Enumerating embeddings of n-manifolds into complex projective n-space

Dedicated to Professor Fuichi Uchida on his 60th birthday

Tsutomu Yasui

(Received November 4, 1998)

Abstract

Let $f: M \rightarrow N$ be an embedding between differentiable manifolds and set $\pi_{1}\left(N^{M}, \operatorname{Emb}(M, N), f\right)=[M \subset N]_{f}$, where $\operatorname{Emb}(M, N)$ denotes the space of embeddings of M to N. Then it is known that there is a $\pi_{1}\left(N^{M}, f\right)$-action on $[M \subset N]$, such that $[M \subset N]_{f} / \pi_{1}\left(N^{M}, f\right)$ is equivalent to the set $[M \subset N]_{|f|}$ of isotopy classes of embeddings homotopic to f. In this paper, we will study the set $\left[M^{n} \subset C P^{n}\right]_{f}$ for an n manifold M^{n}. Further we will determine the sets $\left[R P^{n} \subset C P^{n}\right]_{[f]}$ and $\left[C P^{n} \subset C P^{2 n}\right]_{[f]}$.

1. Introduction and statement of results

Throughout this paper, n-manifolds mean n-dimensional connected differentiable manifolds without boundary and embeddings stand for differentiable embeddings of compact manifolds to manifolds. For any map $f: M \rightarrow N$, we denote by $[M \subset N]_{[f]}$ the set of isotopy classes of embeddings homotopic to f. A. Haefliger's existence theorem [3] implies that for any compact n-manifold M^{n} and any map $f: M^{n} \rightarrow C P^{n}(n>2)$, there exists an embedding homotopic to f. Henceforth we would like to determine the set $\left[M^{n} \subset C P^{n}\right]_{[f]}$.

Set $\pi_{l}\left(N^{M}, \operatorname{Emb}(M, N), f\right)=[M \subset N]_{f}$, where $\operatorname{Emb}(M, N)$ denotes the space of embeddings of M to N. Then it is known (cf. [2], [7], [8], [12]) that there is a $\pi_{1}\left(N^{M}, f\right)$-action on $[M \subset N]_{f}$ such that

$$
\begin{equation*}
[M \subset N]_{f} / \pi_{1}\left(N^{M}, f\right)=[M \subset N]_{[f]} . \tag{1.1}
\end{equation*}
$$

In this paper, we will study the set $\left[M^{n} \subset C P^{n}\right]_{f}$ for an n-manifold M^{n} and a map $f: M^{n} \rightarrow C P^{n}$. Furthermore we will determine the isotopy sets of embeddings $\left[R P^{n} \subset C P^{n}\right]_{[f]}$ and $\left[C P^{n} \subset C P^{2 n}\right]_{[f]}$.

The integral cohomology of $C P^{n}$ is given by

$$
H^{*}\left(C P^{n} ; Z\right)=Z[z] /\left(z^{n+1}\right)(\operatorname{deg} z=2) .
$$

[^0]Theorem 1.1. Let M^{n} be a compact n-manifold $(n>3)$ and $f: M^{n} \rightarrow$ $C P^{n}$ a map. If n is even and M^{n} is orientable, assume that $f^{*} \rho_{2} z=0$ or $H_{1}\left(M^{n} ; Z\right)$ does not have Z_{2} as its direct summand. Then there exist the following exact sequences:

$$
\begin{aligned}
0 & \rightarrow H^{n}\left(M^{n} ; Z\right) / f^{*}(z) H^{n-2}\left(M^{n} ; Z\right) \rightarrow\left[M^{n} \subset C P^{n}\right]_{f} \\
& \rightarrow H^{n-1}\left(M^{n} ; Z\right) \rightarrow 0, \quad \text { if } n \equiv 1(2), \quad w_{1}\left(M^{n}\right)=0, \\
0 & \rightarrow H^{n}\left(M^{n} ; Z_{2}\right) / f^{*} \rho_{2}(z) H^{n-2}\left(M^{n} ; Z_{2}\right) \rightarrow\left[M^{n} \subset C P^{n}\right]_{f} \\
& \rightarrow Z \oplus \operatorname{ker} S q^{1} \rightarrow 0, \quad \text { if } n \equiv 0(2), \quad w_{1}\left(M^{n}\right) \neq 0, \\
0 & \rightarrow H^{n}\left(M^{n} ; Z_{2}\right) / f^{*} \rho_{2}(z) H^{n-2}\left(M^{n} ; Z_{2}\right) \rightarrow\left[M^{n} \subset C P^{n}\right]_{f} \\
& \rightarrow H^{n-1}\left(M^{n} ; Z_{2}\right) \rightarrow 0, \quad \text { otherwise, }
\end{aligned}
$$

where ρ_{2} is the reduction $\bmod 2$ and $S q^{1}: H^{n-1}\left(M^{n} ; Z_{2}\right) \rightarrow H^{n}\left(M^{n} ; Z_{2}\right)$.
Corollary 1.2. Let M^{n} be a compact n-manifold. If $f: M^{n} \rightarrow C P^{n}$ induces an epimorphism $f_{\#}: \pi_{2}\left(M^{n}\right) \rightarrow \pi_{2}\left(C P^{n}\right)=Z$, then

$$
\left[M^{n} \subset C P^{n}\right]_{f}= \begin{cases}H^{n-1}\left(M^{n} ; Z\right) & \text { if } n \equiv 1(2), w_{1}\left(M^{n}\right)=0 \\ Z \oplus \operatorname{ker} S q^{1} & \text { if } n \equiv 0(2), w_{1}\left(M^{n}\right) \neq 0 \\ H^{n-1}\left(M^{n} ; Z_{2}\right) & \text { otherwise }\end{cases}
$$

Corollary 1.3. If M^{n} is simply connected, then for any $f: M^{n} \rightarrow C P^{n}$,

$$
\begin{aligned}
{\left[M^{n} \subset C P^{n}\right]_{f} } & =\left[M^{n} \subset C P^{n}\right]_{[f]} \\
& = \begin{cases}H^{n}\left(M^{n} ; Z\right) / f^{*}(z) H^{n-2}\left(M^{n} ; Z\right) & \text { for } n \text { odd }, \\
H^{n}\left(M^{n} ; Z_{2}\right) / f^{*} \rho_{2}(z) H^{n-2}\left(M^{n} ; Z_{2}\right) & \text { for } n \text { even } .\end{cases}
\end{aligned}
$$

In particular, for $n \geq 2$,

$$
\left[C P^{n} \subset C P^{2 n}\right]_{[f]}=\left(Z /\left(\operatorname{deg} f^{*}: H^{2}\left(C P^{2 n} ; Z\right) \rightarrow H^{2}\left(C P^{n} ; Z\right)\right) Z\right) \otimes Z_{2}
$$

COROLLARy 1.4. If $n>3$, then for any $f: R P^{n} \rightarrow C P^{n}$ there exist countably many distinct isotopy classes of embeddings homotopic to f.

Remark. B.-H Li and P. Zhang [9] have investigated the set $\left[M^{n} \subset N^{2 n}\right]_{f}$ in a different way. Some results of [9] and this paper overlap, e.g., Corollary 1.3. Combination of the results of $[9]$ and this paper enriches the study of $\left[M^{n} \subset C P^{n}\right]_{f}$ and hence $\left[M^{n} \subset C P^{n}\right]_{[f]}$.
2. Larmore's approach to [$M \subset N]_{f}$

We recall Larmore's method [7], [8] of computing the set $\pi_{1}\left(N^{M}, \operatorname{Emb}(M, N), f\right)=[M \subset N]_{f}$ for an embedding $f: M \rightarrow N$.

For a manifold V without boundary, let $R V=\left(V^{2}-\Delta V\right) \cup_{\phi} S V \times[0, \varepsilon)$, where $\phi: S V \times(0, \varepsilon) \rightarrow V^{2}-\Delta V$ is a map defined by $\phi(v, t)=(\exp (t v), \exp (-t v))$. Here we use a Riemannian metric on V and $S V$ stands for the total space of the sphere bundle associated with the tangent bundle of V. A free Z_{2}-action on $R V$ is induced from the antipodal map of $S V$ and the interchanging of elements of V^{2}. The spaces $R^{*} V$ and V^{*} are defined as quotient spaces

$$
R^{*} V=R V / Z_{2} \quad \text { and } \quad V^{*}=\left(V^{2}-\Delta V\right) / Z_{2} .
$$

Then $R^{*} V$ is a $2 n$-manifold $(n=\operatorname{dim} V)$ with boundary $P V\left(\approx S V / Z_{2}\right)$ and $R^{*} V-P V=V^{*}$. The pair of spaces $\left(R^{*}\left(V \times R^{\infty}\right), P\left(V \times R^{\infty}\right)\right)$ denotes the inductive limit of $\left(R^{*}\left(V \times R^{k}\right), P\left(V \times R^{k}\right)\right)$ and $R^{*} i_{V}:\left(R^{*} V, P V\right) \subset$ ($\left.R^{*}\left(V \times R^{\infty}\right), P\left(V \times R^{\infty}\right)\right)$ denotes the natural inclusion.

For a space X, we define a space ΓX by

$$
\Gamma X=\left(X^{2} \times S^{\infty}\right) / Z_{2},
$$

where the involution on $X^{2} \times S^{\star}$ is given by $(x, y, v) \rightarrow(y, x,-v)$. The natural inclusion $\Delta X \times S^{\infty} \subset X^{2} \times S^{\infty}$ induces a natural inclusion $k: X \times$ $P^{\propto} \subset \Gamma X$. A homotopy equivalence $\psi_{V}:\left(R^{*}\left(V \times R^{\star}\right), P\left(V \times R^{\infty}\right)\right) \rightarrow(\Gamma V$, $V \times P^{\infty}$) has been constructed in [8, p. 84].

Let $\zeta_{V}=\psi_{V} R^{*} i_{V}:\left(R^{*} V, P V\right) \rightarrow\left(\Gamma V, V \times P^{\infty}\right)$. For an embedding $f:$ $M \rightarrow N$, we denote by $\left[\left(R^{*} M, P M\right), \zeta_{N}\right]_{\zeta_{N} \cdot f}$ the set of homotopy classes of homotopy liftings of $\zeta_{N} R^{*} f:\left(R^{*} M, P M\right) \rightarrow\left(\Gamma N, N \times P^{\infty}\right)$ to $\left(R^{*} N, P N\right)$.

Theorem 2.1 (Larmore). If $2 \operatorname{dim} N>3(\operatorname{dim} M+1)$, then for an embedding $f: M \rightarrow N$, there is a bijection

$$
[M \subset N]_{f}=\left[\left(R^{*} M, P M\right), \zeta_{N}\right]_{\zeta_{N} R \cdot f}
$$

Let $\theta_{N}=\zeta_{N} \mid R^{*} N: R^{*} N \rightarrow \Gamma N$ and $\rho_{N}=\zeta_{N} \mid P N: P N \rightarrow N \times P^{\infty}$ be the restrictions of ζ_{N} to $R^{*} N$ and $P N$, respectively, and regard them as fibrations in a standard way. Both fibrations have $(n-2)$-connected fibers ($n=\operatorname{dim} N$) [7] (or [8, §5]). Let $\pi_{q} \theta_{N}$ and $\pi_{q} \rho_{N}$ be sheaves of q-th homotopy groups of fibrations θ_{N} and ρ_{N}, respectively, (in this case, both are local systems), and $\pi_{q} \zeta_{N}$ a subsheaf of $\pi_{q} \theta_{N}$ such that

$$
\pi_{q} \zeta_{N}= \begin{cases}\pi_{q} \theta_{N} & \text { over } \Gamma N-N \times P^{x} \\ \pi_{q} \rho_{N} & \text { over } N \times P^{x}\end{cases}
$$

The sheaves $\pi_{q} \theta_{N}, \pi_{q} \rho_{N}$, and $\pi_{q} \zeta_{N}$ for $q=2 n-1,2 n$ are given in [8, Lemmas 5.3.2-5.3.4]. Let $Z[u]$ be a sheaf of coefficients, locally isomorphic to Z, associated with $u=w_{1}\left(N^{2} \times S^{\infty} \rightarrow \Gamma N\right) \in H^{1}\left(\Gamma N ; Z_{2}\right)$, and $Z[u]^{0}$ a subsheaf of $Z[u]$ defined by $Z[u]^{0}=Z[u]_{\Gamma N-N \times P \times}$.

Lemma 2.2 (cf. Larmore [8]). Let $N=C P^{n}(n \geq 3)$. Then
(1) $\pi_{2 n-1} \theta_{N}, \pi_{2 n-1} \rho_{N}$ and $\pi_{2 n-1} \zeta_{N}$ are trivial sheaves of the group Z.
(2) The natural projection $\pi_{1}: Z+Z_{2} \rightarrow Z$ induces the following exact sequences of sheaves over ΓN, which are split if n is odd:

$$
\begin{aligned}
& 0 \rightarrow Z_{2} \times \Gamma N \rightarrow \pi_{2 n} \theta_{N} \xrightarrow{\pi_{1}} Z[u] \longrightarrow 0 \\
& 0 \rightarrow Z_{2} \times \Gamma N \rightarrow \pi_{2 n} \zeta_{N} \xrightarrow{\pi_{1}} Z[u]^{0} \longrightarrow 0
\end{aligned}
$$

Let $L_{u}\left(Z+Z_{2}, 2 n+1\right)$ and $L_{u}(Z, 2 n+1)$ be the fiber bundles over ΓN with fiber $K\left(Z+Z_{2}, 2 n+1\right)$ and $K(Z, 2 n+1)$ associated with the local systems $\pi_{2 n} \theta_{N}$ and $Z[u]$, respectively (see e.g., $\left.[10, \S 3]\right)$. The map $\pi_{1}: \pi_{2 n} \theta_{N} \rightarrow Z[u]$ in Lemma 2.2 induces a bundle map

$$
\begin{equation*}
\pi_{1}: L_{u}\left(Z+Z_{2}, 2 n+1\right) \rightarrow L_{u}(Z, 2 n+1) \quad \text { over } \Gamma N . \tag{2.1}
\end{equation*}
$$

The 2-stage Postnikov tower for $\zeta_{N}=\left(\theta_{N}, \rho_{N}\right):\left(R^{*} N, P N\right) \rightarrow$ $\left(\Gamma N, N \times P^{\infty}\right)\left(N=C P^{n}\right)$ is constructed in $\S 4$ as follows:

$$
\begin{aligned}
& N \times P^{\infty} \xrightarrow[\subset]{k} \quad \Gamma N \xrightarrow{W} K(Z, 2 n),
\end{aligned}
$$

$$
\begin{equation*}
\rho_{2} W=\varphi(1 \otimes 1) \in H^{2 n}\left(\Gamma N ; Z_{2}\right) \text { in }[14, \S 2] \tag{2.3}
\end{equation*}
$$

(see also [18, Proposition 2.6]),
(2.4) $\pi_{1} k_{1}$, or $\pi_{1 *} k_{1} \in H^{2 n+1}\left(E_{1} ; Z\left[p_{1}^{*} u\right]\right)$, corresponds to the relation $(z \otimes 1-1 \otimes z) W=0$.
Here $H^{2}\left(\Gamma N ; Z[u]^{0}\right)=H^{2}\left(\Gamma N, N \times P^{\infty} ; Z[u]\right)=Z\langle z \otimes 1-1 \otimes z\rangle$ (see Lemma 4.1(2)).

By the standard spectral sequence argument, we have the following
Lemma 2.3 (cf. Larmore [8, (6.1-1)]). Let $N=C P^{n}(n \geq 3)$. Then for any embedding $f: M^{n} \rightarrow N$, there exists an exact sequence

$$
\begin{aligned}
& H^{2 n-2}\left(R^{*} M ;\left(\theta_{N} R^{*} f\right)^{-1} \pi_{2 n-1} \zeta_{N}\right) \xrightarrow{d_{2}} H^{2 n}\left(R^{*} M ;\left(\theta_{N} R^{*} f\right)^{-1} \pi_{2 n} \zeta_{N}\right) \\
& \quad \longrightarrow\left[\left(R^{*} M, P M\right), \zeta_{N}\right]_{\zeta_{N} R \cdot f} \longrightarrow H^{2 n-1}\left(R^{*} M ;\left(\theta_{N} R^{*} f\right)^{-1} \pi_{2 n-1} \zeta_{N}\right) \longrightarrow 0,
\end{aligned}
$$

where d_{2} is a cohomology operation associated with the Postnikov invariant of the 2-stage Postnikov tower for ζ_{N}.

3. Proofs

Before proving Theorem 1.1, we give the proofs of Corollaries 1.2-1.4.
Proof of Corollary 1.2. If $f_{\#}: \pi_{2}\left(M^{n}\right) \rightarrow \pi_{2}\left(C P^{n}\right)(=Z)$ is surjective, then so is $f_{*}: H_{2}\left(M^{n} ; Z\right) \rightarrow H_{2}\left(C P^{n} ; Z\right)$ because $\pi_{2}\left(C P^{n}\right) \cong H_{2}\left(C P^{n} ; Z\right)$. Hence $H^{2}\left(M^{n} ; Z\left(\right.\right.$ or $\left.\left.Z_{2}\right)\right)$ has a direct summand $Z\left\langle f^{*}(z)\right\rangle\left(\right.$ or $\left.Z_{2}\left\langle f^{*} \rho_{2}(z)\right\rangle\right)$ and so the first terms in the short exact sequences of Theorem 1.1 vanish. Therefore, Corollary 1.2 follows. Note that when $w_{1}(M)=0$, Corollary 1.2 coincides with [9, Corollary 1.3].

Proofs of Corollaries 1.3-1.4. In general, $\pi_{1}\left(\left(C P^{n}\right)^{M^{n}}, f\right)=$ $H^{2}\left(M \times\left(S^{1}, *\right) ; \pi_{2}\left(C P^{n}\right)\right)\left(\cong H^{1}(M ; Z)\right)$, by the Eilenberg classification theorem [15, p. 243]. Hence $\pi_{1}\left(\left(C P^{n}\right)^{M^{n}}, f\right)=0$ if M^{n} is simply connected or $M^{n}=R P^{n}$. Thus Theorem 1.1, together with (1.1), leads to Corollaries 1.31.4.

The rest of this section is devoted to the proof of Theorem 1.1. Theorem 2.1 for $f: M^{n} \rightarrow N=C P^{n}$, together with Lemmas 2.2-2.3, gives rise to an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{coker} d_{2} \rightarrow\left[M \subset C P^{n}\right]_{\rho} \rightarrow H^{2 n-1}\left(R^{*} M ; Z\right) \rightarrow 0 \tag{3.1}
\end{equation*}
$$

where $d_{2}: H^{2 n-2}\left(R^{*} M ; Z\right) \rightarrow H^{2 n}\left(R^{*} M ;\left(\theta_{N} R^{*} f\right)^{-1} \pi_{2 n} \zeta_{N}\right)$ is determined by the Postnikov invariant k_{1} of the Postnikov tower (2.2).

The cohomology group $H^{2 n-1}\left(R^{*} M ; Z\right)\left(\cong H^{2 n-1}\left(M^{*} ; Z\right)\right)$ is calculated by Haefliger [4] (cf. [11, 11.9, 11.19]) as follows:

$$
H^{2 n-1}\left(R^{*} M ; Z\right)= \begin{cases}H^{n-1}(M ; Z) & \text { if } n \equiv 1(2), w_{1}(M)=0 \tag{3.2}\\ Z \oplus \operatorname{ker} S q^{1} & \text { if } n \equiv 0(2), w_{1}(M) \neq 0 \\ H^{n-1}\left(M ; Z_{2}\right) & \text { otherwise }\end{cases}
$$

where $S q^{1}: H^{n-1}\left(M ; Z_{2}\right) \rightarrow H^{n}\left(M ; Z_{2}\right)$.
Let $v=\left(\theta_{N} R^{*} f\right)^{*}(u) \in H^{1}\left(R^{*} M ; Z_{2}\right)$. Since $R^{*} M$ is a $2 n$-manifold with boundary $P M$, the map π_{1} in Lemma 2.2 induces isomorphisms

$$
H^{2 n}\left(R^{*} M ;\left(\theta_{N} R^{*} f\right)^{-1} \pi_{2 n} \zeta_{N}\right) \stackrel{\pi_{1}^{* *}}{\cong} H^{2 n}\left(R^{*} M ; Z[v]^{0}\right) \cong H^{2 n}\left(R^{*} M, P M ; Z[v]\right)
$$

Hence, by (2.4) we have

$$
\begin{equation*}
\text { coker } d_{2} \cong \operatorname{coker} \pi_{1 *} d_{2}: H^{2 n-2}\left(R^{*} M ; Z\right) \rightarrow H^{2 n}\left(R^{*} M, P M ; Z[v]\right) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\pi_{1} \cdot d_{2}(x)=\left(\zeta_{N} R^{*} f\right)^{*}(z \otimes 1-1 \otimes z) \cup x \tag{3.4}
\end{equation*}
$$

Let $\Lambda^{2} V\left(=V^{2} / Z_{2}\right)$ be the 2 -fold symmetric product of V, and $\Delta V=$ $\Delta V / Z_{2}$. Then $\Lambda^{2} V-\Delta V=V^{*}=R^{*} V-P V$. The cohomology of $\left(\Lambda^{2} V, \Delta V\right)$ has been determined by Larmore [6]. We freely use his definitions and notations except for $v=w_{1}\left(V^{2}-\Delta V \rightarrow V^{*}\right) \in H^{1}\left(V^{*} ; Z_{2}\right)$ (v means m in [6]). We set $Z[v]^{\Lambda^{2} V}=Z[v]$ as in [6].

There exists an excision isomorphism

$$
\begin{equation*}
e: H^{*}\left(\Lambda^{2} V, \Delta V ; G\right) \cong H^{*}\left(R^{*} V, P V ; G\right) \quad \text { for } G=Z, Z[v] \text { and } Z_{2} \tag{3.5}
\end{equation*}
$$

For an n-manifold M, let $H^{n}(M ; Z)=Z\langle M\rangle$ or $=Z_{2}\left\langle\beta_{2} M^{\prime}\right\rangle$, according as M is orientable or not, and let $H^{n}\left(M ; Z_{2}\right)=Z_{2}\langle M\rangle$. Then, by [6] and [17, Proposition 5.2], we have

Lemma 3.1 (Larmore, Yasui). (1) If $n \equiv 1(2), w_{1}(M)=0$, then

$$
H^{2 n}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)=Z\langle\Delta(M, M)\rangle ;
$$

(2) otherwise $\rho_{2}: H^{2 n}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) \xlongequal{\cong} H^{2 n}\left(\Lambda^{2} M, \Delta M ; Z_{2}\right)=Z_{2}\langle\Lambda M \Lambda M\rangle$ is an isomorphism.

Let $i: R^{*} M \subset\left(R^{*} M, P M\right)$ and $j: P M \subset R^{*} M$ be the natural inclusions. The commutative diagram below indicates that the map ρ in [14], and so [18, (2.2)], is reworded as

$$
\begin{align*}
& \rho=j^{*} \theta_{M}^{*}: H^{*}\left(\Gamma M ; Z_{2}\right) \rightarrow H^{*}\left(R^{*} M ; Z_{2}\right) \xrightarrow{\cong} H^{*}\left(M^{*} ; Z_{2}\right) \text {. } \tag{3.6}\\
& M^{*} \xrightarrow{j} \quad R^{*} M \quad \xrightarrow{R^{*} i_{M}} R^{*}\left(M \times R^{\infty}\right) \\
& \| \searrow_{11}^{\prime} \quad \overbrace{M} \simeq \psi_{M} \\
& M^{*} \underset{\simeq}{p^{\prime}}\left(M^{2}-\Delta M\right) \times z_{2} S^{x} \xrightarrow{i^{\prime}} \quad \Gamma M,
\end{align*}
$$

where p^{\prime} and i^{\prime} are the natural projection and inclusion, respectively, and θ_{N}^{\prime} is determined in the diagram. Further [18, Lemma 3.3(2)] is reworded as

$$
\begin{equation*}
i^{*} e(\Lambda x \Lambda y)=\theta_{M}^{*}(x \otimes y+y \otimes x+x y \otimes 1+1 \otimes x y) \in H^{*}\left(R^{*} M ; Z_{2}\right) . \tag{3.7}
\end{equation*}
$$

Sublemma. (1) If $n \equiv 1(2), w_{1}(M)=0$, let $\quad H^{n-1}(M ; Z) \equiv \sum_{1 \leq i \leq x}$ $Z\left\langle x_{i}\right\rangle \bmod$ torsion. Then

$$
\begin{aligned}
H^{2 n-2}\left(R^{*} M ; Z\right) \equiv & \sum_{1 \leq i \leq x} Z\left\langle(1 / 2) i^{*} e\left(\Lambda x_{i} \Lambda x_{i}\right)\right\rangle+\sum_{1 \leq i<j \leq x} Z\left\langle i^{*} e\left(\Lambda x_{i} \Lambda x_{j}\right)\right\rangle \\
& +\left\{i^{*} e(\Lambda x \Lambda M) \mid x \in H^{n-2}(M ; Z)\right\} \bmod \text { torsion. }
\end{aligned}
$$

(2) Otherwise $\rho_{2} H^{2 n-2}\left(R^{*} M ; Z\right)$ contains the subgroup

$$
\begin{array}{ll}
\left\{\theta_{M}^{*}\left(U_{M}(x \otimes 1)\right) \mid x \in H^{n-2}\left(M ; Z_{2}\right)\right\} & \text { if } n \equiv 0(2), w_{1}(M)=0 \\
\left\{\theta_{M}^{*}\left(S q^{1}\left(x \otimes M^{\prime}+M^{\prime} \otimes x\right)\right) \mid x \in H^{n-2}\left(M ; Z_{2}\right)\right\} & \text { if } w_{1}(M) \neq 0
\end{array}
$$

where $U_{M} \in H^{n}\left(M^{2} ; Z_{2}\right)$ is the Z_{2}-Thom class of M.
Proof. The statement (1) is obtained in the same way as in the proof of [18, Theorem 4.3] for $n \equiv 0(2), w_{1}(M)=0$. Details are omitted. On the other hand, (2) for $n \equiv 0(2)$ follows from (3.6) and [18, Lemma 2.9(2)]; while (2) for $w_{1}(M) \neq 0$ is obvious.

Let $\pi:\left(N^{2}, \Delta N\right) \rightarrow\left(\Lambda^{2} N, \Delta N\right)$ be the natural projection. By [6], the element $\Lambda x \in H^{2}\left(\Lambda^{2} V, \Delta V ; Z[v]\right)$ for $x \in H^{2}(V ; Z)$ satisfies

$$
\pi^{*}(\Lambda x)=x \otimes 1-1 \otimes x \in H^{2}\left(V^{2}, \Delta V ; Z\right) .
$$

Lemma 3.2. If V is simply connected, then for any $x \in H^{2}(V ; Z)$, we have

$$
e(\Lambda x)=\zeta_{V}^{*}(x \otimes 1-1 \otimes x) \in H^{2}\left(R^{*} V, P V ; Z[v]\right)
$$

Proof. Let $\pi: V^{2}-\Delta V \rightarrow V^{*}$ be the natural projection. Then, by a simple calculation, we have $\pi^{*} j^{*} i^{*} e(\Lambda x)=\pi^{*} j^{*} i^{*} \zeta_{V}^{*}(x \otimes 1-1 \otimes x)$ in $H^{2}\left(V^{2}-\Delta V ; Z\right)$. Here j^{*} is an isomorphism. Both i^{*} and π^{*} are injective, because we see easily that $H^{1}\left(R^{*} V ; Z[v]\right) \rightarrow H^{1}(P V ; Z[v])\left(=Z_{2}\left\langle\beta_{2}^{v} 1\right\rangle\right)$ is surjective and that $H^{1}\left(V^{*} ; Z\right)=0$ by considering the cohomology spectral sequence of $V^{2}-\Delta V \rightarrow V^{*} \rightarrow P^{\infty}$, respectively. This leads to the lemma.

Hence, for an embedding $f: M^{n} \rightarrow C P^{n}$, there are relations

$$
\begin{equation*}
e\left(\Lambda f^{*}(z)\right)=e\left(\Lambda^{2} f\right)^{*}(\Lambda z)=\left(R^{*} f\right)^{*} e(\Lambda z)=\left(\zeta_{N} R^{*} f\right)^{*}(z \otimes 1-1 \otimes z) \tag{3.8}
\end{equation*}
$$

Lemmas 3.1-3.2, (3.3)-(3.5) and (3.8) imply
coker d_{2}
$\cong \begin{cases}H^{2 n}\left(R^{*} M, P M ; Z[v]\right) / e\left(\Lambda f^{*}(z)\right) H^{2 n-2}\left(R^{*} M ; Z\right) & \text { if } n \equiv 1(2), w_{1}(M)=0, \\ H^{2 n}\left(R^{*} M, P M ; Z_{2}\right) / e\left(\Lambda f^{*} \rho_{2}(z)\right) \rho_{2} H^{2 n-2}\left(R^{*} M ; Z\right) & \text { otherwise } .\end{cases}$

The following lemma, together with (3.1)-(3.2) and (3.9), implies Theorem 1.1.
Lemma 3.3. Under the assumption of Theorem 1.1,

$$
\begin{aligned}
& H^{2 n}\left(R^{*} M, P M ; Z[v]\right) / e\left(\Lambda f^{*}(z)\right) H^{2 n-2}\left(R^{*} M ; Z\right) \\
& \quad \cong H^{n}(M ; Z) / f^{*}(z) H^{n-2}(M ; Z) \quad \text { if } n \equiv 1(2), w_{1}(M)=0 \\
& H^{2 n}\left(R^{*} M, P M ; Z_{2}\right) / e\left(\Lambda f^{*} \rho_{2}(z)\right) \rho_{2} H^{2 n-2}\left(R^{*} M ; Z\right) \\
& \quad \cong H^{n}\left(M ; Z_{2}\right) / f^{*} \rho_{2}(z) H^{n-2}\left(M ; Z_{2}\right) \quad \text { otherwise. }
\end{aligned}
$$

Proof. Case 1: $n \equiv 1(2), w_{1}(M)=0$. Since $H^{2 n}\left(R^{*} M, P M ; Z[v]\right)=Z$ by Lemma 3.1, it is sufficient to calculate $\left(e \Lambda f^{*}(z)\right)\left(H^{2 n-2}\left(R^{*} M ; Z\right) /\right.$ torsion $)$. By [6, Theorem 14], we have the following relations

$$
\left(\Lambda x_{i} \Lambda x_{j}\right) \Lambda f^{*}(z)=0 \quad \text { for } 1 \leq i \leq j \leq \alpha
$$

$(\Lambda x \Lambda M) \Lambda f^{*}(z)= \pm \Delta\left(x f^{*}(z), M\right) \quad$ for $x \in H^{n-2}(M ; Z)$ of order infinite.
Hence $e\left(\Lambda f^{*}(z)\right) H^{2 n-2}\left(R^{*} M ; Z\right) \cong f^{*}(z) H^{n-2}(M ; Z)$.
Case 2: $w_{1}(M) \neq 0$. If $f^{*} \rho_{2}(z)=0$, then the lemma is obvious. Therefore we assume that $f^{*} \rho_{2} z \neq 0$. For $x \in H^{n-2}\left(M ; Z_{2}\right)$, we have, by (3.7) and [6, Theorem 11],

$$
\begin{aligned}
\theta_{M}^{*}\left(S q^{1}\left(x \otimes M^{\prime}+M^{\prime} \otimes x\right)\right) e\left(\Lambda f^{*} \rho_{2}(z)\right) & =i^{*} e\left(\Lambda S q^{1} x \Lambda M^{\prime}+\Lambda x \Lambda M\right) e\left(\Lambda f^{*} \rho_{2}(z)\right) \\
& =e\left(\Lambda x f^{*} \rho_{2}(z) \Lambda M\right)
\end{aligned}
$$

Since $f^{*} \rho_{2}(z) H^{n-2}\left(M ; Z_{2}\right)=H^{n}\left(M ; Z_{2}\right)$ by the assumption $f^{*} \rho_{2}(z) \neq 0$, we have the lemma in case $w_{1}(M) \neq 0$.

Case 3: $n \equiv 0(2), w_{1}(M)=0$. If $f^{*} \rho_{2}(z)=0$, then the lemma follows immediately. We may assume that $f^{*} \rho_{2}(z) \neq 0$. In this case $\left(S q^{1}+w_{1}(M)\right)$. $H^{n-2}\left(M ; Z_{2}\right)=0$ by the assumption of Theorem 1.1. Therefore, by [18, (2.5) and Proposition 2.6], $U_{M}(x \otimes 1) \in H^{2 n-2}\left(\Gamma M ; Z_{2}\right)$ for $x \in H^{n-2}\left(M ; Z_{2}\right)$ can be described as

$$
U_{M}(x \otimes 1)=(M \otimes x+x \otimes M)+\sum\left(x^{\prime} \otimes x^{\prime \prime}+x^{\prime \prime} \otimes x^{\prime}\right)
$$

for some $x^{\prime}, x^{\prime \prime} \in H^{n-1}\left(M ; Z_{2}\right)$ with $x^{\prime} \neq x^{\prime \prime}$. Using (3.7) and [6, Theorem 11], we have

$$
\begin{aligned}
\theta_{M}^{*}\left(U_{M}(x \otimes 1) e\left(\Lambda f^{*} \rho_{2}(z)\right)\right) & =e\left(\left(\Lambda M \Lambda x+\sum \Lambda x^{\prime} \Lambda x^{\prime \prime}\right) \Lambda f^{*} \rho_{2}(z)\right) \\
& =e\left(\Lambda M \Lambda x f^{*} \rho_{2}(z)\right)
\end{aligned}
$$

thereby completing the proof of the case 3.
Thus we have Theorem 1.1.

4. Construction of the Postnikov tower

In this section, N stands for $C P^{n}$. We use the results in [14, §2] on $H^{*}\left(\Gamma N ; Z_{2}\right)$ freely. Let β_{2}^{u} be the Bockstein operator associated with the exact sequence $0 \rightarrow Z[u] \rightarrow Z[u] \rightarrow Z_{2} \rightarrow 0$ for $u \in H^{1}\left(\Gamma N ; Z_{2}\right)$.

Lemma 4.1. Let $N=C P^{n}$. Then
(1) the reduction mod 2 induces an isomorphism

$$
\rho_{2}: H^{\text {odd }}(\Gamma N ; Z[u])=\sum_{0 \leq i, 0 \leq j \leq n} Z_{2}\left\langle\beta_{2}^{u}\left(u^{2 i} \otimes\left(z^{j}\right)^{2}\right\rangle \stackrel{\cong}{\Longrightarrow} H^{\text {odd }}\left(\Gamma N: Z_{2}\right),\right.
$$

(2) the natural inclusion $q: N^{2} \subset \Gamma N$ induecs an isomorphism

$$
q^{*}: H^{\text {even }}(\Gamma N ; Z[u]) \xrightarrow{\cong} \sum_{0 \leq i<j \leq n} Z\left\langle z^{j} \otimes z^{i}-z^{i} \otimes z^{j}\right\rangle
$$

(3) the natural inclusion induces an isomorphism $H^{2}\left(\Gamma N, N \times P^{\infty} ; Z[u]\right) \cong$ $H^{2}(\Gamma N ; Z[u])$,
(4) $\theta_{N}^{*}: H^{\text {odd }}(\Gamma N ; Z[u]) \rightarrow H^{\text {odd }}\left(R^{*} N ; Z[v]\right)$ is surjective.

Proof. The E_{2}-term of the cohomology spectral sequence for $N^{2} \subset$ $\Gamma N \rightarrow P^{\infty}$ is given by $E_{2}^{s, t}=H^{s}\left(P^{\infty} ; H^{t}\left(N^{2} ; Z\right)_{\dot{\phi}}\right)$, where $H^{t}\left(N^{2} ; Z\right)_{\dot{\phi}}$ is the local system associated with $\tilde{\phi}: \pi_{1}\left(P^{\infty}\right)=Z_{2}\langle a\rangle \rightarrow \operatorname{Aut}\left(H^{t}\left(N^{2} ; Z\right)\right)$ defined as follows: Let $\phi: \pi_{1}\left(P^{\infty}\right) \rightarrow \operatorname{Aut}(Z)$ be a non-trivial map and $T: N^{2} \rightarrow N^{2}$ be the switching map. Then $\tilde{\phi}(a)=T^{*} \phi(a)_{*}: H^{t}\left(N^{2} ; Z\right) \xrightarrow{\phi(a) .} H^{t}\left(N^{2} ; Z\right) \xrightarrow{T^{*}}$ $H^{\prime}\left(N^{2} ; Z\right)$. By $[5, \S 3]$, we have

$$
\begin{aligned}
& H^{s}\left(P^{\infty} ; Z^{2}\left\langle z^{i} \otimes z^{j}-z^{j} \otimes z^{i}, z^{i} \otimes z^{j}\right\rangle_{\dot{\phi}}\right) \\
& = \begin{cases}0 & \text { if } s \neq 0, i \neq j, \\
Z\left\langle z^{i} \otimes z^{j}-z^{j} \otimes z^{i}\right\rangle & \text { if } s=0, i \neq j ;\end{cases} \\
& H^{s}\left(P^{x} ; Z\left\langle z^{i} \otimes z^{i}\right\rangle_{\dot{\phi}}\right)= \begin{cases}Z_{2} & \text { if } s \text { is odd, } \\
0 & \text { if } s \text { is even. }\end{cases}
\end{aligned}
$$

Thus $H^{*}(\Gamma N ; Z[u])$ has no odd torsion. In $H^{*}\left(\Gamma N ; Z_{2}\right)$, we have $\rho_{2} \beta_{2}^{u}\left(u^{2 j} \otimes\left(z^{i}\right)^{2}\right)=\left(S q^{1}+u\right)\left(u^{2 j} \otimes\left(z^{i}\right)^{2}\right)=u^{2 j+1} \otimes\left(z^{i}\right)^{2}$ and $\rho_{2} \beta_{2}^{u}\left(I^{*}\right)=0$ by [1, Lemma 11] (see also [18, p. 563]). Hence (1) follows immediately. This implies that all differentials in the spectral sequence are trivial and so (2) follows. A simple calculation yields that $H^{1}(\Gamma N ; Z[u]) \cong H^{1}\left(N \times P^{\infty} ; Z[u]\right)=$ $Z_{2}\left\langle\beta_{2}^{\prime \prime}(1)\right\rangle$ and $H^{2}\left(N \times P^{\infty} ; Z[u]\right)=0$, and so (3) follows. In the same way as in (1), we see that $H^{*}\left(R^{*} M ; Z[v]\right)$ has no odd torsion. $H^{\text {odd }}\left(R^{*} N ; Z_{2}\right)=$ $v H^{\text {even }}\left(R^{*} N ; Z_{2}\right)$ because of $H^{\text {odd }}\left(\Gamma N ; Z_{2}\right)=u H^{\text {even }}\left(\Gamma N ; Z_{2}\right)$ and the sur-
jectivity of $\theta_{N}^{*}: H^{*}\left(\Gamma N ; Z_{2}\right) \rightarrow H^{*}\left(R^{*} N ; Z_{2}\right)$. Hence $H^{\text {odd }}\left(R^{*} N ; Z[v]\right)=$ $\beta_{2}^{v} H^{\text {even }}\left(R^{*} N ; Z_{2}\right)=\theta_{N}^{*} \beta_{2}^{u} H^{\text {even }}\left(\Gamma N ; Z_{2}\right)$. Thus (4) follows.

Construction of the Postnikov tower for ζ_{N}. Let F be the homotopy fiber of $\theta_{N}: R^{*} N \rightarrow \Gamma N$ and $l_{F} \in H^{2 n-1}(F ; Z)(=Z$, see $\S 2)$ the fundamental class of F. Then t_{F} is transgressive. We denote $\tau\left(l_{F}\right)=W \in H^{2 n}(\Gamma N ; Z) \cap \operatorname{ker} \theta_{N}^{*}$. Since θ_{N}^{*} is surjective on Z_{2}-cohomology [14, §2], we have $\rho_{2} W \neq 0$ and therefore

$$
\begin{equation*}
\rho_{2}(W)=\varphi(1 \otimes 1) \tag{4.1}
\end{equation*}
$$

The first stage Postnikov tower for θ_{N} is the principal fibration $p_{1}: E_{1} \rightarrow \Gamma N$ with classifying map W and there is a homotopy lifting $q_{1}: R^{*} N \rightarrow E_{1}$ of θ_{N}.

Let F^{\prime} be the homotopy fiber of q_{1}. Then F^{\prime} is also the homotopy fiber of $t_{F}: F \rightarrow K(Z, 2 n-1)$. Further F^{\prime} is $(2 n-1)$-connected and $\pi_{2 n}\left(F^{\prime}\right)=$ $\pi_{2 n}(F)=Z+Z_{2}$. The $\pi_{1}\left(E_{1}\right)$-action on $\pi_{2 n}\left(F^{\prime}\right)$ is induced from the $\pi_{1}(\Gamma N)$ action on $\pi_{2 n}(F)$. The fundamental class $t_{F^{\prime}} \in H^{2 n}\left(F^{\prime} ; Z+Z_{2}\right)$ of F^{\prime} is transgressive, e.g., [10, Theorem 4.1]. To calculate coker d_{2} in (3.1), the equality (3.3) indicates that it is sufficient to determine $\pi_{1 *} \tau\left(\iota_{F^{\prime}}\right) \in H^{2 n+1}\left(E_{1} ; Z\left[p_{1}^{*} u\right]\right) \cap$ $\operatorname{ker} q_{1}^{*}$. Consider the diagram (cf. [13, Lemma 4])

Lemma 4.2. $\operatorname{ker} \theta_{N}^{*} \cap H^{2 n+1}(\Gamma N ; Z[u]) \subset \operatorname{ker} p_{1}^{*}$.
Proof. We see that $\operatorname{ker} \theta_{N}^{*} \cap H^{2 n+1}\left(\Gamma N ; Z_{2}\right)=Z_{2}\langle\varphi(u \otimes 1)\rangle$ by [14] (see $[18, \S 2]$) and $\varphi(u \otimes 1)=\rho_{2} \beta_{2}^{u} \varphi(1 \otimes 1)$ by a simple calculation, while using the relation on $S q^{1}\left(u^{i} \otimes x^{2}\right)$ [1, Lemma 11] (see also [18, p. 563]. Thus $\operatorname{ker} \theta_{N}^{*} \cap H^{2 n+1}(\Gamma N ; Z[u])=Z_{2}\left\langle\beta_{2}^{u} \varphi(1 \otimes 1)\right\rangle$ by Lemma 4.1. On the other hand $\beta_{2}^{u} \varphi(1 \otimes 1)=\beta_{2}^{u} \rho_{2}(W) \in \operatorname{ker} p_{1}^{*}$ by (4.1).

As in [13, Property 5], Lemmas 4.1(4) and 4.2 lead to an exact sequence

$$
\begin{aligned}
& 0 \longrightarrow H^{2 n+1}\left(E_{1} ; Z\left[p_{1}^{*} u\right]\right) \xrightarrow{v^{*}} H^{2 n+1}\left(R^{*} N \times K(Z, 2 n-1) ; Z[v] \otimes Z\right) \\
& \xrightarrow{\tau_{1}} H^{2 n+2}(\Gamma N ; Z[u]) .
\end{aligned}
$$

Here $H^{2 n+1}\left(R^{*} N \times K(Z, 2 n-1) ; Z[v] \otimes Z\right)=H^{2 n+1}\left(R^{*} N ; Z[v]\right) \oplus Z\left\langle\theta_{N}^{*}(z \otimes\right.$ $\left.1-1 \otimes z) \times t_{2 n-1}\right\rangle$ by Lemma 4.1 and the fact that θ_{N} is $(2 n-2)$ equivalence, and $\tau_{1}\left(\theta_{N}^{*}(z \otimes 1-1 \otimes z) \times i_{2 n-1}\right)=(z \otimes 1-1 \otimes z) W$. Since
$\theta_{N}^{*}(W)=0$ implies $i^{*} q^{*}(W)=0$ for $i: N^{2}-\Delta N \subset N^{2}$, the element $q^{*}(W)$ can be described as $q^{*}(W)=m U_{N}$ for some m, where U_{N} denotes the integral Thom class of N. Hence $(z \otimes 1-1 \otimes z) q^{*}(W)=0$ because $(x \otimes 1) U_{N}=$ $(1 \otimes x) U_{N}$, and so $(z \otimes 1-1 \otimes z) W=0$ by Lemma 4.1(2). Further there exists a unique element $k_{1} \in H^{2 n+1}\left(E_{1} ; Z\left[p_{1}^{*} u\right]\right)$ satisfying the two conditions $H^{2 n+1}\left(E_{1} ; Z\left[p_{1}^{*} u\right]\right) \cap \operatorname{ker} q_{1}^{*}=Z\left\langle k_{1}\right\rangle$ and $v^{*}\left(k_{1}\right)=(z \otimes 1-1 \otimes z) t_{2 n-1}$.

Summing up the argument, we get the Postnikov tower for 0_{N}. The Postnikov tower for $\zeta_{N}=\left(\theta_{N}, \rho_{N}\right):\left(R^{*} N, P N\right) \rightarrow\left(\Gamma N, N \times P^{\chi_{*}}\right)$, which is used in $\S 2$, is induced from that of θ_{N}.

References

[1] D. R. Bausum, Embeddings and immersions of manifolds in Euclidean space, Trans. Amer. Math. Soc. 213 (1973), 263-403.
[2] J.-P. Dax, Étude homotopique des espace de plongements, Ann. Sci. Ec. Nor. Sup. 5 (1972), 303-377.
[3] A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47-82.
14 | A. Haefliger, Plongements de variétés dans le domaine stable, Séminaire Bourbaki, 15 (1962/63), no. 245.
[5] L. L. Larmore, Twisted cohomology and enumeration of vector bundles, Pacific J. Math. 30 (1969), 437-457.
[6] L. L. Larmore, The cohomology of $\left(A^{2} X, \Delta X\right)$, Canad. J. Math. 25 (1873), 908921.

17] L. L. Larmore, Obstructions to embedding and isotopy in the metastable range, Rocky Mountain J. Math. 3 (1973), 355-375.
$[8]$ L. L. Larmore, Isotopy groups, Trans. Amer. Math. Soc., 239 (1978), 67-97.
[9] B.-H. Li and P. Zhang, On isotopy classification of embeddings of n-manifolds in $2 n-$ manifolds, Sys. Sci. Math. Soc. 6 (1993), 61-69.
[10] J. F. McClendon, Obstruction theory in fiber spaces, Math. Z. 120 (1971), 1-17.
[11] R. Rigdon, Immersions and embeddings of manifolds in euclidean space, Thesis, Univ. California at Berkeley, 1970.
[12] H. A. Salomonsen, On the existense and classification of differentiable embeddings in the metastable range, Aarhus Univ. Preprint Series, (1973/74), no. 4.
[13] E. Thomas, Seminar on Fiber Spaces, Lecture Notes in Math., 13 (1966), Springer-Verlag.
[14] E. Thomas, Embedding manifolds in euclidean space, Osaka J. Math. 13 (1976), 163186.
[15] G. W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Math. 61, SpringerVerlag, New York-Heidelberg-Berlin. 1978.
[16] T. Yasui, The reduced symmetric product of a complex projective space and the embedding problem, Hiroshima Math. J. 1 (1971), 27-40.
[17] T. Yasui, On the map defined by regarding embeddings as immersions, Hiroshima Math. J. 13 (1983), 457-476.
[18] T. Yasui, Enumerating embeddings of n-manifolds in Euclidean ($2 n-1$)-space, J. Math. Soc. Japan 36 (1984), 555-576.

Faculty of Education
 Ymagata University
 Yamagata 990-8560, Japan

current address
Faculty of Education
Kagoshima University
Kagoshima 890-0065, Japan
E-mail: yasui@rikei.edu.kagoshima-u.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 57R52: Secondary 57R40
 Key words and phrases. embedding, isotopy, 2-fold symmetric product

