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AsstrRacT. Let f: M — N be an embedding between differentiable manifolds and set
m(NM Emb(M,N), /) = [M < N];, where Emb(M, N) denotes the space of embed-
dings of M to N. Then it is known that there is a m (N ¥, f)-action on [M < N], such
that [M < N|;/m(N¥, f) is equivalent to the set [M < N] ; of isotopy classes of
embeddings homotopic to /. In this paper, we will study the set [M" < CP"|, for an -
manifold M”. Further we will determine the sets [RP" = CP"], ;) and [CP" < CPZ"][ e

1. Introduction and statement of results

Throughout this paper, #-manifolds mean n-dimensional connected differ-
entiable manifolds without boundary and embeddings stand for differentiable
embeddings of compact manifolds to manifolds. For any map /' : M — N, we
denote by (M < N]I 1 the set of isotopy classes of embeddings homotopic to f.
A. Haefliger’s existence theorem [3] implies that for any compact n#-manifold
M" and any map f : M" — CP" (n > 2), there exists an embedding homotopic
to f. Henceforth we would like to determine the set [M" = CP"] .

Set m (N, Emb(M,N),f) = [M = N],, where Emb(M,N) denotes the
space of embeddings of M to N. Then it is known (cf. [2], [7], [8], [12]) that
there is a m (N, f)-action on [M <= N], such that

(L1 [M = N, /m(N™, f) = [M = N], .

In this paper, we will study the set [M" < CP"], for an n-manifold M"
and a map f : M" — CP". Furthermore we will determine the isotopy sets of
embeddings [RP" = CP") ;) and [CP" < CP¥] .

The integral cohomology of CP”" is given by

H*(CP";Z) = Z[5)/(="*")(deg - = 2).
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THEOREM 1.1. Let M" be a compact n-manifold (n>3) and f: M" —
CP" a map. If n is even and M" is orientable, assume that f*p,z=0 or
H{(M",Z) does not have Z as its direct summand. Then there exist the
Jollowing exact sequences:

0— H"(M"Z)/f*(z)H"*(M";Z) — [M" = CP"],
— H"Y(M"Z)—0, if n=1(Q2), w(M")=0,
0— H"(M" Zy)/f*po(2)H" *(M"; Z3) — [M" = CP"),
—Z®kerSqg' =0, if n=0(2), wi(M")#0,
0 — HY(M"; Z2)/*py() H" (M"; Z3) — [M" = CP",
— H"Y(M™; Z;) = 0, otherwise,
where p, is the reduction mod2 and Sq': H" '\(M";Z,) » H"(M"; Z,).
COROLLARY 1.2. Let M" be a compact n-manifold. If f:M" — CP"
induces an epimorphism f, : t3(M") — n(CP") = Z, then
H™(M"2Z)  if n=1(2),m(M") =0,
[M" < CP"|, = {Z@kequ' if n=0(2),w(M")#0,
H"Y(M";Z,) otherwise.
COROLLARY 1.3. If M" is simply connected, then for any f: M" — CP",

_ H"(M";2)/f*(z)H"*(M"; Z) Jfor n odd,
T HM™ Z5) /£ py(2) H'2(M™, Z5)  for n even.
In particular, for n > 2,
[CP" = CP*) ;= (Z/(deg f* : H*(CP™;Z) — H(CP";Z))Z) ® Z».

COROLLARY 14. If n>3, then for any f:RP"— CP" there exist
countably many distinct isotopy classes of embeddings homotopic to f.

REMARK. B.-H Li and P. Zhang [9] have investigated the set [M" < N z”]f
in a different way. Some results of [9] and this paper overlap, e.g., Corollary
1.3. Combination of the results of [9] and this paper enriches the study of
[M" = CP"], and hence [M" = CP"];;.

2. Larmore’s approach to [M < N|,

We recall Larmore’s method (7], (8] of computing the set
n(NM,Emb(M,N), f) = [M < N|, for an embedding /: M — N.
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For a manifold V' without boundary, let RV = (V2 — 4V)Uy SV x [0,¢),
where ¢ : SV x(0,¢) = V> —A4V is a map defined by ¢(v, 1) = (exp(tv), exp(—1v)).
Here we use a Riemannian metric on ¥ and SV stands for the total space of
the sphere bundle associated with the tangent bundle of V. A free Z,-action
on RV is induced from the antipodal map of SV and the interchanging of
elements of V2. The spaces R*V and V* are defined as quotient spaces

R'V=RV/Z, and V'=(V)-4V)/Z,.

Then R*V is a 2n-manifold (7 = dim V) with boundary PV (xSV/Z,) and
R*V — PV =V*. The pair of spaces (R*(V x R*),P(V x R*)) denotes
the inductive limit of (R*(V x R¥),P(V x R¥)) and R*iy:(R*V,PV)c
(R*(V x R*), P(V x R*)) denotes the natural inclusion.

For a space X, we define a space I'X by

I'X =(X*x8%)/2,,

where the involution on X2 x S* is given by (x,y,v) — (y,x,—v). The
natural inclusion 4X x §* < X2 x S* induces a natural inclusion k: X x
P> = TI'X. A homotopy equivalence ¢ : (R*(V x R*),P(V x R*)) - (I'V,
V x P*) has been constructed in [8, p. 84].

Let {y =y Ry : (R*V,PV)— (I'V,V x P*). For an embedding f :
M — N, we denote by [(R*M,PM),(y]; g, the set of homotopy classes of
homotopy liftings of {yR*f : (R*M,PM) — (I'N,N x P*) to (R*N, PN).

THEOREM 2.1 (Larmore). If 2dimN > 3(dim M + 1), then for an em-
bedding f: M — N, there is a bijection

M < N]f = [(R'MvPM)aCN];NR-r

Let Oy =Cy|R*N : R*N — I'N and py ={y|PN : PN — N x P* be the
restrictions of {y to R*N and PN, respectively, and regard them as fibrations
in a standard way. Both fibrations have (n — 2)-connected fibers (# = dim N)
(7] (or [8, §5]). Let m,0n and m,py be sheaves of g-th homotopy groups of
fibrations Oy and py, respectively, (in this case, both are local systems), and
n,{y a subsheaf of m,0y such that

¢y = n0n over 'N — N x P*,
Tyon = mpy over N x P*.

The sheaves n,0n, nypy, and n,{y for ¢ =2n —1,2n are given in (8, Lemmas
5.3.2-5.34]. Let Z[u] be a sheaf of coefficients, locally isomorphic to Z,
associated with u = w)(N? x §* — I'N) e H'(I'N;Z,), and Z[u]® a subsheaf
of Z[u] defined by Zu)’ = Z{u];x_ywps-
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LeEmMMA 2.2 (cf. Larmore [8]). Let N=CP" (n>3). Then

(1) mam-10n, mon—1py and my,_\{xy are trivial sheaves of the group Z.

(2) The natural projection m :Z+2Z; — Z induces the following exact
sequences of sheaves over I'N, which are split if n is odd:

0 — Zy x I'N — n,0y — Z[u] — 0,
0 Zy x TN — myly — Z[u)® —0.

Let L,(Z+ Z5,2n+ 1) and L,(Z,2n+ 1) be the fiber bundles over I'N
with fiber K(Z + Z,,2n + 1) and K(Z,2n + 1) associated with the local systems
ma,0y and Z[u), respectively (see e.g., [10, §3]). The map = : 72,0y — Z[u] in
Lemma 2.2 induces a bundle map

(2.1) m:L(Z+2Z3,2n+1)— L(Z,2n+1) over I'N.

The 2-stage Postnikov tower for (y = (Oy,py):(R*N,PN)—
(’'N,N x P®) (N = CP") is constructed in §4 as follows:

(2.2)
PN —S— RN

E; E;

Ea—

El E,

\ N .
» K(Z;,2n+1) p L{Z+Z,,2n+1) —— L,(Z,2n+1)
! 1

N x P® _i. v Y k(z,2m),

(2.3) P, W =o(1®1)e H*(I'N;Z,) in (14, §2]
(see also [18, Proposition 2.6]),

(24) mk, or m.ky € H**'(Ey; Z|p;u]), corresponds to the relation
C®1- 1®:)W=0.

Here H2(I'N;Z[u|®)=H*(I'N,NxP*;Z[u))=Z{z®1—-1®z) (see Lemma
4.1(2)).
By the standard spectral sequence argument, we have the following

LemMAa 2.3 (cf. Larmore (8, (6.1-1)]). Let N =CP" (n>3). Then for
any embedding f: M" — N, there exists an exact sequence
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H¥ 2 (R*M; (On R f) " 11 ln) 2 HY(R* M5 (On R f) ™ 7l
— ((R*M, PM), (], gy — H* (R M; (O8N R ) man_1{n) — 0,

where dy is a cohomology operation associated with the Postnikov invariant of
the 2-stage Postnikov tower for {y.

3. Proofs
Before proving Theorem 1.1, we give the proofs of Corollaries 1.2-1.4.

PrOOF OF COROLLARY 1.2. If f, : m(M") — my(CP")(= Z) is surjective,
then so is f,: Ho(M";Z) — Hy(CP";Z) because m(CP") = H,(CP";Z).
Hence H*(M";Z(or Z,)) has a direct summand Z{f*(z)> (or Z2{f"p,(2))
and so the first terms in the short exact sequences of Theorem 1.1 vanish.
Therefore, Corollary 1.2 follows. Note that when w;(M) =0, Corollary 1.2
coincides with [9, Corollary 1.3]. O

PrROOFs OF COROLLARIES 1.3-14. In general, m((CP")™" f)=
H*(M x(S',+); m;y(CP"))(= H'(M; Z)), by the Eilenberg classification theorem
[15, p. 243]. Hence m((CP")M S )=0 if M" is simply connected or
M" = RP". Thus Theorem 1.1, together with (1.1), leads to Corollaries 1.3-
4. O

The rest of this section is devoted to the proof of Theorem 1.1. Theorem
2.1 for f: M" — N = CP", together with Lemmas 2.2-2.3, gives rise to an
exact sequence

(3.1) 0 — cokerdy — [M = CP"), —» H""'(R*M;Z) — 0,

where dy : H*"2(R*M;Z) — H*(R*M;(OxR" ) 'm2{y) is determined by the
Postnikov invariant k; of the Postnikov tower (2.2).

The cohomology group H*~'(R*M;Z)(=H*~'(M*;Z)) is calculated by
Haefliger [4] (cf. [11, 11.9, 11.19]) as follows:

H"™Y(M;Z) if n=1(2),w(M) =
(3.2) H" Y(R*M;Z) = { Z@®kerSq' if n=0(2),w (M) #
H""Y(M;Z;) otherwise,

0,
0,

where Sq' : H""1(M; Z,) — H"(M; Z).
Let v= (OyR*f)*(u) e H'(R*M;Z;). Since R*M is a 2n-manifold with
boundary PM, the map =) in Lemma 2.2 induces isomorphisms

H™(R*M; (0nR" )" 1oaln) E H*(R*M; Z[0]°) = H¥(R* M, PM; Z[v))
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Hence, by (2.4) we have

(3.3)  cokerd, = cokern.dy : H""*(R*M;Z) — H*(R*M, PM; Z[v)),
where

(3.49) n.day(x) = (yR)'z®1-1®z)Ux.

Let AV (= V?/Z,;) be the 2-fold symmetric product of ¥, and 4V =
4V /Z,. Then A’V —d4V = V* = R*V—PV. The cohomology of (4%V,4V)
has been determined by Larmore [6]. We freely use his definitions and
notations except for v = w (V2 — A4V — V*)e H'(V*;Z,) (v means m in [6]).
We set Z[v]"zV = Z[v] as in [6].

There exists an excision isomorphism

(3.5) e:H*'(A*V,4V;G) = H'(R'V,PV;G) for G=Z,Z[v] and Z,.

For an n-manifold M, let H"(M;Z) = Z{M) or = Z>{$,M'), according as
M is orientable or not, and let H"(M;Z;) = Z,{M. Then, by [6] and [17,
Proposition 5.2], we have

Lemma 3.1 (Larmore, Yasui). (1) If n=1(2), wi(M) =0, then
H™(A2M,AM; Z[v]) = Z{4(M, M);

(2) otherwise py : H*(A*M, AM; Z[v)) = H*(A*M, AM; Z5) = Z:{AMAM ) is
an isomorphism.

Let i: R*M < (R*M,PM) and j: PM < R*M be the natural inclusions.
The commutative diagram below indicates that the map p in [14], and so [18,
(2.2)], is reworded as

(3.6)  p=j'0;: H'(I'M;Zy) —» H'(R*M; Zy) — H*(M"; Z,).
Rtiy

M R'M

~

R*(M x R¥)

| <]

i’

M L (M2 AM) x5 - T,

where p’ and i’ are the natural projection and inclusion, respectively, and 8y, is
determined in the diagram. Further [I8, Lemma 3.3(2)] is reworded as

(3.7) ite(AxAy) =0, (x®y+y®x+xy®1+1®@xy)e H'(R*M:Z>).



Enumerating embeddings of n-manifolds 585

Sublemma. (1) If n=1Q2),wi(M)=0, let H"'(M;Z)= ¥ i,
Z{x;>mod torsion. Then

H2? (R"M;2Z) = Z Z{(1/2)i*e(Ax;Ax;)) + Z Z{i"e(AxiAx;))

l<i<a 1<icj<
+ {i"e(AxAM)|x e H"}(M;Z)} mod torsion.
(2) Otherwise p,H* *(R*M;Z) contains the subgroup
{0 (Un(x® 1)) | x € H"*(M; Z5)} if n=0(2),wi(M)=0,
{03,(Sq' x® M' + M'®x)) | xe H™X(M; Z2)} if wi(M) #0,
where Uy € H'(M?;2Z,) is the Zy-Thom class of M.

Proor. The statement (1) is obtained in the same way as in the proof of
[18, Theorem 4.3] for n = 0(2), w; (M) = 0. Details are omitted. On the other
hand, (2) for n = 0(2) follows from (3.6) and [18, Lemma 2.9(2)]; while (2) for
wi(M) # 0 is obvious. [J

Let n: (N2, AN) — (4>N,4N) be the natural projection. By [6], the
element Ax e H2(A*V,4V;Z[v]) for xe H*(V;Z) satisfies
n(Ax) =x® 1 - 1@ xe HX(V?,4V; Z).
LemMa 3.2, If V is simply connected, then for any x € H*(V; Z), we have
e(Ax) = (x® 1 — 1 ®x) e HX(R'V,PV; Z[v)).

ProoF. Let m:V? -4V — V* be the natural projection. Then, by

* ok 2k

a simple calculation, we have =n*j*i*e(Ax)=n""i"{;(x®1-1®X) in
H2?(V? —4V;Z). Here j* is an isomorphism. Both i* and =* are injective,
because we see easily that H'(R*V;Z[v]) — H'(PV;Z[v])(= Z2{B51)) is sur-
jective and that H'(V*; Z) = 0 by considering the cohomology spectral sequence
of V2 — A4V — V* — P*, respectively. This leads to the lemma. [J

Hence, for an embedding f : M" — CP", there are relations

(3.8) e(Af"(2)) = e(A%f)"(4z) = (R*f)"e(4z) = (NR ) (:® 1 - 1 ®2).
Lemmas 3.1-3.2, (3.3)-(3.5) and (3.8) imply

(3.9)

cokerd,

- HY™(R*M,PM; Z[v])/e(Af*(2))H* *(R*M; Z) if n=1(02),w(M) =0,
| H¥(R* M, PM; Z3)/e(Af " ps(2))p, HY2(R*M; Z) otherwise.
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The following lemma, together with (3.1)-(3.2) and (3.9), implies Theorem 1.1.
LEMMA 3.3. Under the assumption of Theorem 1.1,
H™(R*M,PM; Z[v))[e(Af*(2)) H" *(R*M; Z)
= H"(M; 2)/f*(2)H"(M;Z)  if n=1(2),wm(M) =0,
HY(R*M, PM;Z;)/e(Af" py(2))p H *(R* M; Z)
= H"(M;Z,)/f*p,(2)H"%(M; Z,) otherwise.
Proor. Case 1: n=1(2),w;(M)=0. Since H*(R*M,PM;Z[v)) =Z

by Lemma 3.1, it is sufficient to calculate (edf*(z))(H*'~%(R*M;Z)/torsion).
By [6, Theorem 14], we have the following relations

(AxiAx))Af*(z) =0 for l<i<j<ua,
(AXAMYAS*(z) = 2 4(xf"(z), M) for xe H"*(M;Z) of order infinite.
Hence e(Af*(z))H* 3 (R*M;Z) = f*(z)H""}(M; Z).

Case 2. wi(M)#0. If f*p,(z)=0, then the lemma is obvious.
Therefore we assume that f*p,z#0. For xe H"%(M;Z,), we have, by
(3.7) and [6, Theorem 11],
03,(Sq' (x ® M'+ M’ ® x))e(Af*py(2)) = i*e(ASq' xAM' + AxAM )e(Af*p,(2))

= e(Ax["py(z) AM).
Since f*p,(z)H"*(M;Z,) = H"(M;Z,) by the assumption f*p,(z) #0, we
have the lemma in case w;(M) # 0.

Case 3: n=0(2),wm(M)=0. If f*py(z) =0, then the lemma follows
immediately. We may assume that f*p,(z) # 0. In this case (Sq' + w((M)) -
H""%(M;Z,) =0 by the assumption of Theorem 1.1. Therefore, by [18, (2.5)
and Proposition 2.6], Uy(x® 1) € H*-2(I'M;Z,) for xe H""2(M;Z,) can be
described as

Uy(x®1)=(M@x+xQ@ M)+ Z (X ®x"+x"®x')

for some x/,x" € H""'(M; Z,) with x' # x”. Using (3.7) and [6, Theorem 11],
we have

03 (Un(x ® De(Afpo(2)) = e((AMAx + 3 AX'AX") A1 po(2) )
= e(AMAX["py(2)),
thereby completing the proof of the case 3. [

Thus we have Theorem 1.1.
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4. Construction of the Postnikov tower

In this section, N stands for CP". We use the results in [14, §2] on
H*(I'N; Z,) freely. Let 5 be the Bockstein operator associated with the exact
sequence 0 — Z[u] — Z[u] = Z, — 0 for ue H'(I'N; Z,).

LEmma 4.1. Let N = CP". Then
(1) the reduction mod 2 induces an isomorphism

pr HUINZI) = > ZolBi? @ ()Y = HY“(I'N : 2o),
0<i,0<j<n

(2) the natural inclusion q: N* = I'N induecs an isomorphism

g H'(IN; Z[u)) = Y 2 @2 -2 @0,
0<i<j<n
(3) the natural inclusion induces an isomorphism H*(I'N,N x P*;Z[u]) =
H*(T'N; Z[u)),
(4) 0y : H°(I'N; Z[u)) —» H°™(R*N; Z[v]) is surjective.

ProoF. The E,-term of the cohomology spectral sequence for N2 c
I'N — P* is given by E;'=H*(P*;H'(N*2Z);), where H'(N*Z); is the
local system associated with ¢ : 7, (P®) = Z,{a) — Aut(H'(N?;Z)) defined as
follows: Let ¢ : m(P*) — Aut(Z) be a non-trivial map and 7 : N> — N? be
the switching map. Then §(a) = T*$(a), : H'(N%Z) 2, gin2 z) L,
H'(N%Z). By [5, §3], we have

HS(P*; 22 ® -2/ ®:',2i®fj>,,;)
0 if s#0,i#j,
Tz @ - @y if 5=0,i # J;

Z, if s is odd,
0 if s is even.

HY(P*;Z(' ® =1)) ={

Thus H*(I'N;Z[u]) has no odd torsion. In H*(I'N:;Z;), we have
P ® (1)%) = (Sq' +u)(u¥ ® (=/)?) = u¥* ® (/) and pyfi(I*) =0 by
[1, Lemma 11] (see also [18, p. 563]). Hence (1) follows immediately. This
implies that all differentials in the spectral sequence are trivial and so (2)
follows. A simple calculation yields that H'(I'N; Z[u]) = H'(N x P*; Z[u]) =
Z,{B4(1)> and H?*(N x P*;Z[u]) =0, and so (3) follows. In the same way
as in (1), we see that H*(R*M;Z[v)) has no odd torsion. H°¥(R*N;Z,) =
vHe"(R*N;Z,) because of H°(I'N;Z,) = uH®"*"(I'N;Z,) and the sur-
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jectivity of @y :H*(I'N;Z;) - H*(R*N;Z,). Hence H°“(R*N;Z[v}) =
By H"(R*N; Zy) = Oy H*"(I'N; Z;). Thus (4) follows. (O

Construction of the Postnikov tower for {y. Let F be the homotopy fiber of
Oy : R*N — I'N and ir € H*\(F; Z)(= Z, see §2) the fundamental class of F.
Then 1 is transgressive. We denote (1) = W € H*"(I'N; Z) Nker8y. Since
0y is surjective on Z;-cohomology (14, §2], we have p,W # 0 and therefore

(4.1) (W) =o(1®1).

The first stage Postnikov tower for Oy is the principal fibration p, : E, — I'N
with classifying map W and there is a homotopy lifting q,.: R*N — E; of Oy.

Let F' be the homotopy fiber of g;. Then F’ is also the homotopy
fiber of 1f : F — K(Z,2n —1). Further F' is (2n — 1)-connected and my,(F’) =
nn(F) =Z + Z,. The m(E))-action on m,(F’) is induced from the =;(I'N)-
action on 7,(F). The fundamental class i: € H*(F'; Z + Z;) of F' is trans-
gressive, e.g., [10, Theorem 4.1]. To calculate cokerd; in (3.1), the equality
(3.3) indicates that it is sufficient to determine =;,z(1r') € H¥*(Ey; Z[pju]) N
kergq;. Consider the diagram (cf. [13, Lemma 4])

l

R*N x K(Z,2n 1)

ﬂ / l”' .

v " Kz,
LemMMA 4.2. kerOy NH>*(I'N; Z[u]) < ker p;.

ProoF. We see that kerfy NH™(I'N;Z,) = Z{p(u® 1)) by [14]
(see [18, §2]) and ¢(u®l)—p2ﬁ’2¢(l®l) by a simple calculation, while
using the relation on Sg'(u'® x?) [1, Lemma 11] (see also [18, p. 563|.
Thus kerOy NH**Y(I'N;Z[u]) = Zo{B3p(1® 1)) by Lemma 4.1. On the
other hand fy¢(1 ® 1) = f3p,(W) ekerpy by (4.1). O

As in [13, Property 5], Lemmas 4.1(4) and 4.2 lead to an exact sequence
0 — H¥V(Ey; Z[pu]) —— H¥™ Y (R'N x K(Z,2n - 1); Z[v] ® Z)
=L H™(I'N; Z[u)).
Here H*'(R*N x K(Z,2n - 1);Zp|® Z) = H** ' (R*N; Z[t)) ® Z{Oy(z®

l1-1®z)x1,-1) by Lemma 4.1 and the fact that Oy is (2n-—2)-
equivalence, and T7(0y(z®1-1®z)X12,-1)=(z®1-1®z)W. Since
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0y(W) =0 implies i*q*(W) =0 for i: N> — AN < N?, the element ¢*(W)
can be described as ¢*(W) =mUy for some m, where Uy denotes the inte-
gral Thom class of N. Hence z® | — 1| ® z)¢*(W) = 0 because (x® 1)Uy =
(l1®x)Uy, and so (z®1-1®z)W =0 by Lemma 4.1(2). Further there
exists a unique element k, € H>*"*1(Ey; Z[piu]) satisfying the two conditions
H¥» Y (E; Z[ptul) Nkergy = Z{ay and vik) = (2 ® 1 = 1 ® )iz

Summing up the argument, we get the Postnikov tower for 0y. The
Postnikov tower for (y = (On,py): (R*N,PN)— (I'N,N x P*), which is
used in §2, is induced from that of Oy.
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