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Abstract. Let f: M —* N be an embedding between differentiable manifolds and set
n\{NM,Emb(M,N),f) = [M c N]f, where Emb(M,N) denotes the space of embed
dings of Mto N. Then it is known that there is a 7Ti(A/A/,/)-action on [M <=. N\f such
that [M <= N\j/n\{NM,f) is equivalent to the set [M c N]^ of isotopy classes of
embeddings homotopic to/ In this paper, we will study theset \M" c CP"\j for an n-
manifold M". Further we will determine the sets [RP" e CP"][f] and [CP" <= C/>2"](/].

1. Introduction and statement of results

Throughout this paper, n-manifolds mean /j-dimensional connected differ
entiable manifolds without boundary and embeddings stand for differentiable
embeddings of compact manifolds to manifolds. For any map / : M —• N, we
denote by [M a N],^ the set of isotopy classes of embeddings homotopic to/.
A. Haefliger's existence theorem [3] implies that for any compact H-manifold
M" and any map / : M" —• CP" (n > 2), there exists an embedding homotopic
to f. Henceforth we would like to determine the set [A/" c= CP")^y

Set n[{NM,Emb(M,N),f) = [M <=N}f, where Emb(M,N) denotes the
space of embeddings of M to N. Then it is known (cf. [2], [7], [8], [12]) that
there is a n\(NM,f)-action on [M <=z N]j- such that

(1.1) [M^N)f/n](NM,f) = [M^N}{n.

In this paper, we will study the set [M" <= CP"]j- for an «-manifold M"
and a map / : M" —* CP". Furthermore we will determine the isotopy sets of
embeddings [RP" c CP"][f] and [CPn <= CP2"][f].

The integral cohomology of CP" is given by

H'(CP";Z) = Z[-]/(r"+1)(deg_- = 2).
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Theorem 1.1. Let M" be a compact n-manifold (« > 3) and f: M" —*
CP" a map. If n is even and M" is orientable, assume that f*p2z = 0 or
H\(M";Z) does not have Zi as its direct summand. Then there exist the
following exact sequences:

0-» Hn(M";Z)/f*{z)H"-2{Mn;Z) - [AT c CP")f

_ H"-\Mn;Z) -> 0, if n= 1(2), Wl{M") = 0,

0- H"(Mn;Z2)/rp2(z)H"-2(Mn-Z2) - [M" c CP"]/

-ZSkerS?1 -> 0, //» = 0(2), h>i(AT)^0,

0- Hn{Mn;Z2)/rp2{z)Hn-2{Mn;Z2) -* [M" a CP"]f

-» H"-[{M";Z2) -> 0, otherwise,

where p2 is the reduction mod2 am/ So1 : H"-x{Mn\Z2) -» Hn{M"\Z2).

Corollary 1.2. Lef Jlf" oe a compact n-manifold. If f : M" —> CP"
induces an epimorphism f# : n2(M") —> n2{CP") = Z, //ie«

^/f«-'(M,,;Z) // n= l(2),»v,(A/") = 05
[M" c CP^ = < Z 0 kerS?1 if n= 0(2), iv^AP) * 0,

li/"-,(Af,;Z2) otherwise.
Corollary 1.3. If M" is simply connected, then for any f : M" —> CP",

[M" c CP"]f = [M" <= CP"](/]

JH"{Mn\Z)jr{z)Hn~2{M";Z) for nodd,
~ {H"{Mn;Z2)/f*p2{z)Hn-2{M";Z2) for n even.

In particular, for n > 2,

[CP" e CP2"]^ = (Z/(deg/* :H2{CP2n;Z) -• //2(CP";Z))Z) <g>Z2.

Corollary 1.4. If n> 3, then for any f: PP" —» CP" there exist
countably many distinct isotopy classes of embeddings homotopic to f

Remark. B.-H Li and P. Zhang [9] have investigated the set \M" a N2"}^
in a different way. Some results of [9] and this paper overlap, e.g., Corollary
1.3. Combination of the results of [9] and this paper enriches the study of
[Mn c CP")f and hence [Mn <= CP"]{/].

2. Larmore's approach to [M c: /V]y

We recall Larmore's method [7], [8] of computing the set
7ii{NM,Emb(M,N),f) = [M <= N)f for an embedding f:M-^N.
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For a manifold V without boundary, let RV = (V2 - AV) U^SV x [0,e),
where ^ : 5Fx(0,e)-> V2-AV is a map defined by $(v,t) = (Gxp(tv),exp(-tv)).
Here we use a Riemannian metric on V and SV stands for the total space of
the sphere bundle associated with the tangent bundle of V. A free Z2-action
on RV is induced from the antipodal map of SV and the interchanging of
elements of V2. The spaces R*V and V* are defined as quotient spaces

R*V = RV/Z2 and V* = (V2 - AV)/Z2.

Then R*V is a 2w-manifold (n = dim F) with boundary PF(^5F/Z2) and
P*F-PF=K*. The pair of spaces {R*{V x RX),P(V x Px)) denotes
the inductive limit of (P*(K x Rk),P{V x /?*)) and R*iy : {R*V,PV) c
{R*(V x PX),P(K x Px)) denotes the natural inclusion.

For a space X, we define a space TX by

rA- = (A-2 xS'x)/Z2,

where the involution on I2xSx is given by (x,y,v) —> (y,x,—v). The
natural inclusion AX x 5*x cz X2 x S"x induces a natural inclusion A:: X x

Px c rA\ A homotopy equivalence ij/v : {R*(V x PX),P(K x Px)) -> (TV,
V x Px) has been constructed in [8, p. 84].

Let Cv = *l>vR*iv : {R* V,PV) -> {TV, V x Px). For an embedding /':
M —• N, we denote by [(R*M, PM),Cn}^,r-/ the set of homotopy classes of
homotopy liftings of £NR*f : {R*M,PM)-> {TN,N x Px) to (R*N,PN).

Theorem 2.1 (Larmore). If 2 dim TV > 3(dimM+ 1), then for an em
bedding f : M —> N, there is a bijection

[M<zN)f = [(R*M,PM),(N}u,R,r

Let 0N = t;N\R*N : R*N -• r# and /^ = C,N\PN : PN ^ N x Px be the
restrictions of Cw to P'jV and PN, respectively, and regard them as fibrations
in a standard way. Both fibrations have (// - 2)-connected fibers (n = dim N)
[7] (or [8, §5]). Let 71(/0n and nqpN be sheaves of </-th homotopy groups of
fibrations On and pN, respectively, (in this case, both are local systems), and
nqL,N a subsheaf of k(IQn such that

_ f nq0N over TN - N x P3r,
"^"iw^iv overJVxPx.

The sheaves ti^On, nqpN, and nqC,N for q = 2n - l,2/i are given in [8, Lemmas
5.3.2-5.3.4]. Let Z[u\ be a sheaf of coefficients, locally isomorphic to Z,
associated with u = w\(N2 x Sx —> TN) e Hl(rN;Z2), and Z[w]° a subsheaf
of Z[m] defined by Z[u]° = Z\u)rN_NxP,•..
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Lemma 2.2 (cf. Larmore [8]). Let N = CP" (n > 3). Then
(1) nin-xQN, Kin-\PN and n2n-\(,N are trivial sheaves of the group Z.
(2) The natural projection n\ :Z + Z2^>Z induces the following exact

sequences of sheaves over TN, which are split if n is odd:

Z2 x TN —• k^On —^ Z[u]0

0- Z2xTN nin^N -^ Z[u]°

o,

»0.

Let Lu(Z + Z2,2n+ 1) and LU(Z,2n+\) be the fiber bundles over TN
with fiber K(Z + Z2,2n + 1) and K(Z, 2n + 1) associated with the local systems
7C2/10/V and Z[u], respectively (see e.g., [10, §3]). The map n\ : ti^On —* Z[u] in
Lemma 2.2 induces a bundle map

(2.1) n\ :LU{Z + Z2,2n+ 1) -» Lu{Z,2n + 1) over TN.

The 2-stage Postnikov tower for Cn = {0n,Pn) '• {P*N, PN)
(TN,N x Px) (N = CP") is constructed in §4 as follows:

(2.2)

PN R*N

F' E2

Ei

k[

>tf(Z2,2w+l)- LU(Z + Z2,2n + \) L„(Z, 2«+l)

N xP™

(2.3)

TN
w

K(Z,2n),

p2W = (p{l®\)eH2"(rN;Z2) in [14, §2]
(see also [18, Proposition 2.6]),

(2.4) n\k\, or 7t\tk\ e//2w+l(£i;Z[/>fi/]), corresponds to the relation
(r<g>l- l®z)W = 0.

Here //2(rA^Z[w]°) = //2(r^ArxPx;Z[w])=Z<z(g)l-l ® z> (see Lemma
4.1(2)).

By the standard spectral sequence argument, we have the following

Lemma 2.3 (cf. Larmore [8, (6.1-1)]). Let N = CP" (n > 3). Then for
any embedding f : M" —* N, there exists an exact sequence
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ff*-2(/rj»/;(0*jr/rWiC*) -^ H2"(R*M;(0NR*frln2nCN)

—,[(P*M,PM),CAr]c^./^//2,'-1(P*M;(^PY)-V2,I_1^)^0,

if/iere d2 is a cohomology operation associated with the Postnikov invariant of
the 2-stage Postnikov tower for (N-

3. Proofs

Before proving Theorem 1.1, we give the proofs of Corollaries 1.2-1.4.

Proof of Corollary 1.2. If f# : n2(M") -» n2(CP")(= Z) is surjective,
then so is ft : H2{M";Z)-> H2(CP";Z) because n2{CP") s H2{CP";Z).
Hence H2{M";Z{or Z2)) has a direct summand Z(f*{z)} (or Z2</>2(z)»
and so the first terms in the short exact sequences of Theorem 1.1 vanish.
Therefore, Corollary 1.2 follows. Note that when W](M) = 0, Corollary 1.2
coincides with [9, Corollary 1.3]. •

Proofs of Corollaries 1.3-1.4. In general, n\((CP")M" ,f) =
H2(Mx(S\*); n2{CPn)){^H\M;Z)), by the Eilenberg classification theorem
[15, p. 243]. Hence n\{{CP")M\f) = 0 if M" is simply connected or
M" = RP". Thus Theorem 1.1, together with (1.1), leads to Corollaries 1.3-
1.4. •

The rest of this section is devoted to the proof of Theorem 1.1. Theorem
2.1 for /: M" —> N = CP", together with Lemmas 2.2-2.3, gives rise to an
exact sequence

(3.1) 0-» cokerrf2 -• [M c CP"]f -> H2"-]{R*M;Z) - 0,

where d2 : //2"-2(P*M;Z) -> H2a(R*M',{eNR*f)~ln2„CN) is determined by the
Postnikov invariant k\ of the Postnikov tower (2.2).

The cohomology group H2"-\R*M\Z){^H2"-\M*;Z)) is calculated by
Haefliger [4] (cf. [11, 11.9, 11.19]) as follows:

(H"-\M;Z) if n= 1(2),u'i(M) = 0,
(3.2) H2"-\R*M;Z) = I Z®kerSq] if n=0(2),w^M) * 0,

(H"-](M;Z2) otherwise,

where Sql : H"-\M;Z2) -> H"(M;Z2).
Let y = {0NR*fY{u)eH\R*M\Z2). Since P*M is a 2«-manifold with

boundary PM, the map n\ in Lemma 2.2 induces isomorphisms

/^"(/TM^PyrW/v) S //2"(**A/;ZM°) s //2"(P*M,PA/;Z[t;])
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Hence, by (2.4) we have

(3.3) coker</2 s cokern,,^ : //2n~2(P*A/;Z) —H2n(R*M,PM;Z[v]),

where

(3.4) kl«/2(*) = (Cjv*7V(z® 1 " 1®z)U*.

Let A2V(= V2/Z2) be the 2-fold symmetric product of K, and JK =
AV/Z2. Then /l2 P-A V= V* = R* V-PV. The cohomology of [A2 V, AV)
has been determined by Larmore [6]. We freely use his definitions and
notations except for v= w\(V2 - AV —> V*) e Hl(V*;Z2) (v means m in [6]).
We set Z[v]A*v = Z[v] as in [6].

There exists an excision isomorphism

(3.5) e:H*(A2V,AV;G)^H*{R*V,PV;G) for G= Z,Z[v] and Z2.

For an w-manifold M, let //"(A/;Z) = Z<A/> or = Z2(fi2M,s), according as
M is orientable or not, and let H"(M;Z2) = Z2{M}. Then, by [6] and [17,
Proposition 5.2], we have

Lemma 3.1 (Larmore, Yasui). (1) If n = 1(2), n>i(Af) = 0, then

H2"{A2M,AM;Z[v}) = Z(A(M,M)y,

(2) otherwisep2 : H2"{A2M,AM;Z[v\) -^ H2,X(A2M, AM;Z2) =Z2<AMAM} is
an isomorphism.

Let /: R*M <= (R*M,PM) and y : PAf <= P*A/ be the natural inclusions.
The commutative diagram below indicates that the map p in [14], and so [18,
(2.2)], is reworded as

(3.6) p = j*0lf : H-{TM-Z2) -> H*(R*M;Z2) -=+ H*(M*;Z2).

AT —j-+ R*M -^-+P*(A/xPx)

M* ^-— {M2-AM)xz2Sx ——» TAf,

where />' and /' are the natural projection and inclusion, respectively, and 0'N is
determined in the diagram. Further [18, Lemma 3.3(2)] is reworded as

(3.7) re(AxAy) = 0*M{x®y+y ®x + xy®l + l® xy) e H*(R*M: Z2).
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Sublemma. (1) // n = \{2),wl{M) = 0, let H"-]{M;Z) = £i</<a
Z<.Y/>mod torsion. Then

H2"-2{R*M-Z) = Y, Zi(l/2)re{AxiAx,)y+ £ Z<re{Ax,Axj)>
\<i<2 \£i<j£x

+ {i*e{AxAM) |x e H"~2{M- Z)} mod torsion.

(2) Otherwise p2H2"~2(R*M;Z) contains the subgroup

{0*M(UM(x®\))\xe H"-2(M;Z2)} if n = 0(2),»v,(Af) =0,

{0*M(Sql(x®M' + M'®x))\xeH"-2(M;Z2)} if »r,(A/)#0,

where Um e H"(M2;Z2) is the Z2-Thom class of M.

Proof. The statement (1) is obtained in the same way as in the proof of
[18, Theorem 4.3] for n = 0(2), w\(M) = 0. Details are omitted. On the other
hand, (2) for n = 0(2) follows from (3.6) and [18, Lemma 2.9(2)]; while (2) for
u'i(Af) # 0 is obvious. •

Let n:{N2,AN) -> {A2N,AN) be the natural projection. By [6], the
element Axe H2(A2V,AV;Z[v}) for xeH2(V;Z) satisfies

n*(Ax) =x®\-\®xeH2( V1, AV; Z).

Lemma 3.2. If V is simply connected, then for any x € H2( V; Z), we have

e(Ax)=Cv(x®\ - 1®x)eH2{R*V,PV;Z[v)).

Proof. Let n : V2 - AV —> V* be the natural projection. Then, by
a simple calculation, we have n*j*i*e(Ax) = n*j*i*Cy(x® 1 - 1®x) in
H2(V2 - AV;Z). Here j* is an isomorphism. Both /* and n* are injective,
because we see easily that H\R*V;Z[v\) -> H]{PV;Z[v]){= Z2</?2'1» is sur-
jective and that Hx (V*\ Z) = 0 by considering the cohomology spectral sequence
of V2 - AV —> V* —• Px, respectively. This leads to the lemma. •

Hence, for an embedding /: M" —• CP", there are relations

(3.8) e(Ar(z)) = e(A2fy(Az) = {R*f)*e{Az) = MY)*(:®1 - 1®z).

Lemmas 3.1-3.2, (3.3)—(3.5) and (3.8) imply

(3.9)

coker d2

{ //2"(P*A/,PA/;ZH)/e(/f/*(z))//2"-2(P*A/;Z) if n= l(2),w,(A/) = 0,
=\H2"(R'M,PM]Z2)/e{Arp2{z))p2H2"-2(R*M;Z) otherwise.
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The followinglemma, together with (3.l)-(3.2) and (3.9),impliesTheorem 1.1.

Lemma 3.3. Under the assumption of Theorem 1.1,

H2"{R*M,PM;Z[v))/e{Ar{z))H2"-2{R*M;Z)

2 H"(M;Z)/f*(z)H"-2(M;Z) if n = 1(2), w, (A/) = 0,

//2"(P*A/,PA/;Z2)Myl/>2(z))/;2//2'I-2(P*A/;Z)

S H"{M; Z2)/f*p2{z)H"-2{M; Z2) otherwise.

Proof. Casel: n = \{2),w{(M) = 0. Since tf2"(P*M, PA/;Z[y]) = Z
by Lemma 3.1, it is sufficient to calculate (e/l/'*(z))(//2'|-2(P*M;Z)/torsion).
By [6, Theorem 14], we have the following relations

(AxiAxj)Af*(z) = 0 for 1 < ; < j < a,

(AxAM)Af*{z) = ±A{xf*(z),M) for xeH"~2(M;Z) of order infinite.

Hence e{Ar{z))H2"-2(R*M;Z) s r{z)H"-2(M;Z).
Case 2: u'i(Af)^0. If f*p2(z) = 0, then the lemma is obvious.

Therefore we assume that f*p2z^0. For xe H"~2(M;Z2), we have, by
(3.7) and [6, Theorem 11],

0*M{Sql(x® M'+M'® x))e(Af*p2{z)) = re(ASqKxAM'+AxAM)e(Af*p2{z))

= e(Axf*p2(z)AM).

Since f*p2(z)H"-2{M;Z2) = H"(M;Z2) by the assumption f*p2{z) ^ 0, we
have the lemma in case w\(M) ^ 0.

Case 3: n = 0(2),u',(A/) = 0. If/>2(z) = 0, then the lemma follows
immediately. We may assume that f*p2(z) ^ 0. In this case (Sq] + w\(M)) •
H"~2(M;Z2) = 0 by the assumption of Theorem 1.1. Therefore, by [18, (2.5)
and Proposition 2.6], UM{x® 1) e i/2"-2(rA/;Z2) for x e H"-2{M;Z2) can be
described as

UM{x®\) = {M®x +x®M) +J2(x'®x" +x"®x')
for some *',.y" e H"-\M; Z2) with *' # .v". Using (3.7) and [6, Theorem 11],
we have

0m{Vm{x® l)e(ArP2(z))) =e[[AMAx+Y.Ax'Ax")Af*P2^)
= e(AMAxrPl(z)),

thereby completing the proof of the case 3. •

Thus we have Theorem 1.1.
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4. Construction of the Postnikov tower

In this section, N stands for CP". We use the results in [14, §2] on
H*(rN;Z2) freely. Let fi2 be the Bockstein operator associated with the exact
sequence 0 —• Z[u] —• Z[u] —• Z2 —> 0 for ue //' (PW; Z2).

Lemma 4.1. LetN = CP". Then

(1) the reduction mod 2 induces an isomorphism

p2 :Hod(\rN;Z[u\) = ^ Z2</?2'(«2/ ®(z')2> -% Hodd(rN :Z2),
0<»',0<;'^H

(2) the natural inclusion q : N2 cz TN induecs an isomorphism

q* :Heve"(rN; Z[u\) -^ ^ Z(zj ®zi - z' ®zJ},
0<i<j<n

(3) the natural inclusion induces an isomorphism H2(rN,N x Px;Z[w]) ^
H2(rN;Z[u}),

(4) 0N : Hodd{rN;Z[u\) -> //"^(P'A^ZM) « surjective.

Proof. The £2-term of the cohomology spectral sequence for N2 <=
PW->PX is given by Es2' = 7/i(Px;//'(^2;Z)^), where H'(N2;Z)j is the
local system associated with ^ : 7T|(PX) = Z2<a> —• Aut{H'(N2;Z)) defined as
follows: Let ^ : n\(P°°) —* Aut(Z) be a non-trivial map and T : N2 —• jV2 be
the switching map. Then 0(a) = r^fa). :H'{N2;Z) -^ H'{N2;Z) —^->
H'{N2;Z). By [5, §3], we have

H*(P*; Z2<z/ (g) z> - z> ®z', z'®z^)
[0 if .y#0,/#y,

~ 1Z<r'®;:>-::>®::,"> if 5=0,/V;';

^(Px;Z<z'®z'̂ ) =| Z2 if .s is odd,

0 if s is even.

Thus H*{rN;Z[u]) has no odd torsion. In H*{rN;Z2), we have
p2P2,{u2J®{zi)2) = {Sql+u)(u2J®(zi)2) = u2J+]®(zi)2 and p2p»{I*) = 0 by
[1, Lemma 11] (see also [18, p. 563]). Hence (1) follows immediately. This
implies that all differentials in the spectral sequence are trivial and so (2)
follows. A simple calculation yields that H\TN; Z[u\) s H\N x P00;Z[u\) =
Z2<#f(l)> and H2{N x Px;Z[i/]) = 0, and so (3) follows. In the same way
as in (1), we see that H*{R*M;Z[v}) has no odd torsion. Hodd(R*N;Z2) =
vHeven{R*N;Z2) because of //odd(rjV;Z2) = uHcven{rN;Z2) and the sur-
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jectivity of 0*N : H*{FN;Z2) -+H*{R*N;Z2). Hence Hodd{R*N;Z[v]) =
pv2Heve"(R*N;Z2) = 0NP'2'Heve"{FN;Z2). Thus (4) follows. D

Construction of the Postnikov tower for £#. Let F be the homotopy fiber of
0N : R*N -» FN and iF e //2"-1(^;Z)(= Z, see §2) the fundamental class of P.
Then iF is transgressive. We denote r(iF) = We H2n{FN;Z)C\ker0N. Since
0N is surjective on Z2-cohomology [14, §2], we have p2W ^0 and therefore

(4.1) P2(rV)=<p(\®l

The first stage Postnikov tower for On is the principal fibration p\ : E\ —* rN
with classifying map W and there is a homotopy lifting q\.: P*7V —> Pi of 0#-

Let F' be the homotopy fiber of q\. Then P' is also the homotopy
fiber of if : F —* K(Z, 2n - 1). Further F' is (2« - l)-connected and n^F') =
7t2n(F) = Z + Z2. The 7Ti(£i)-action on n^F') is induced from the 7t| (re
action on n2„{F). The fundamental class /p e H2"(F'\ Z + Z2) of P' is trans
gressive, e.g., [10, Theorem 4.1]. To calculate coker</2 in (3.1), the equality
(3.3) indicates that it is sufficient to determine n\*T(if>) e H2n+x{E\;Z\p\u\)C\
ker<7,\ Consider the diagram (cf. [13, Lemma 4])

R*N xK{Z,2n-\) Ei

R*N rN
w

K{Z,2n).

Lemma 4.2. ker0N DH2"*1 {FN; Z[u]) cz ker/?,*.

Proof. We see that ker6^n//2w+,(PW;Z2) = Z2(<p(u® 1)> by [14]
(see [18, §2]) and tp{u ® 1) = p2fi2 tp{ 1® 1) by a simple calculation, while
using the relation on Sql(u'®x2) [1, Lemma 11] (see also [18, p. 563].
Thus ker^n//2w+1(r7V;Z[M]) = Z2<)?2>(l®l)> by Lemma 4.1. On the
other hand y?>(l ® 1) = P2p2{W) e ker/?,* by (4.1). •

As in [13, Property 5], Lemmas 4.1(4) and 4.2 lead to an exact sequence

0^H2"+l(El;Z[p;u])^H2n+l(R*NxK(Z,2n-\);Z[v]®Z)

-^//^(PWiZM).

Here H^iR'N x K{Z,2n - l);Z[u] ® Z) = H2n+l{R*N;Z[v]) 0 Z(0*N{z®
1 —1 ® z) x /2«-i> by Lemma 4.1 and the fact that On is (2« —2)-
equivalence, and t\(0n(z ® 1 - 1® z) x i2n-i) = (z ® 1 - 1 ® z) W. Since
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0*N(W) = O implies i*q*{W)=0 for i: N2 - AN cz N2, the element q'{W)
can be described as q*{W) = iuUn for some m, where Un denotes the inte
gral Thorn class of N. Hence (z ® 1 - 1® z)q*{W) = 0 because (,v ® 1)Un =
{\®x)UN, and so (z® 1 - 1® z)W = 0 by Lemma 4.1(2). Further there
exists a unique element k\ e H2"+\E\\Z[p\u\) satisfying the two conditions
//2"+l(P,;Z[/?*w])nker9* = Z<A:,> and v*{k}) = (z® 1- 1®z)/2/I_,.

Summing up the argument, we get the Postnikov tower for On. The
Postnikov tower for (N = (On,Pn) '• {R*N,PN) -» {FN,N x Px), which is
used in §2, is induced from that of On.
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