樋高 信幸(受理 平成3年5月31日)

HOLDUP AND PRESSURE DROPS OF COCURRENT FLOW OF GAS-LIQUID AND GAS-LIQUID-SOLID MIXTURES IN A VERTICAL PIPE

Nobuyuki HIDAKA

Gas holdup, total pressure drop and frictional pressure loss for gas-liquid and gas-slurry cocurrent flows were measured in vertical pipes. The slurry was a mixture of water and glass spheres with an average diameter of 28μ m, and behaved like as a homogeneous liquid at mass fraction of solid particles in slurry lower than 0.45.

The gas goldup, $\varepsilon_{\rm g}$, was represented by $\varepsilon_{\rm g} = [\rm U_g/~\{1.2~(\rm U_g+\rm U_1)+0.35~\sqrt{gD}_T\}~]~(\mu_w/\mu_1)^{0.04}$ The frictional loss per unit pipe length, $\Delta \rm P_f/L$, was correlated as $\Delta \rm P_f/L=0.002~(~\rho_{\rm g}\rm U_g^{-2}/D_T)~\{1+(~\rho_{\rm 1}\rm U_1/~\rho_{\rm g}\rm U_g)\}^{-1.4}$

緒 言

気液二相流における摩擦圧力損失を予測する方法と しては、気体または液体が単独で流れるとした場合の 圧力損失に補正係数を導入して推算する Lockhart と Martinelli⁷¹の方法が有名である。同様な方法として、 井上ら²⁰は二相流の圧力損失をそれと同じ質量流量の 液単相流における圧力損失との比をとり、気液の質量 流量比で相関している。また、佐々木⁹¹は環状流にお ける液膜と壁面のせん断力に着目し、管摩擦係数と Reynold 数の関係を求めている。

一方,ホールドアップに関しては,Hughmark ら¹¹ は気液の物性値と気液の各質量流量を含む実験式で整 理している。また,Nicklin ら⁸⁾はスラグ流動様式に おける気液のスリップ速度に着目し,ホールドアップ の実験式を得ている。

しかしながら、気・スラリー(または気液固三相流) に関する研究は、流動現象が複雑なためか、あまり報 告されていない。都田ら¹⁰⁾は、粒子濃度が小さな領 域(スラリー中の粒子体積分率が0.1以下)における 気液固三相流の流動特性を調べている。

本研究では、粒子濃度が大きく、スラリーの挙動が

均相液体とみなせるような場合の気液固三相流におけ るガスホールドアップ,全圧力降下および摩擦圧力損 失について実験的に検討した結果,簡単な実験式で整 理できたので報告する。

1. 実験装置および方法

実験装置の概略をFig.1に示す。測定部は内径40mm の透明アクリル管である。助走区間の長さは空気吹き 込み口から3mとし、測定管長は2.8mである。測定 部上下に2個のバルブを、また距離2mの間隔で静圧 及び差圧測定用マノメーターを取り付けた。

実験は気相に空気を、液相に水道水を、固相にガラ ス粒子を使用した。ガラス粒子の質量平均径は28µm で密度は2500kg/m³であった。実験は管壁面から空気 を圧入して、気液および気・スラリー上昇並流操作で 行った。全圧降下と摩擦圧力損失はマノメーターの読 みから算出した。ガスホールドアップは2個のバルブ を急閉した後の測定部管内の静止水位から求めた。ま た、同時に測定部管内を大気圧に開放し、その直後の スラリーの静止水位と静圧用マノメーターの読みから 測定部管内のスラリー密度を求めた。本実験条件の範 囲内では測定部管内のスラリー密度は、管吐出端にお

- Fig. 1 Schematic diagram of experimental apparatus.
 - 1. Tank 6. Rictifying tube
 - 2. Pump 7. Valve
 - 3. Compressor 8. Trap
 - 4. Oil-mist separator 9. Manometer for gauge pressure
 - 5. Orifice meter 10. Manometer for pressure difference

ける値とほぼ一致し,管軸方向の粒子濃度分布は無視 できることを確かめた。

実験は、スラリー中の粒子濃度(質量分率)を0, 0.15, 0.3, 0.45 の 4 種 類 と し、ガス 流 速 が 0.15-4m/sおよび液流速が0.6-2m/sの範囲で行った。 液温は293-301kであった。

2. 実験結果および考察

2.1 スラリーの見かけ粘度

104

水・ガラス粒子系スラリーのみかけ粘度, μ_{l} , は次のLandelら⁶⁾の推算式から求めた。

Fig. 2 Relationship between f and Re for slurry flow.

Re

10⁵

2

ここに、 μ_w は液体の粘度、 ϵ_s はスラリー中の粒子 の体積分率および ϵ_{smax} は粒子の最疎充填率である。 本研究で使用したガラス粒子の ϵ_{smax} は0.625で、粒 子濃度が0.15-0.45のスラリー粘度は1.2-3.0mPa.sと なる。

Fig.2に、スラリー流(液固二相流)の圧力損失を 測定して求めた流体摩擦係数 f とEg. (1)から算出し た μ_1 を使って求めたRe数の関係を示す。 f とReの関 係はほB Blasius の式に一致しており、スラリー流を ニュートン流体とみなせることがわかった。

2.2 ガスホールドアップ

液流速をパラメーターにとり,粒子濃度が0,0.15, 0.3,0.45の場合におけるガスホールドアップ, *e*g, の測定結果を,Fig.3及び4にそれぞれ示す。 *e*gは液 流速が大きくなるほど小さくなり,ガス流速の増加と ともに増大するが,その割合はガス流速が大きくなる と減少する。また,粒子濃度による影響は,濃度が大 きくなると*e*gはわずかに小さくなる傾向を示す。こ れはスラリー粘度の増加によると考える。

加藤ら³⁾はガス上昇速度 V_g に対する液粘度の影響を 調べ、 ϵ_g の実験式を得ている。 V_g はガス空塔速度 U_g と ϵ_g から

Fig. 3 Experimental results of gas holdup for gasliquid and gas-slurry flow systems. ————: Calculated from Eq.(5).

Fig. 4 Experimental results of gas hlodup for gasslurry flow systims. —————: Calculated from Eq. (5).

$$V_{g} = U_{g} / \epsilon_{g}$$
 (2)
スラグ領域における空気・水系二相流の V_{g} を Nick
lin ら⁸⁾は次式で表した。

 $V_g=1.2(U_g+U_l)+0.35\sqrt{gD_T}$ (3) Eg. (3)中の右辺第一項はスラグ気泡の上部に存在す る液スラグの上昇速度を、また第二項は静止液体中の スラグ気泡の上昇速度を表している。

Fig.5に、液粘度が1-133mPa·sの範囲で得たVgと Ug+Uiの関係を示す。空気・水系二相流におけるVg

Fig. 5 Effect of liquid viscosity on Vg.

はEg. (3) とよく一致するが、液粘度が増加するとと もに V_g は増大する。このことは、Eg. (2) から液粘度 の増加とともに ϵ_g は減少することを意味する。以上 の結果から、 V_g について次の実験式を得た。

$$V_{g} \equiv U_{g} / \varepsilon_{g} = \{1.2 (U_{g} + U_{e}) + 0.35 \sqrt{g D_{T}}\} (\mu_{e} / \mu_{w})^{0.04}$$
(4)

Eg. (4) を変形し、 ε gについて整理すると

$$\epsilon g = \left\{ \frac{U_g}{1.2(U_g + U_1) + 0.35\sqrt{gD_T}} \right\} \left(\frac{\mu_w}{\mu_1} \right)^{0.04} \quad (5)$$

Fig.3及び4中の実線はEg.(5)からの計算結果であり 実測値とよく一致している。

2.3 全圧降下

気・スラリー混相流をFig.6に示したように模式的 に表し、この流れについて次の仮定をもとに力収支を とる。

仮定1 管内の静圧は半径方向に一様である。

- 2 気泡及びスラリーの分布は半径方向に一様 である。
- 3 気・スラリーの流速は軸方向には位置的に 不変で,加速による運動量変化は無視する。

Fig.6に示すような環状要素をとり、これに作用する 力を列記すると次のようになる。

Fig. 6 Flow model for force balance.

上向きの力

r 面に作用するせん断力 2πrLτ 端面1に作用する圧力 2πrdrP₁ <u>下向きの力</u> (r+dr)面に作用するせん断力 2π(r+dr)L(τ+ dτ) 端面2に作用する力 2πrdrP₂

微小体積に作用する重刀	$2\pi \mathrm{rdrL} \mu_{\mathrm{m}} \mathrm{g}$		
両方向の力の釣合いから次式が得られる。			
-2π Ld (τ r) + 2π (P ₁ -P ₂)rdr - 2π L ρ _m grdr = 0			
P ₁ -P ₂ =ΔPとおき整理すると			
d (τ r) = (Δ P/L – $ ho$ _m g)rdr	(6)		
または			
$\Delta P/L = \rho_{m}g + 2\tau/r$	(7)		
r=Rにおけるせん断力をてwとすれ	ιば, Eg.(7)は		
$\Delta P/L = \rho_{mg} + 2\tau_{w}/R$	(8)		
て、と摩擦圧力損失の関係は			
$2 \tau_{\rm w}/R = \Delta P_{\rm f}/L$	(9)		
また, 管内流体の平均密度 ρ _m を			
$\rho_{\rm m} = (1 - \epsilon_{\rm g}) \rho_{\rm l} + \epsilon_{\rm g} \rho_{\rm g}$	(10)		

で表すと,全圧降下は次のようになる。

 $\Delta P/L = \{(1 - \epsilon_g) \rho_1 + \epsilon_g \rho_g\} g + \Delta P_f/L \quad (11)$

Fig.7及び8に気液系および気・スラリー系におけ る全圧降下の測定結果を示す。全圧降下は、液流速及 び粒子濃度の増加とともに大きくなる。またガス流速 の増加とともに減少していくが、その割合はガス流速 が大きくなると小さくなる。

Fig. 7 Total pressure drops for gas-liquid and gasslurry flow systems. ———: Calculated from Eq.(5),(11) and (12).

Fig. 8 Total pressure drops for gas-slurry flow systems. ———: Calculated from Eq. (5), (11) and (12).

2.4 摩擦圧力損失

気液系及び気・スラリー系における摩擦圧力損失の 測定結果をFig.9及び10に示す。粒子濃度,ガスおよ び液流速が増加するとともに,圧力損失は大きくなる。

本研究では、塔径を変えた実験は行っていない。そ こで井上ら²⁾および加藤ら^{3.4)}が得た気液系における データを含めて、圧力損失を整理した。縦軸に圧力損 失とガスの運動エネルギーの比を、横軸に全質量流量 とガスの質量流量の比をプロットすると、管径、粒子 濃度およびスラリー粘度に関係なく、ほぼ良好な相関 が得られた。その結果をFig.11に示した。圧力損失 を次の実験式で表した。

 $\Delta P_{\rm f}/L=0.002 \left(\rho_{\rm g} U_{\rm g}^{2}/D_{\rm T}\right) \left|1+\rho_{\rm 1} U_{\rm l}/\rho_{\rm g} U_{\rm g}\right|^{1.4}$ (12)

Fig.9及び10に, Eg. (12)から求めた計算結果を実線 で,また Lockhart と Martinelli からの結果を破線で それぞれ示した。Eg. (12)からの計算値は実測値とよ く一致するが,Lockhart と Martinelli からの値は, ガス流速の大きな領域で実測値よりも小さくなる。ま た,Egs. (5), (11)及び(12)から求めた全圧降下の結 果も Fig. 7 及び8 に実線で示した。

Fig. 9 Frictional pressure loss for gas-liquid and gas-slurry flow systems. ————: Calculated from Eq.(12). ------:: Calculated from Lockhart-Martinelli's Eq.

Fig. 10 Frictional pressure loss for gas-slurry flow systems.

------: Calculated from Eq.(12). ------: Calculated from Lockhart-Martinelli's Eq.

Fig. 11 Correlation of frictional pressure loss.

結 言

1) 粒径が28µmのガラス粒子を固相としたスラリー 流の粘度を推算した結果,粒子濃度(スラリー中の質 量分率)が0.45の場合で液粘度の約3倍となった。ま た,粒子濃度が0.45以下ではスラリー流は均相液体と して挙動することを確かめた。

ガスホールドアップは粒子濃度が増加すると、
 わずかに減少し、Eg.(5)で表せた。

3)気・スラリー系混相流における摩擦圧力損失は Eg.(12)で相関できた。また、スラリー粘度の影響は 無視できた。

Nomenclature = mass fraction of solid particles in slurry

C.

		[-]
DT	= pipe diameter	[m]
f	= friction factor	[-]
g	= gravitational acceleration	$[m^2/s]$
L	= length between pressure taps	[m]
ΔP	= total pressure drop	[Pa/m]
$\Delta P_{\rm f}$	= frictional pressure loss	[Pa/m]
Re	= Reynolds number	[-]
Uı	= superficial velocity of liquid or s	slurry [m/s]

Ug	=	superficial velocity of gas	[m/s]
Vg	=	gas rising velocity	[m/s]
ε _g	=	gas hlodup	[-]
ε ,	=	solid hlodup in slurry	[-]
ε _{smax}	=	ε s at settled condition	[-]
μ_1	=	viscosity of liquid or slurry	[mPa•s]
μ_{w}	=	viscosity of water	[mPa•s]
ρ _g	=	density of gas	[kg/m ³]
ρ_1	=	density of liquid or slurry	[kg/m ³]

Literature cited

- Hughmark, G. A. and B. S. Pressburch: AIChE Journal., 7, 677 (1961).
- Inoue, A. and S. Aoki: Trans. JASME, 32, 940 (1966).
- 3) Kato, Y., N. Hidaka and H. Kamimura: Kagaku

Kogaku Ronbunshyu, 12, 726 (1986).

- 4) Kato, Y.: Yamanashi Daigaku Kenkyu Hokoku, 7, 105 (1956).
- Kim, S. D. and J. H. Choi: Can. J. Chem. Eng., 62, 85(1984).
- 6) Landel, R. F., B. G. Moser and A. J. Bauman: Fourth Int. Cong. on Rheology, Part 2, 663, Interscience Publishers New York, (1965).
- Lockhart, R. W. and R. C. Martinelli: Chem. Eng. Prog., 45, 39(1949).
- Nicklin, D. J., J. O. Wilkes and J. F. Davidson: Trans. Instn. Chem. Eng., 40, 61 (1962).
- 9) Sasaki, T.: Kagaku Kogaku, 28, 110(1964).
- Toda, M., E. Harada, M. Kuriyama, S. Saruta and H. Konno: Kagaku Kogaku Ronbunshu, 8, 380 (1982).