誘導電動機の速度センサレスベクトル制御の解析法

篠原 勝次・清武 博文・永野 孝*・入佐 俊幸 (受理 平成元年5月31日)

ANALYSYS OF SPEED SENSOR-LESS VECTOR CONTROL OF INDUCTION MOTOR

Katsuji SHINOHARA, Hirofumi KIYOTAKE, Takashi NAGANO, and Toshiyuki IRISA

Recent progress in the control of AC electric machines has concerned itself to a great extent with the evolution of the principle of vector control.

In this paper, the steady-state and transient characteristics of speed sensor-less vector control of induction motors are analyzed, taking into account the effect of the control circuit.

1. まえがき

近年,産業界における可変速ドライブでは、メンテ ナンスフリー化や耐環境性が強く望まれており、ブラ シや整流子の保守・点検を必要とする直流機から接触 機構のない交流機へという流れが生まれている。中で もかご形誘導電動機は安価・堅牢といった特長を有 し、又、その優れた制御方式であるすべり周波数形の ベクトル制御の発展により、各種産業分野に広く用い られている。

しかし,すべり周波数形のベクトル制御を実現する 場合,PG などの高精度な速度検出装置が不可欠とな る。この速度検出装置は環境仕様が狭く,それによっ て誘導機の特質が十分に発揮できなくなる場合が出て くる。さらには設置場所への寸法の制約や,設備への 適用の困難などの障害もある。

これに対し、速度検出装置を省略しベクトル制御を 成立させようとする研究が進められ、一部では実用化 されている。本稿では、制御電流源で駆動される、ベ クトル制御による誘導電動機速度センサレスドライブ の解析法を示し、定常及び過渡時の解析式を導出する。

2. 解析モデル⁽¹⁾

図1に解析モデルを示す。電動機相電流と電圧を フィードバックし、回転子速度はフィードバックしな い。このモデルにおけるベクトル制御系の基本制御量 は一次電流のトルク成分と二次鎖交磁束の d 軸成分 である。それらはシミュレータによって i₁ と f₂ と して演算され、トルク成分電流指令値 i_1^* と \hat{i}_1 の偏 差を入力とする PI 演算により、回転子速度推定値 ω,が出力される。又,二次鎖交磁束指令値 φ₂* と →_{2d}の偏差を入力とする PI 演算により励磁成分電流 指令値 i,* が出力される。同様にして, i,* は回転子 速度指令値 ω_r^* と $\hat{\omega}_r$ との偏差を入力とする PI 演算 により求められている。ベクトル制御系は回転座標上 で成立しているため、電動機における静止座標量との 間で座標変換を行い、そこで必要な二次鎖交磁束の角 周波数 ω_{\bullet} はすべり周波数指令値 ω_{\bullet}^{*} と $\hat{\omega}_{\bullet}$ の和で得 られている。こうして得られた電流指令値 i_{*} , i_{*} , i,* と実際の相電流 i,, i, i, の偏差を PI 制御し, イ ンバータに出力指令値として与える。以上が解析モデ ルの説明である。

3. 解析方法

制御回路及び電動機の諸量をシミュレートするた

*都城工業高等専門学校

め,各 PI 制御部分の積分項を微分方程式の形で導出 する。又,誘導電動機の電圧方程式からも微分方程式 を導き出し,合わせてルンゲ・クッタ・ジル法により 適当な初期値を与えて解く。

3.1 誘導機

二次鎖交磁束の角周波数 ω_φ で回転する直交 d-q 座標系における誘導電動機の電圧方程式は次の様に表 せる²⁰。

かご形誘導電動機は 2 次側が短絡されているので, $v_{2d} = v_{2q} = 0 となる。(1)式を変形すると次式が得られる。$

$$p \begin{bmatrix} i_{1d} \\ i_{1q} \\ i_{2q} \\ i_{2q} \end{bmatrix} = \frac{1}{\triangle} \begin{bmatrix} -R_1 L_2 & \omega_{\phi} L_1 L_2 - \omega_{\phi} M^2 & R_2 M \\ -\omega_{\phi} L_1 L_2 + \omega_{\phi} M^2 & -R_1 L_2 & -\omega_{\phi} L_2 M + \omega_{\phi} L_2 M \\ R_1 M & -\omega_{\phi} L_1 M + \omega_{\phi} L_1 M & -R_2 L_1 \\ \omega_{\phi} L_1 M - \omega_{\phi} L_1 M & R_1 M & \omega_{\phi} M^2 - \omega_{\phi} L_1 L_2 \end{bmatrix}$$

ただし、 $\Delta = L_1 L_2 - M^2$ である。以上より誘導電 動機の電圧方程式から4元の微分方程式が得られた。

3.2 ベクトル制御系

ベクトル制御系は3つの PI 制御器によって構成されている。図1より PI₁, PI₂, PI₃の比例ゲインと積 分時間をそれぞれ K_q , τ_q , K_{ω} , τ_{ω} , K_{d} , τ_d とする と, 次式が成り立つ。

(3), (4)式を連立させて pwr, pilg を求めると,

$$p\widehat{\omega}_{r} = \frac{1}{1+K_{\omega}K_{q}} \left\{ -K_{\omega}p\widehat{i}_{1q} + \frac{K_{\omega}}{\tau_{\omega}}(i_{1q}^{*}-\widehat{i}_{1q}) + K_{\omega}K_{q}\frac{P}{2}p\omega_{r}^{*} + \frac{K_{\omega}K_{q}}{\tau_{q}}(\frac{P}{2}\omega_{r}^{*}-\widehat{\omega}_{r}) \right\} \qquad (6)$$

又, (5)式より

ここで、(6)、(7)式中の $\widehat{p_{l_q}}$ および(8)式中の $\widehat{p_{2d}}$ はそれぞれ(付10)、(付9)式より、

$$\widehat{pi}_{1q} = \frac{|pQ_{d} \cdot i_{1q} + Q_{d}(pi_{1q}) - pQ_{q} \cdot i_{1d} - Q_{q}(pi_{1d})| \sqrt{Q_{d}^{2} + Q_{q}^{2}}}{Q_{d}^{2} + Q_{q}^{2}} - (Q_{d}i_{1q} - Q_{q}i_{1d}) \frac{Q_{d}(pQ_{d}) + Q_{q}(pQ_{q})}{(Q_{d}^{2} + Q_{q}^{2})^{3/2}} \dots (9)$$

$$p\widehat{p}_{2d} = \frac{\frac{1}{2} M^{V_{2}} |pQ_{d} \cdot i_{1d} + Q_{d}(pi_{1d}) + pQ_{q} \cdot i_{1q} + Q_{q}(pi_{1q})|}{(Q_{d}i_{1d} + Q_{q}i_{1q})^{V_{4}}} \dots (10)$$

で表される。よって、(6)、(7)、(8)式よりベクトル制御 系の諸量である $\hat{\omega}_n$ i_4^* 、 i_4^* に関する微分方程式が 導出できた。

3.3 3相 PI制御回路

誘導電動機,ベクトル制御系,ともに回転座標上で 微分方程式を導出したので,3相 PI 制御回路に関す る部分も dq 変換して⁽³⁾,回転座標系で表現する。

3相 PI 制御回路に関する式は次式で与えられる。

ただし, K_{pi}は比例ゲイン, τ_{pi}は積分時間である。 (1), (12, (13)式より, 3相 PI 制御部の dq 変換は次式 で表される。

$$v_{sd} = K_{pi} (i_{1d}^* - i_{1d}) + \frac{1}{p^2 + \dot{\theta}^2} \frac{K_{pi}}{\tau_{pi}} \Big[p (i_{1d}^* - i_{1d}) + \dot{\theta} (i_{1q}^* - i_{1q}) \\ - \frac{2}{3} \ddot{\theta} \Big[\sin\theta \frac{1}{p} | \cos\theta (i_{1d}^* - i_{1d}) - \sin\theta (i_{1q}^* - i_{1q}) | \\ + \sin(\theta - \frac{2}{3}\pi) \frac{1}{p} | \cos(\theta - \frac{2}{3}\pi) (i_{1d}^* - i_{1d}) - \sin(\theta - \frac{2}{3}\pi) \Big]$$

 $\cdot (i_{1q}^{*} - i_{1q}) + \sin(\theta + \frac{2}{3}\pi) \frac{1}{p} |\cos(\theta + \frac{2}{3}\pi)(i_{1d}^{*} - i_{1d}) - \sin(\theta + \frac{2}{3}\pi)(i_{1q}^{*} - i_{1q}) |]$

$$\begin{aligned} v_{sq} &= K_{pi} \left(i_{lq}^{*} - i_{lq} \right) + \frac{1}{p^{2} + \dot{\theta}^{2}} \frac{K_{pi}}{\tau_{pi}} \Big[p \left(i_{lq}^{*} - i_{lq} \right) - \dot{\theta} \left(i_{ld}^{*} - i_{lq} \right) \\ &- \frac{2}{3} \ddot{\theta} \Big[\cos \theta \ \frac{1}{p} | \cos \theta \left(i_{ld}^{*} - i_{lq} \right) - \sin \theta \left(i_{lq}^{*} - i_{lq} \right) | \\ &+ \cos \left(\theta - \frac{2}{3} \pi \right) \frac{1}{p} | \cos \left(\theta - \frac{2}{3} \pi \right) \left(i_{ld}^{*} - i_{lq} \right) \\ &- \sin \left(\theta - \frac{2}{3} \pi \right) \left(i_{lq}^{*} - i_{lq} \right) | \\ &+ \cos \left(\theta + \frac{2}{3} \pi \right) \left(i_{lq}^{*} - i_{lq} \right) | \\ &+ \cos \left(\theta + \frac{2}{3} \pi \right) \left(i_{lq}^{*} - i_{lq} \right) | \\ &- \sin \left(\theta - \frac{2}{3} \pi \right) \left(i_{lq}^{*} - i_{lq} \right) - \sin \left(\theta + \frac{2}{3} \pi \right) \left(i_{lq}^{*} - i_{lq} \right) | \Big] \\ &- \left[\frac{1}{p} | \cos \left(\theta + \frac{2}{3} \pi \right) \left(i_{lq}^{*} - i_{lq} \right) - \sin \left(\theta + \frac{2}{3} \pi \right) \left(i_{lq}^{*} - i_{lq} \right) | \Big] \right] \\ &- \cdots \cdots (15) \end{aligned}$$

$$\begin{aligned} \mathcal{CCC}, \\ \theta &= \omega_{\phi} t \\ \omega_{\phi} &= \widehat{\omega}_{e} + \omega_{e}^{*} \end{aligned} \tag{16}$$

より、(14)、(15)式中の6, Ӫはそれぞれ次式で表される。

(18), (19)式より, (14)式は次の様に変形できる。

ここで, C, D, E は(45), (46), (47)式で表される。 同様にして(18, (19)式より, (15)式は次の様に変形できる。

$$p |K_{pi}(i_{l_{q}}^{*} - i_{l_{q}}) - v_{s_{q}}| + \frac{K_{pi}}{\tau_{pi}}(i_{l_{q}}^{*} - i_{l_{q}}) + \frac{1}{p} [\omega_{s}^{2} | K_{pi}(i_{l_{q}}^{*} - i_{l_{q}}) - \frac{K_{pi}}{\tau_{pi}} \frac{1}{\omega_{s}}(i_{l_{d}}^{*} - i_{l_{d}}) - v_{s_{q}}| - \frac{2}{3} \frac{K_{pi}}{\tau_{pi}} |\ddot{\theta}\cos\theta \cdot C + \ddot{\theta}\cos(\theta - \frac{2}{3}\pi) \cdot D + \ddot{\theta}\cos(\theta + \frac{2}{3}\pi) \cdot E|] = 0$$
.....(2)

$$\begin{array}{l}
\Xi \subseteq \overline{C}, \\
K_{pi} (i_{1d}^{*} - i_{1d}) - v_{sd} = A_{d} \\
K_{pi} (i_{1q}^{*} - i_{1q}) - v_{sq} = A_{q} \\
\frac{1}{p} \left[\omega_{\theta}^{2} | K_{pi} (i_{1d}^{*} - i_{1d}) + \frac{K_{pi}}{\tau_{pi}} \frac{1}{\omega_{\theta}} (i_{1q}^{*} - i_{1q}) - v_{sd} | - \frac{2}{3} \frac{K_{pi}}{\tau_{pi}} \\
| \overline{\theta} \sin \theta \cdot C + \overline{\theta} \sin (\theta - \frac{2}{3} \pi) \cdot D + \overline{\theta} \sin (\theta + \frac{2}{3} \pi) \cdot E | = B_{d} \\
\end{array}$$
(24)

とおくと、(20)式より(26)式が、(21)式より(27)式が導ける。

又, (22), (23)式より

 $v_{sd} = K_{pi} (i_{1d}^* - i_{1d}) - A_d$ (28)

$$v_{sq} = K_{pi} (i_{1q}^* - i_{1q}) - A_q$$
(29)

(22), (24)式より(30)式が, (23), (25)式より(31)式が導ける。

$$pB_{d} = \omega_{\phi}^{2}A_{d} + \frac{K_{pi}}{\tau_{pi}} \omega_{\phi}(i_{1q}^{*} - i_{1q}) - \frac{2}{3} \frac{K_{pi}}{\tau_{pi}} |\ddot{\theta}\sin\theta \cdot C$$

+ $\ddot{\theta}\sin(\theta - \frac{2}{3}\pi) \cdot D + \ddot{\theta}\sin(\theta + \frac{2}{3}\pi) \cdot E |$ (30)
$$pB_{q} = \omega_{\phi}^{2}A_{q} - \frac{K_{pi}}{\tau_{pi}} \omega_{\phi}(i_{1d}^{*} - i_{1d}) - \frac{2}{3} \frac{K_{pi}}{\tau_{pi}} |\ddot{\theta}\cos\theta \cdot C$$

+ $\ddot{\theta}\cos(\theta - \frac{2}{3}\pi) \cdot D + \ddot{\theta}\cos(\theta + \frac{2}{3}\pi) \cdot E |$ (31)

以上より、 v_{sd} 、 v_{sq} は(28)、(29)式で表され、その中の A_d 、 A_q 、 B_d 、 B_q は(26)、(27)、(30)、(31)式の関係を満足する。

3.4 計算式の導出

定常状態では(19)式より,

.

が成り立つので, (26, (27, (30, (31)式の右辺第3項が零 となる。よって解析に用いる式は定常・過渡状態とも 同じ式を使う事になる。(2), (6), (7), (8), (26, (27, (30, (31)式, それと機械系の式より, 全部まとめると,

$$pi_{1d} = \frac{1}{\Delta} | -L_2 R_1 i_{1d} + (\omega_{\phi} L_1 L_2 - \omega_{\phi} M^2) i_{1q} + R_2 M i_{2d} + (\omega_{\phi} L_2 M - \omega_{\phi} L_2 M) i_{2q} + L_2 v_{1d} | \qquad \dots \dots (33)$$
$$pi_{1q} = \frac{1}{\Delta} | (-\omega_{\phi} L_1 L_2 + \omega_{\phi} M^2) i_{1d} - R_1 L_2 i_{1q} + (-\omega_{\phi} L_2 M) | ||_{1d} + R_1 L_2 i_{1q} + (-\omega_{\phi} L_2 M) ||_{1d} + R_2 i_{1q}$$

$$+ \omega_{s} L_{2} M$$
 $i_{2d} + R_{2} M i_{2q} + L_{2} v_{1q}$ $\cdots (34)$

$$p\widehat{\omega}_{r} = \frac{1}{1 + K_{\omega}K_{q}} \left\{ -K_{\omega}p\widehat{i}_{1q} + \frac{K_{\omega}}{\tau_{\omega}} \left(i_{1q}^{*} - \widehat{i}_{1q}\right) + K_{\omega}K_{q}\frac{P}{2}p\omega_{r}^{*} + \frac{K_{\omega}K_{q}}{\tau_{q}} \left(\frac{P}{2}\omega_{r}^{*} - \widehat{\omega}_{r}\right) \right\}$$

$$(38)$$

$$pB_d = \omega_{\theta}^2 A_d + \frac{K_{pi}}{\tau_{pi}} \omega_{\theta} (i_{1q}^* - i_{1q}) - \frac{2}{3} \frac{K_{pi}}{\tau_{pi}} \{ \ddot{\theta} \sin \theta \cdot C + \ddot{\theta} \sin (\theta + C + \ddot{\theta}) \}$$

$$-\frac{2}{3}\pi)\cdot D+\ddot{\theta}\sin\left(\theta+\frac{2}{3}\pi\right)\cdot E$$
.....(43)

$$pD = \cos(\theta - \frac{2}{3}\pi) \cdot (i_{1d}^* - i_{1d}) - \sin(\theta - \frac{2}{3}\pi) \cdot (i_{1q}^* - i_{1q}) \cdots (46)$$

 $pE = \cos(\theta + \frac{2}{3}\pi) \cdot (i_{1d}^* - i_{1d}) - \sin(\theta + \frac{2}{3}\pi) \cdot (i_{1q}^* - i_{1q}) \cdots (47)$ ただし、 $\Delta = L_1 L_2 - M^2$ $v_{1d} = K_v v_{sd} = K_v | K_{pi} (i_{1d}^* - i_{1d}) - A_d |$ $v_{1q} = K_v v_{sq} = K_v | K_{pi} (i_{1q}^* - i_{1q}) - A_q |$ $K_v \text{ ld } \vee N - \varphi \text{ of } \mathcal{T} \vee \mathcal{E}, \mathbb{Z}, \hat{p}_{1q}, \hat{p}_{2d} \text{ ld}(9), (10)$ 式 で表される。 以上で解析に用いる $i_{1d}, i_{1q}, i_{2d}, i_{2q}, \omega_n, \hat{\omega}_n, i_{1d}^*, i_{1q}^*,$ $A_d, A_q, B_d, B_q, C, D, E i = [] する15元の微分方程式が$ 得られた。

4. 結 論

本稿では制御電流源で駆動される誘導電動機の速度 センサレスベクトル制御方式の各部動作を明らかにす るよう,ルンゲ・クッタ・ジル法による数値計算のた めの計算式を導出した。

参考文献

- (1) 大谷・渡辺・高崎・高田:「ベクトル制御による
 誘導電動機の速度センサレスドライブ」,電学論
 D, 107,2 (昭62)
- (2) 木下・橋井:「センサレスベクトル制御インバー タ」, 電学誌, 108, 2 (昭63)
- (3) 篠原・山本・豊平・入佐:「永久磁石同期電動機 ベクトル制御系の電流ループについて」,電気学会 半導体電力変換研究会資料,SPC-89-4 (平元)
- (4) 大谷・尾崎・宮野・高崎・渡辺:「大容量 AC サーボドライブ Varispeed-866」,安川電機,52, P 376 (昭63)

(5) 大谷:「最近の AC 可変速ドライブ」, 安川電機,

51, P84 (昭62)

付録

 $\phi_{2d}, i_{1q} \ge \exists \perp V - g^{(4),(5)}$

静止座標系での一次電圧・電流ベクトル v_{1} , i_{1} は, 磁束の角周波数 ω_{ϕ} で回転する回転座標系からみた電 圧・電流成分 $(v_{1d}, v_{1q}, i_{1d}, i_{1q})$ と単位回転ベクト ル $\varepsilon^{j\omega_{\phi}t}$ を用いて次式で表せる。

又,二次鎖交磁束ベクトル指令値 ϕ_2^* は,

 $\phi_2^* = \phi_{2d}^* \epsilon^{j \omega_d *}$ ……………(付3) 付図1より二次鎖交磁束ベクトル演算値 $\hat{\phi}_2$ は次式で 表せる。

ただし, $T_c = L_2/r_2$, $l = L_1 (1 - \frac{M^2}{L_1 L_2})$ で, r_1^* , l* はそれぞれ r_1 , lの設定値である。(付1), (付2), (付3) 式より, (付4) 式は次の様に表せる。

付図1 \$\$_2d, i1q シミュレータ

(付1)、(付2)式と同様に

 $\widehat{\phi}_2 = (Q_d + j Q_q) \epsilon^{j \omega_{\phi} t} \qquad \dots \dots \dots \dots \dots (\text{ff } 6)$

とおくと、(ただし、 Q_d 、 Q_q は $\hat{\phi}_2$ より求めた二次鎖 交磁束演算値の d軸、q軸成分)

$$Q_{d} = \frac{1}{1 + T_{c}p} \left\{ \phi_{2d}^{*} + T_{c}(v_{1d} - r_{1}^{*}i_{1d} - l^{*}p_{1d} + \omega_{\phi}l^{*}i_{1q}) \right\} \qquad \dots \dots (f \neq 7)$$

$$Q_{q} = \frac{T_{c}}{1 + T_{c}p} (v_{1q} - r_{1}^{*}i_{1q} - l^{*}pi_{1q}$$
$$- \omega_{\phi}l^{*}i_{1q}) \qquad \dots \dots \quad (\textit{ff 8})$$

(付7),(付8)式によって $\hat{\phi}_2$ が求まる。この $\hat{\phi}_2$ 及び h をもとにして,励磁エネルギーより求めた二 次鎖交磁束演算値の d 軸成分 $\hat{\phi}_{2d}$ トルク成分電流の 演算値 \hat{h}_q が次式により演算される。

$$= (Q_d i_{1_q} - Q_q i_{1_d}) / \sqrt{Q_d^2 + Q_q^2}$$
 (†10)