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Summary

Four analyzing methods incorporating two concrete models and the finite element method with

and without finite deformations are adopted. They make clear the influence of geometrical non-
linearities on the elastic-plastic behavior of reinforced concrete slabs.

1 Introduction

Evaluating ultimate loads of reinforced concrete slabs, Johansen theory gives considerably
small values compared with values obtained by experiments. It is well-known that the difference
is caused by compressive membrane stresses which occur in slabs according as the spreading of
cracks.

The finite element method is one of the most convenient analyzing method for reinforced con
crete structures. In order to analyze reinforced concrete slabs, two finite element models are pre
sented, one uses modified stiffness and the other uses the layered element. Layered models have
met with success to get elastic-plastic behavior of slabs and shells.

Wanchoo et al 4 adopted an element without inplane freedom and get a good match result for a
corner supported slabs. Hand et al 3) adopted an element with inplane freedom and indicated that
inplane supporting conditions influenced the stiffness of the corner supported slab.

Idealizations of concrete are also essential to apply the finite element method to reinforced
concrete slabs. Dobashi and Ueda 2I adopted a combined use of finite element models with and
without inplane freedom, and the concrete models proposed by Kupher et al n and constructed by
yield potential functions, and showed that for slabs without inplane constraint both finite element
models gave similar results, but for slabs with inplane constraint 1. the finite element model with
out inplane freedom gave much smaller ultimate load than the element with inplane freedom ; l.a
concrete model expressed with perfect elastic-plastic curves gave larger ultimate load than a model
considering stress reduction after maximum compressive stress ; 1. the latter model gave a match
results with experiments.

This paper examines effects of gemetrical nonlinearities on elastic-plastic behavior of rein
forced concrete slabs, because it seems that the large inplane compressive stress make stimulate
the nonlinearities. Adopting two concrete models and a 18-degree-of-freedom shallow shell
layered triangular element, and basing on two analytical assumptions, one includes the finite de
formations and the other assumes the infinitesimal deformations, we analyze some concrete slabs
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of which experimental load-deflection curves were reported.

2 Material Properties

2—1 Concrete

Many models for biaxial concrete are used to construct constitutional equations.
Noguchi20)examined applicabilities of typical concrete models until peak stresses. It is necessary
to idealize concrete behavior after peak stresses, when we seek ultimate loads of structures where

concrete may be failed by compressive stresses. Here, we adopt 2 concrete models where stress
reductions after peak stress are included.

a) Concrete Model A

It is a model that is constructed by a rule in which computed strains are never modified, be

cause we apply the finite element method of a displacement method. Except biaxial concrete fai
lure regions idealized uniaxial stress-strain curves of concrete are introduced in principal strain
directions. Biaxial concrete failures are evaluated by the octahedral shear stress.

(i) Stress-Strain curves

Uniaxial stress-strain curves are idealized with three brocken lines shown in Fig. 1 , where
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Fig. 1 Uniaxial Stress-strain for Concrete Model A

unloading are included. Subelement concretes in each element are assumed as orthotropic mater
ial, where material axes coincide with the principal strain axes before cracking. Once cracks
have formed, material axes coincide with the principal strain axes when first cracks open.
Determine Ex and E2 for material axes from uniaxial curves, we form stree-strain matrix

[D„*]=-
1

E2

_ sym (1

The expression (1) is proposed by Isohata.
(ii) Criteria for Biaxial Failure and Stress Reductions

Concrete failures in biaxial compressions are evaluated by the criteria of octahedral shear

stress, which is given by

(1)

•y)v%£7/2 _
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foct =^-a2)2 + (a2- a3)2 + ((j3-a,)2 /3~\c + n(a,-\- a2+a3)/3\^0 (2)

where constants c, n are defined to satisfy the conditions at uniaxial tests a2=a3 = 0, al= fc/{<0)
and biaxial tests or3=0, ol = o2=dfc/ (d = 1.16 reported by Kupfer1' ). Then, we have

/oct=vy5"(\/^2+a22-a1a2-f0.1212(a1 + c72)+0.8788/c/)/3 (3)
where /c' means uniaxial compressive strength of concrete.

After the principal strain in subelement in each concrete element reaches to eCUi which is the
strain at fc\ the stress in the principal direction is reduced by

| Aat= -0.24Ec(e*- ecu)^0 (4ecu^e^ ecu)

[0t=O (ei<i£Cu) (4)
Biaxial strength envelopes and stress reductions of concrete model A are depicted in Figs. 2

and 3, respectively. Tangent stiffness to the perpendicular direction of cracks and to both prin
cipal directions after concrete failures are assumed zero.
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Fig. 2 Biaxial Strength for Concrete Model A

-0.2UE,

Fig. 3 Stress Reduction for Concrete A

b) Concrete Model B

Darwin and Pecknold?) proposed a biaxial concrete model constructed by the concept of
"equivalent uniaxial strain" . Examining typical biaxial concrete models until peak stresses,

Noguchi °reported that the model gives the best results in the both principal directions. But,
Dobashi et al showed that the Darwin's model have an improper evaluation of maximum com

pressive stress in tension-compression regions, and presented another evaluating expression.
Then, we introduce an uniaxial concrete model to treat compressive strength of concrete for the re
gions.

(i) Tangent Stiffness in Principal Directions

The equivalent uniaxial strain increments for nonlinear material are defined by

Aeiu=Aai/Ei (5)

Using the strain increments, we define equivalent uniaxial strains in principal stress dirctions
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e2u=Z(A£2u— u^/Ei/E2Aelu) (6)

where when argument angle changes more than /r/4 from their initial directions, we interchange
Aexu with Ae2u. Here we employ Eq. (6) including effects of Poisson's ratio y. In the express
ion proposed by Darwin7, the Poisson's ratio term are neglected.

In tension regions, concrete is assumed by an elastic brittle material. Denoting initial

tangential stiffness for the model £0, tangential stiffness for the principal axis for compression is
given by

_ doj _ {l+ eiu/£ic)(l —em/tic)
hi~ deiu-l+(E0/Eic-2)eiu/eic+(eiu/eic)2ho~0

where Eic=(Tic/£ic, EJEic^2, and <jic and eic are determined by the following procedure.

Compression-Compression regions ; Expressing principal stress ratio a{a —ax/a2 where a2^al),
maximum compressive stresses are determined by the criteria proposed by Kupfern

_l+3.65a f,
(1 + aj

Equivalent uniaxial strains eic at which concrete takes maximum stresses are evaluated by

eic=ecu(3A5(jic/fc'-2.15) for |<7«c|^|/c'|

eic=ecu(-lrt<Jic/fc7+2.25(aic/fc')+0.35)(<Jic/fc) for | Gic\< \fc'\ (9)
Tension-Compression regions ; Tensive strength of concrete is evaluated by

(Ju=(l-O.S(J2/fc)ft (10)

where // means uniaxial tensive strenght, which is proposed by Kupfern. Setting a= 0 in Eq. (8)
, the expression lets evaluate maximum uniaxial compressive strenght of concrete.

Then, using tangent stiffness £, and £2, we define the stress-strain matrix for this model

1 — J

Ex vy/ExE2 0

E2 0

sym (Ei+ E2-2vy/E^E2~)/4
where Poisson's ratio y= 0.2 is adopted.

(ii) Criteria for Biaxial Failure and Stress Reduction

Biaxial compressive failure may occur when stress becomes greater than aic in Eq. (8) or Et in

Eq. (7) becomes little than zero. After the principal equivalent uniaxial strain reaches etc, the
stress in the direction is reduced by

Aat= -0.24£0Uiu- eic)^0 {4eic< eiu^ eic)

<Ji=0 (£tu<4eic) (12)

Biaxial strenght envelopes and stress reductions of the concrete model B are depicted in Figs. 4

and 5, respectively.

(11)
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Fig. 4 Biaxial Strength for Concrete Model B Fig. 5 Stress Reduction for Concrete B

2-2 Steel Bars

Reinforced steel is idealized as an elastoplastic strain hardening material. Then, stress-
strain curves for the steel is shown in Fig. 6. No attempt to model bond slip is made in this
study.

Fig. 6 Stress-Strain for Steel Bars
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3 Finite Element Method

3 — 1 Finite Element Method
A flat triangular element with 15 degree-of-freedom is selected for this study. The element

derives from incorporating a bending element, proposed by Zienkiewicz12, and a constant strain
membrane element. Evaluating finite deformations effects on the behavior of reinforced concrete
slabs and shells, we include nonlinear terms with respect to the normal displacement.

3 — 2 Shape Functions of Triangular Plates

Setting each apex of a triangular element 1,2 and 3, we determine x direction of element coor
dinates from 1 to 2, z direction as the direction of cross product 12X13, and y direction as x, y,
z from right-handed rectangular Cartesian coordinates. Denoting displacements to x, y, z
directions by ut, vh wt and rotations round x, y axes 0xt, 6yi at point i, we determine displace
ments u, v, wotuu u2, u3 corresponding to x, y, z directions.

• =[N, N2 NJ

UX u

u2 • = ' V

U3 w

d2c

d3c

=[N]|de

yhere |dic|=|u,-, Vi, wt, 6xi, U = l~3) and

0

0

[N,]T=

£ 0

0 ?1

0 0

0 0

0 0 -x„riri(ri+?3/2)+x„&ri(fi+?i/2) j
x2i, 2/12— means x2~Xi, 2/, —y2 —, wnen nodes h 2, 3 are expressed as ( Xi , y, ), ( x2 , y2 ), ( x3
, y3 ) in element coordinates, f,, f2, Ji means area-coordinates, and [N2], [N3] are derived by inter
changing subscript of 1, 2, 3, cyclically.

(6)

3 — 3 Members

We adopt a derivation where a neutral axis of member does not coincide with a neutral plane of
a element included the member. Shape functions of members are assumed with cubic polynomial
functions.

3 — 4 Stress-Strain relations

Examing geometrical nonlinearities effects, we include nonlinear terms of strains with respect
to normal displacements. For two-dimensional elements the following strains and curvatures at
neutral plane are used

£x

ey°

u,x+w,x2/2

v%y+ wJ/2
U,y+V,X+W,XW,y

Ux>x + U3,x2/2

u2,2+u3,22/2

1/1,2+1/2.1 + U3,xU3,2

vhere subscripts x, y and 1, 2 denote a differential with respect to x, y, respectively,

*x W,Xx

Xy • = • W,yy

Xxy 2W,Xy

(7)

(8)
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Using Eqs. (7) and (8), strains at z from neutral plane |e|=|ex, ey, yxy\ are given by

\e\=\e°\-z\x\ (9)
Assuming the infinitesimal displacements, we neglect nonlinear terms with respect to w in Eq.(7).

4 Incremental Equilibrium Equations and Unbalanced Forces

In order to perform analyses where geometrical and material nonlinearities are considered, we
employ the incremental theory. The incremental equilibrium equations for three-dimentional
elastic bodies are given by

f[(<ro,0l+ Acu)a(eum+ Aeu)-(Pim+:PM(ur+ AufidVM
J Jsa

T^+ATtWur+AuJdS^ (10)

where ey<0,=(ttww+Mw,0)+t/w(0,ttw,0,)/2, eum+Aeu=

\uum+ Auu+ UjJ0)+ Auj^(uJ0)+ AuJ(uJ0)+ AuKJ)\/2. The values with (0) mean initial values
and the values with A mean increments. Neglecting the incremental displacement product terms
of higher order, we get the following equlibrium equations

Ufa$eu*+\aijm$(AuKlAuKJ)-(APi$Aut+Pm$Au-<Tum$eu*)\dVu*)]c

J Jsc
- / (ATi+mSAutdS^ (11)

where eu* = (Auu+Auu+ uJ0)Auu+ uKjQ)AuKi)/2

In order to apply Eq. (11) to slabs and shells, we transform the expression. Expressing argument
angle 8 between principal stress or strain directions and the element coordinates, we have stress-
strain matrix [DXJJ defined in the element coordinates

[DXJ=[R]T[D12*][R] (12)

where [Di2*] is given by Eq.(l) or (11), and

cos20 sin20 sin20/2

sin20 cos20 -sin20/2

-sin20 sin20 cos20

Using incremental displacement vectors |^de| and Eq. (12), we get the expression of incremental
stresses

{R]=

Aoxx Aox

Aa22 • = • A<7y

Aoxi Arxy

--[VxylBx{wm)]\Atf

where [Bi]|^de| is a matrix form of the following

Au,x+w,xQ)Aw,x—zAw,xx
[Bx]\Ade\= • Av,y+wJ0)Aw,y-zAw,yy

Au,y+Av,x+w,xl0)Aw,y+wty{0)Aw,x—2zAw,xy
Considering nonlinear strains terms with respect to the normal displacement w, we can express the
second term in Eq. (11)

2(7,;o,£Uuw2\u,J=ax<^

= ^UdT[B2]T[S][B2]Ude| (14)

(13)
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where [S]=f *" ^J, [Bj|4d„,V2 m •**«-(£
Substituting Eqs. (13) and (14) into Eq. (11), we have

^UdT///([BjT[DxjBj+[B2]r[S][B2])dV|Z\d1-^dri^/l=0
where d\Ade\V\=(JJl^MuAV Ĵ^ATMUidS)

+(yyjf(p/o'<^ us-*)
The first term in Eq. (15-a) corresponds to incremental external forces and the second term means
unbalanced forces caused by neglecting the incremental product terms of higher order, stress re
ductions by cracking, yielding and unloadings.

Dividing a triangular element in similar rrtj subelements and me layers, we evaluate the
volume integral in Eq.(15) in the subvolumes ra,Xrae. Here we employ mj=4 and me=8.

m 27 ^ (1985)

(15)

5 Numerical Analyses

Associating two assumptions about deformations where one assumes infinitesmal displacements
and the other includes finite displacements, and two concrete models given in 2, we construct 4
solving methods and analyze 4 reinforced concrete slab specimens, US —1 and US —2 tested by
Higashi and Komori3), A slab tested by Dobashi and Ueda21', and the corner supported slab tested
by Jofriet and McNeice.2) They are depicted in Table 1 .

Table. 1 Data for Model Slabs

Plan Size Edge BeamSize

HXW

Thickness of

Slab

Steel Ratio

p. (%)

Steel Position

from Top Surface
Number of

LoadingPoint

US-l 70X70(cni) 20X40(cm) 2.9(cm) 1.22 1.45(an) 16

US-2 70X70(an) 20X20(cm) 3.3(cm) 1.22 1.65(an) 16

A slab 120X120(an)
Min.60X80(ca)

Max.6OX130(ca) 4.97(ob) 0.32 2.80(an) 9

McNeice 36X36(inch) 1.75( inch ) 0.85 1.31(inch) 1

Having large size edge beams, US —1 and A slab are idealized as slabs with clamped edges.
Setting material properties depicted in Tables 2 and 3, we solve them and express load-deflection
curves in Figs 7 and 9, respectively, where a dot-dash-line indicates the experimental curve, a
solid line indicates a solution obtained by considering finite displacements with concrete model A,
a dotted line indicates a solution obtained by considering finite displacements with concrete model
B, a solid line with O indicates a solution obtained by assuming infinitesimal displacements with
concrete model A, and a dotted line with O indicates a solution obtained by assuming infinitesim
al displacements with concrete model B, which are used in all other figures in this paper. And a
dot-dot-dash-line with # indicates the result obtained by Dobashi21). Computed load-compres-
sive membrane stress Nx evaluated at centroid of C element of specimens US —1 and A slab are
presented in Figs. 8 and 10, respectively.

In US—2, edge beams are also modeled with finite elements. Analyzed load-deflection
curves and load-At curves are presented in Figs. 11 and 12.

Except ultimate stages, the solving methods assuming infinitesimal displacements give a simi
lar curve and the solving methods considering finite displacement give a similar curve whether
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Fig. 7 Load vs Center Deflection Curves (US-1)
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Fig. 9 Load vs Center Deflection Curves (A slab) Fig. 10 Load vs N* Curves ( Aslab )
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concrete model A or B is employed. But there are decided differences between them. The
solutions obtained by considering finite displacements give match resuls with experiments. And

concrete model B gives larger ultimate loads than concrete model A. Then, comparing the re
sults of US —1 and US —2 being appoximately the same size slabs, US —1 had larger compressive
membrane stress resultant than US—2, but US —1 gave a smaller ultimate load and showed lesser

Tablel. 2 Material Properties for Concrete Model A

Ec f'c tm{%)
Poisson

Ratio v
El E,

* % %

US-1 2.1X105(kg/crf) -220(kg/crf) -0.21 0.15 0.0001 -0.000524 -0.001465 0.558 0.0465

U S- 2 2. 0X105(kg/cnf) -230(kj/crf> -0.21 0.15 0.0001 -0.000575 -0.001605 0.558 0.0465

A slab 2.IX 105(kg/cni) -240(k9/cnf) -0.21 0.20 0.00009 -0.000571 -0.001595 0.558 0.0465

McNeice 4.15X106( psi ) -5500( psi ) -0.21 0.15 0.00012 -0.000663 -0.00185 0.558 0.0465

Tablel. 3 Material Properties for Concrete Model A and Steel Bars

E„ fc Ecu (%)
Poisson

Ratio »
f, E, ffy I,

US-1 2.lX105(kg/cnf) -220(kg/aif) -0.21 0.2 21(kg/d) 2.09X106(kg/ai) 2430(kg/<J) 0.01

US-2 2.0X105(kg/crf) -230(kg/crf) -0.21 0.2 20(kg/oil 2.09X 106(kg/a4) 2430(kg/J) 0.01

A slab 2.5X105(kg/(J) -240(k8/ai) -0.21 0.2 19.2(kg/tfl') 2.1X106(kg/al) 45001 kg/mi) 0.01

McNeice 4.15X106(psi) -55001 psi ) -0.21 0.2 480( psi) 29X106( psi) 500001 psi ) 0.01

1.0 1.5

Center Deflection (era)

Fig. 11 Load vs Center Deflection Curves (US-2)

-10 -20 -30 -Uo

Stress Resultant N.j. (ton/m)

Fig. 12 Losd vs Nx Curves (US-2 )
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ductile behaviors than US —2. The phenomenon may express that the geometrical nonlinearities

stimulated by the large membrane stress resultants have considerable effects on the behaviors of

the slabs with inplane constraint.

Next, we employ a slab supported at 4 corner points, and examine effects of finite displace
ments on reinforced concrete slabs with inplane inconstraint. Applying foregoing 4 solving
methods, we analyze the slab under roller and pin supports, and show results in Figs. 13 and 14,
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Fig. 14 Load vs Center Deflection Curves for
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respectively. In both figures a dash-dot-dot-line with • indicates the results reported by

Hand3', and in Fig. 13 a dash-dot-dot-line with # indicates the results reported by Ueda18). The
solutions obtained by assuming infinitesimal displacements give a similar behavior with Hand and

Ueda. However, the solutions obtained by considering finite displacements show increase of

stiffness just after elastic regions caused by geometrical nonlinearities.

6 Conclusions

1. The compressive membrane stress resultants, produced in elastic-plastic stages of reinforced
concrete slabs with inplane constraint, let stimulate geometrical nonlinearities and have considar-

able influences on load-deflection behavior of them.

1. For slabs with massive edge beams, the nonlinearities make behave with lack of ductility.
And ultimate loads for the slabs may become smaller than that for the same size slabs with lesser

edge beams.

1. Increase of stiffness just after elastic stages is observed in load-deflection curves of a corner

supported slab, which is caused by geometrical nonlinearities.
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