], we have
(10.1) $\left[R P^{n} \subset R^{2 n-2}\right]=\underset{\sigma \in K e r \theta^{2 n-2}}{ }\left(H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) / \operatorname{Im} \Theta^{2 n-3}\right) \times \operatorname{Coker} \Phi_{\sigma}$,
where $\Phi_{\sigma}: \operatorname{Ker} \Theta^{2 n-3} \rightarrow \operatorname{Coker} \Gamma$ is the twisted secondary operation defined in $\left[12, \S 2\right.$, p. 6] and $\Theta^{l}(i=2 n-2,2 n-3)$ and Γ are the homomorphisms given in the proof of $\S 9$.

On the other hand, we have the following relations by the similar calculations to those in §9 noticing that $s \equiv 3(4)$:

$$
\begin{aligned}
& S q^{2}\left(v x^{2 r+1-3} y^{s-1}\right)=S q^{2}\left(x^{2 r+1-2} y^{s-1}\right)=0, \\
& \Theta^{2 n-2} \beta_{2}\left(v x^{2 r+1-5} y^{s}\right)=\Theta^{2 n-2} \beta_{2}\left(x^{2 r+1-4} y^{s}\right)=0, \\
& \Gamma\left(v x^{2 r+1-4} y^{s}\right)=\Gamma\left(x^{2 r+1-3} y^{s}\right)=\Gamma\left(v x^{2 r+1-2} y^{s-1}\right)=0 .
\end{aligned}
$$

Therefore, it follows from (8.3) and (8.5) that

$$
\begin{aligned}
& H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) / \operatorname{Im} \Theta^{2 n-3}=Z_{2}+Z_{2} \\
& \operatorname{Ker} \Theta^{2 n-2}=Z_{2}+Z_{2}, \quad \operatorname{Coker} \Gamma=Z_{2}
\end{aligned}
$$

Hence $\operatorname{Coker} \Phi_{\sigma}=0$ or Z_{2} for any $\sigma \in \operatorname{Ker} \Theta^{2 n-2}$, and so we have Proposition D by (10.1).

References

(continued from [19])
[16] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.
[17] B. Steer, On the embedding of projective spaces in euclidean space, Proc. London Math. Soc. 21 (1970), 489-510.
[18] R. Thom, Espace fibrés en sphères et carrés de Steenrod, Ann. Sci. Ecole Norm. Sup. 69 (1952), 109-182.
[19] T. Yasui, Note on the enumeration of embeddings of real projective spaces, Hiroshima Math. J. 3 (1973), 409-418.

Department of Mathematics,
Faculty of Education,
Yamagata University

