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The objective of this paper is to study the effects of curvature and Poisson's ratio upon the
behaviors of shallow translational shells with pinned support along edges. The shells are
chosen to have two independent radii of curvature. By applying the Galerkin's procedure, the
static analyses under uniform hydropressure load and the natural frequency analyses are perfor
med. The numerical results are presented.

1 • Introduction

The shallow translational shells are usually examined by basing on the Marguerre-Vlasov
equation. The equation is able to be analyzed by using generalized Levy-type solution7 . The
analytical method permits us to get static behaviors under various boundary conditions1 '~ .
Adopting the method, Yokoo and Kunieda4 '̂5^presented the procedure to obtain the strict natu
ral frequencies of shallow shells and indicated5'that the solution of the frequency equation for
the case was not easily amenable to numerical calculations.

Then, supposing one vibration mode, the explicit expression6''8'for natural frequency of
shallow shells was reported and effects of curvatures upon natural frequencies were assessed.
The explicit expression is the solution under the boundary condition with inplane inconstraint,

and brings interesting results8'that the fundamental natural frequency for hyperbolic paraboloid-
al shell is the same as for a plate.

The objective of here is to search natural frequencies for flexural vibrations of shallow
shells under the boundary condition with strict inplane constraint and examine effects of curva

ture and Poisson's ratio upon them. For a solving method, we adopt the Galerkin's method.
The method is applicable to both the static and the natural frequency analyses. For the latter

case, it is considered that the Galerkin's method have an advantage to the formentioned analy

tical method.

2 • Basic Equations for Shallow Translational Shells

The mid-surface of the translational shallow shells examined here are given by

Z(X ,y)=l{^-^+y^.\ (1)
where x, 2/, Z are the cartesian coordinates, and Rx and Ry are constants identifying the radii of
curvature in the x and y directions, respectively. The shells have a rectangular planform of
dimensions aXb with boundaries along x=0, a and 2/=0, b illustrated in Fig. 1. The expression
(1) represents various sets of shape included in spherical shells Rx=Ry, cylindrical shells

RxRy=0, and hyperbolic paraboloidal shells Rx=— Ry.
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Fig. 1 Geometry of Shells

Without tangential inertia force, the linear equations of motion for shallow shells 'in terms
of the normal displacement wand the Airy's stress function <2> are generalized to
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In order to examine the curvature effects on linear behaviors of shallow shells with pinned

support, we analyzed Eq. (2) under the following boundary conditions
w=Mx=0 and u=v=0 at x=0 and a (4—a,b)
w=My=0 and u=v=0 at y=0 and b (4—c,d)

Applying the Galerkin's method to Eq. (2) ,we derive ordinary differential equations of mo
tion for shallow shells.

3 . Procedures to Analyze the Shells with Inplane Constraint

The normaldisplacement w under the conditions given by Eqs. (4—a, c) is assumed by
nix, 2/, £)=E£wmnU)smamxsin£n2/ ,_,

m n \0/

where aTO=ra;r/a, fin=n7r/b. In order to simplify the analysis, we restrict the case where the
normal displacement is symmetric with respect to x=a/2 and y= 6/2, i.e. integers m and n take
odd numbers, which is the most important displacement mode for the shells. Substituting Eq. (5)
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where A=shell thickness, E=Young's modulus, /o=mass density, j/=Poisson's ratio and
D=E/i7l2(l-V). The membrane stress resultants Nx> Nj,, NX!/» the bending and the twisting
moments Mx» My, Mxy, and the inplane displacement components u and t; corresponding to x
and y directions, respectively are given by

axy=-
32$

dxdy

ax2

HEI*

M„=-D(l-i;)
a2w

3x32/

(2-b)

(3-a)

(3-b)

(3-c)

(3-d)



Linear Behaviors of Shallow Translational Shells with Pinned Support along Edges 77

into Eq. (2—b),|we have a particular solution $„ for the stress function

<n r-v •,\_E/ta2v1^-, (y2n2+Am2) . . .
Rx »V(m2+yV)V

where y= a/b and A=RX/Rj,. The homogeneous solution $„ for the stress function is assumed by

<Mx ,2/)=^f1[i;(A",,COSha111(2/-|)+A"3a„(2/-|-)sinha»t(2/-|-))sina»x
+I](Bn1cosh/ffn(x-f)+BVn(x-f)sinh^(x-f)Jsin/ffn2/] (7)

Substituting the general solution for the stress function $=$„+$h and w into Eq. (3—c,d),
and integrating the equation, we may get u(x , y) and v(x , y).

„t„ „\_ a T yinM«»l y2n2+Am2, , , .. , , l
uix, y)-wA~^l^\(m'+rWvm fn)+1\C0SamXsmfiny

-Ilm^[(A'"1(l+v)+2A",3jcoshai»(2/-|-)+Am3(l+l/)an(2/-|-)sinhan(2/-|)]cosamx
-Zl7n»[(B"I(l+*)-Bn3(l- ^Jsinh^x-f)+B"3(l+*)/?„(x-f)coshA,(x-f)]sinfiny

(7-a)

-Sm^[(A^(l+v)-A^l-v))sinha^-})+Am3(l+v)a,„(2/-|-)coshan(2/-|-)]sinai„x
-Ilrn^[(Bn1(l+l/)+2Bn3)cosh/9n(x-f)+Bn3(l+vR(x-f)sinhA(x-f)]cosAnj/

(7-b)
At the boundaries x=0 and y=0, we have

u(x ,0)=-£Ein>r[[A"1(l+v)+2A-,|cosb^+A",(l+,>|̂ sinhf^]cosa,„x (8-a)
,,t~ ni- a ^yn^mnf yV+Am2, 2 , ,. , ,1 .v(x, 0)~R;|_-i:i:^(m2+y2w2)2(vy2n2-m2)+A)sinaBx

+Zm*[|A-I(l+v)-A-,(l - *)|sinhf^+A-,(l +̂ coshf^sina.x
-Ilrn^[|Bn1(l+v)+2Bn3|cosh/?n(x-f)+Bn3(l+v)&(x-f)sinh&(x-f)] (8-b)

v(0 ,y)=-f-^7n^[\B\(l+u)+2B\\cosh^+B\(l+̂ smh^]cosfiny (8-c)
„ic\ ,a- a I vrnM,»"f y2n2+Am2, 2 ,.,,,).„
u(0 ' y)~ R: [-gfel (W'+y'n')*^ 7W)+* l8"1^

-Em^[|A",1(l+y)+2AMcosham(2/-|-)+A'"3(l+1/)a1„(2/-|)sinhan(j/-|-)]
+Eyn^[|Bn,(l+i/)-B»,(l- 1/)|sinh^+B"3(l+̂ cosh^]sin/Snj/

The boundary conditions u(x , 0)=0 and v{0 , y)=0 require the following equations

|A",1(H-i/)+2AMcosh-^+A""3(l+v>^sinh-^=0 for each m

(6)

(8-d)

(9-a)
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IBV1 +v)+2B%|coshJyL+Bn3(l +i^>^yLsinhJyL=0 for each n (9-b)
When Eq. (9—a) is satisfied, u{0 , y) which is symmetric with respect to y=b/2 vanishes at
2/=0. Then, the second term of Eq. (8—d) is able to be expanded in Fourier sine series over the
closed interval [0 , 6], which does not involve Gibbs' phenomenon. Finally, we establish the

following Fourier series

u{0, y)=^-Tlur^m/3ny 10
rlx n

Since the boundary condition in Eq. (4—b) requires that u(Q , 2/)=0, we find

Sn=0 for each n (11—a)

Similarly, Eq. (8—b) can be expressed by

v(x , 0)=p-E5mSinamx
rix m

The requirement that v(x , 0)=0 yields

vm=0 for each m (11—b)

Setting the number of serial numbers m,n=l, 3,5,... ,2N —1, we can express Eqs. (9—a,b) and
(11—a, b) in matrix form

[S]|c|=[F]|d| (12)

where IcIHAilAa^i^AMa3 — I, |d|=|wnWnWn ••• |. The expression guarantees the inplane
constraint along edges.

Applying the Galerkin's method to Eq. (2—a), we have

R2X 4 ra rb
lLK~abl 1 ^Wy ^s^na^xs^nydxdy=0 for each m,« (13)

where m, n=l, 3, 5,..., 2N—1. Representing Eq. (13) in matrix form, we have

^[I]|d|+[GlG2](^)=|P| (14)
where denotes differential with respect t.
Substituting Eq. (12 into Eq. (H), we get the following ordinary differential equation of motion.

^[M]|d|+[K]|d|=|P| (IS
where [M]=[I], [K]=[Gi]+[G2][S]"1[F]. Solving the Eq. (2) under the boundary condition in Eq.
(4) , the stiffness matrix [K] is a symmetric matrix. Set |d| =Exp( icot)\<f>l we have the eigenvalue
problem for natural frequency

co2^mm=[KM (i6)
By using subroutines for eigenvalue problems in matrix forms, Eq. (16) may be solved with ease.

Since each components of matrices [Gj, [G2], [S] and [F] are expressed in nondimensional
parameters A, ju, y and Poisson's ratio v, the matrix [K] is also expressed in these quantities.
Therefore, we find that natural frequency Q for the flexural vibration of the shells are represented
in the form

Q="\[lfx m
where the value of numerical factor cd is nondimentional frequency. These conclusions for the
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shell also hold in natural frequencies for flexual vibrations of the shallow translational shells with

any boundary conditions.

4 . Numerical results

In order to examine linear behaviors of shallow translational shells with pinned support, we

perform static analyses under uniform hydropressure load and the natural frequencies. The results
show that the condition of inplane constraint has a great influence upon the behaviors of the
shells, especially hyperbolic paraboloidal shells, and Poisson's ratio has considerable effects
on the behaviors.

4 . 1 Static anal;

Setting N=3,4, ...,11 for the shell with 7= 1,A=0,/*=50, i>=0 under the uniform load, we
examine the convergence of normal displacement and bending moment, and show the results in
Fig. 2 where the displacement wc and the moment Mx at the middle point are presented in the form

via/2, b/2)=wcXPa4/Eh3 , M*(a/2, 6/2)=McXPa2
In following static analyses, we adopt the number of serial numbers N= 10. Then, setting y=0
and 0.3for the shells with 7= 1,/^=50, we calculate wc and the mean value factor wgiven by

^jTjT^ y)dxdy=wXPa4/Eh3 (18)
and illustrate w—X curves with solid lines and wc— Acurves with broken lines in Fig. 3.
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The displacement w and the bending moment Mx distributions along y=b/2 for three types of

shells A=±1,0 with 7= 1,^=50 and y=0,0.3 are depicted in Figs. 4 and 5, respectively. When
x/a
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Fig. 5 Moment distributions

Fig. 4 Displacement Distributions

y=0, the displacement distributions for A=±l are analogous to each other, and the mean value of
displacement w with Ain Fig. 3 is almost symmetric with respect to A. In terms of wc in Fig. 3 and
Mx in Fig. 5, which are influenced by local deformations of shells, the behaviors of both shells
with A=±l may be resemble. They permits us to get that when y=0, two shells with same
absolute value A show analogous behaviors. It is quite different from behaviors of shells with
inplane inconstraint 3,11). However, changing Poisson's ratio while all other parameters are
unchanged, we notice the difference between the two shells. When Poisson's ratio is changed from
0 to 0.3, the whole curve of w— Ashifts almost parallel to the opposite direction of Ashown in
Fig. 3, which indicates that w of the shells with A=l and —1 increases about —27 % and 26 %,
respectively. The change of Poisson's ratio also makes the maximum bending moment Mx along

2/= 6/2 for the shells with A=l and —1 increase —25 % and 35 %, respectively. Then, it is said
that the increase of Poisson's ratio causes to decrease the whole displacement and the maximum
bending moment for the shell A=l, but to increase them for the shell with A= —1.

4 . 2 Natural frequency analyses

Every eigenvalue (J obtained from Eq. (16) is not only a square of natural frequency but also a
eigenvalue of stiffness matrix with nondimensional parameters. Then, analyzing the natural
frequencies make us assess effects of parameters 7, A, ju and 1/ upon the matrix. Since Poisson's
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ratio has considerable influences on the behaviors of shells under uniform load with inplane

constraint, we study effects of Aand v on natural frequencies.

Setting N= l,2,...,7 for the shell with 7=1, A=—1,//=160, y=0.3, we examine the
convergence of natural frequencies and show the results in Fig. 6. The notation (j, i) indicates
that the natural frequency corresponds to the eigenvector in Eq. (16) where wu takes the maximum

value. In following analyses, we adopt N=7.

Here, subscript i of the natural frequency cut is numbered in order to satisfy

0>1<CU2<Cl>3< ••• (19)

and the eigenvector corresponding to cot is normalized with respect to the mass matrix in Eq. flflj)

WT[M]W=1 20)

For the shells with 7= 1,^=50, y=0, the variations of cot with A(1= 1,2,3,4) are depicted in
Fig. 7. The solid lines correspond to the eigenvectors where wu takes the maximum, which exists
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on the curve for oj2 when A=0. However, the solid line is found on the curve for o>3 in the
neighborhood |A|=0.8. Then, there are transitions of modal configuration presented by
eigenvectors between the natural frequencies co2 and qj3 in the neighborhood regions |A|=—0.6.
The transition of modal configuration is also found between co3 and co4 in the region A=—0.8. The
phenomenon suggests that natural frequencies of shells are not traced by modal configurations.

In order to examine effects of Poisson's ratio on natural frequencies, we analyze the shell with

i,=0.3, 7= 1^=50 and the shell with y=0, 7=1, ^=50, and present each ratio of former natural
frequency cu<|„=o.3 and latter one a)i\u=o with A, denoted as cj^/coq—A curves, in Fig. 8 where the

numbers written on each curve indicate i defined in Eq. (19). For every natural frequency of

plates, the ratio becomes (1 —i/2)"*1/2|v=o.s=1.0483. From Figs. 7 and 8, it is found that each natural
frequency on which changing Poisson's ratio has a considerable influence may corresponds to the
eigenvector where wn takes the maximum. The eigenvector has the modal configuration having
the maximum volume change in eigenvectors. Therefore, we may say that the increase of

Poisson's ratio lets increase the natural frequency corresponding to the eigenfunction with the
maximum volume change for the shells in the region A>0, especially for the shell in the
neighborhood region A=l, and lets decrease the natural frequency for the shells in the region
A<0, especially for the shell in the neighborhood A= —1.

The eigenvector with the maximum volume change may have the maximum membrane energy

in eigenvectors of the shells. So for the shells with 7= 1,^=50, i/=0, we seek the membrane

energy for each eigenvector, and show its factor V defined bv

i/X^T' N,.+N,„-2j/N,Nlf+2(l+^)N2xy|dxd2/=VXE/i3/a2
in Fig. 9, where the number written on each curve indicate i in Eq. (19).

-1.0 0.0 1.0

Fig. 9 Membrane Energy with A Curves



Linear Behaviors of Shallow Translational Shells with Pinned Support along Edges 83

Judging from Figs. 8 and 9, it may be said that the effects of changing Poisson's ratio on the shell
natural frequency corresponding to the eigenvector with the more membrane energy differ from the

effects on plate natural frequencies.

Conclusion

Linear behaviors of shallow translational shell with pinned support along edges are studied.

The results of static analyses under uniform load are summarized as follows

1. When Poisson's ratio is zero, the whole displacement of the spherical shell (A=l) and the
hyperbolic paraboloidal shell (A== —1) are resemble.
2. The increase of Poisson's ratio makes degrease the displacement and the maximum bending

moment for the shell with A=l, but makes increase them for the shell with A= —1.

The results of natural frequency analyses are summarized as follows

3. The effects of changing Poisson's ratio on the shell natural frequency corresponding to the

eigenvector with the more membrane energy differ from the effects on the plate natural frequency.

4. The increase of Poisson's ratio makes increase the natural frequency corresponding to the

eigenfunction with maximum volume change for the shell with A=l, but makes decrease the

natural frequency correponding to it for the shell with A= —1.
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