Priceite の 合 成

福 重 安 雄・長 野 治 樹・島 田 欣 二 (受理 昭和56年5月30日)

SYNTHESIS OF PRICEITE

Yasuo FUKUSHIGE, Haruki NAGANO and Kinji SHIMADA

Priceite is a species of hydrated calcium borates. Priceite was hydrothermally synthesized in the system $CaO-B_2O_3-H_2O$ over the temperature 100 to 235°C.

The priceite was analyzed by DTA, TGA and X-ray diffraction analysis. Chemical analysis and TGA data of synthesized priceite suggested the theoritical chemical composition of priceite to be $4CaO \cdot 5B_2O_3 \cdot 7.5H_2O$.

Formation conditions of natural priceite was guessed from the synthesis condition of priceite.

1. 緒 言

*ウ素含有鉱物は、*ウケイ酸塩鉱物、無水*ウ酸 塩鉱物および含水*ウ酸塩鉱物の三種に大別される. 本研究で合成した priceite は、含水*ウ酸塩鉱物の 一種である. 天然に priceite は、産するが、その生 因については、lagoons の borosiferous waters から の直接沈でん物で、始め非晶質であったものが、時と ともに結晶化した¹⁾という考えや colemanite (2 CaO-3 B₂O₃·5 H₂O) から生じた²⁾という考え、これと全く 逆に colemanite は、priceite の変質鉱物である³⁾と いう考えなどがあり、はっきりしない、筆者らは、火 山活動の末期における噴気作用程度の地表の一定条件 下で生成するものと考え、オート・クレーブを用いた 熱水条件下で合成を試みた.

含水ホウ酸塩は、一般に多核ホウ酸陰イオンと陽イ オンおよび水とから構成され、その中でホウ素は、3 配 位と4 配位の状態で結合しているため複雑な構造とな っている¹¹⁾. これまでに priceite の組成式に4 CaO. $5B_2O_3 \cdot 7H_2O^{2139}$, 4 CaO $\cdot 5B_2O_3 \cdot 7.5H_2O^{49}$ および $5CaO \cdot 6B_2O_3 \cdot 9H_2O^{21394}$ が与えられているが未だ明 らかでない.

そこで、本実験では、オート・クレーブによる熱水 条件下での priceite の生成領域を求め、その性状な らびに組成式の検討を行った.そして、合成実験の結

表	1	含水カルシウムホウ酸塩の合成のための
		CaO と B2O3 の配合割合

	_			
CaO:B2O3	CaO (mole %)	B2O3 (mole %)	CaO (g)	H3BO3 (g)
1.0:0.5	66.67	33. 33	14.306	15.694
1.0:0.8	55.56	44.44	10.889	19. 111
1.0:1.0	50.00	50.00	9.393	20.607
1.0:1.25	44.44	55.56	8.016	21.984
1.0:1.5	40.00	60.60	6.991	23.009
1.0:2.0	33. 33	66.67	5.568	24.432
1.0:2.5	28.57	71.43	4.626	25.374
1.0:3.0	25.00	75.00	3.957	26.043
1.0:3.5	22.00	77.78	3.457	26.543
1.0:4.0	20.00	80.00	3.069	26.931
1.0:5.0	16.67	83. 33	2.506	27.444
1.0:6.0	14.29	85.71	2.118	27.882
1.0:7.0	12.50	87.50	1.834	28.116

果より天然 priceite の生成条件を推定した.

2. 実 験

2.1 出発物質および配合試料の調製

CaO および B₂O₃ 源は, いずれも和光純薬 K.K. 製 特級試薬で, CaO は、99.0%の沈降性炭酸カルシウ ムを 1,100[°]C で 1 時間焼成して得た CaO をそのまま 用い, CaO は、合成実験を行う毎に 焼成した ものを すばやく秤取した. B₂O₃ は、99.5% 正ホウ酸をデシ

表 2

図1 オート・クレーブおよび制御系の概略図 ①電源 ②水銀リレー式制御装置 ③トラ ンス ④CA熱電対 ⑤電気炉 ⑥高圧容 器 ⑦攪拌棒 ⑧冷却水 ⑨電磁誘導コイ ル

ケーター中で保存し、そのまま用いた. H₂O 源は、イ オン交換水を蒸留した水を用いた.

CaO と H₃BO₃ をモル比で CaO: B₂O₃=1.0:0.5~ 1.0:7.0 の範囲内で 所定の割合に 秤取し 配合を行っ た.これらの配合割合を表1に示した.これらの配合 物 30g に水150mlを加え,充分攪拌・混合を行ったの ち熱水処理に移った.

2.2 合成実験装置および反応条件

合成実験に用いた装置は、坂下式電磁誘導攪拌付き オート・クレーブで、反応容器は、SUS 27 の材質で 内容積が 200mlである.オート・クレーブおよび制御 系の概略を図1に示す.

反応条件は、100°、120°、130°、140°、150°、180°、 210° および 235℃の各温度で主に5時間反応を行った が、1、20 および 100時間反応も一部行った.反応中 は、73rpm で攪拌を行った.所定温度まで 100℃/h で 昇温し、所定時間反応させたのち、さらに反応の進行 を阻止するため、反応容器ごと水中で生成物を急冷し た.容器から取り出した生成物は、1ℓの水で洗净し、 105℃で 12時間乾燥を行った.このようにして得た生 成物をX線回折、赤外吸収スペクトル、諸熱試験、電 子顕微鏡観察および化学分析の実験に供した.

2.3 X線回折

2.1 および 2.2 で合成した試料および 200°~1200℃ までの焼成物について,東芝製 ADX-103 型X線回折 装置を用いて, CuKα線, Ni フィルター, 30KV, 15mA,時定数1秒,オペレーション1,スケールフ ァクター4,マルティプライヤー0.6,走査速度 2°/ min の条件で測定した.

試料	配合比 (チルド)	反応	反応	at the data term
番号	$C_{2}O \cdot B_{2}O_{2}$	(°C)	ரு ம (h)	生成物相
	CaO. D203	(0)		
1	1.0:0.5	100	5	CaHBO3
2	1.0:0.5	100	20	CaHBO3
3	1.0:0.5	100	100	
4	1.0:0.5	150	5	CaHBO3
5	1.0:0.5	180	5	CaHBO ₃
6	1.0:0.5	210	5	CaHBO ₃
7	1.0:0.5	235	5	CaHBO ₃
8	1.0:0.8	100	5	CaHBO ₃
9	1.0:0.8	120	5	CaHBO ₃ +priceite
10	1.0:0.8	130	5	CaHBO ₃ +priceite
11	1.0:0.8	150	5	CaHBO ₃ +priceite
12	1.0:0.8	180	5	CaHBO ₃
13	1.0:0.8	210	5	CaHBO ₃
14	1.0:0.8	235	5	CaHBO ₃ +korzhinskite ⁵⁷
15	1.0:1.0	100	5	CaHBO ₃
16	1.0:1.0	120	5	priceite+CaHBO ₃
17	1.0:1.0	130	5	priceite+CaHBO ₃
18	1.0:1.0	150	5	priceite+CaHBO3
19	1.0:1.0	180	5	priceite+CaHBO ₃
20	1.0:1.0	210	5	CaHBO ₃
21	1.0:1.0	235	5	CaHBO ₃
22	1.0:1.25	100	1	gowerite+nobleite+CaHBO3
23	1.0:1.25	100	5	CaHBO3
24	1.0:1.25	100	20	priceite
25	1.0:1.25	120	5	priceite+CaHBO3
26	1.0:1.25	130	5	priceite
27	1.0:1.25	150	1	priceite
28	1.0:1.25	150	5	priceite
29	1.0:1.25	180	20	priceite
30	1.0:1.25	180	1	priceite
31	1.0:1.25	180	5	priceite
32	1.0:1.25	180	20	priceite
33	1.0:1.25	210	1	priceite
34	1.0:1.25	210	5	priceite
35	1.0:1.25	235	20	priceite
36	1.0:1.25	235	1	priceite
37	1.0:1.25	235	5	priceite
38	1.0:1.25	235	20	priceite
39	1.0:1.5	100	5	CaHBO3
40	1.0:1.5	120	5	CaHBO3
41	1.0:1.5	130	5	priceite
42	1.0:1.5	140	5	priceite
43	1.0:2.0	100	5	CáHBO₃+gowerite
44	1.0:2.0	130	5	CaHBO ₃
45	1.0:2.0	140	5	priceite
46	1.0:2.0	150	5	priceite
47	1.0:2.0	235	5	priceite
48	1.0:2.5	100	5	CaHBO ₃ +gowerite
49	1.0:2.5	130	5	CaHBO3
50	1.0:2.5	140	5	CaHBO3
51	1.0:2.5	150	5	CaHBO3
52	1.0:2.5	160	5	priceite+U

各種熱水条件下における生成物相

	表	2			
試料 番号	配 (モ CaO	合比 ル比) :B2O3	反応 温度 (℃)	反応 時間 (h)	生成物相
53	1.0	: 2.5	180	5	priceite
54	1.0	: 2.5	210	5	priceite
55	1.0	: 2.5	235	5	priceite
56	1.0	: 2. 75	180	5	priceite
57	1.0	: 3. 0	150	5	CaHBO₃+U
58	1.0	: 3. 0	180	5	priceite+U
59	1.0	: 3. 0	210	5	priceite+U
60	1.0	: 3. 0	235	5	priceite
61	1.0	: 3. 5	150	5	U
62	1.0	: 3. 5	170	5	U
63	1.0	: 3.5	210	5	priceite+U
64	1.0	: 3. 5	235	5	priceite
65	1.0	: 4. 0	180	5	U
66	1.0	: 4. 0	210	5	U
67	1.0	: 4. 0	235	5	priceite
68	1.0	: 5.0	180	5	U
69	1.0	: 5. 0	210	5	U
70	1.0	: 5. 0	235	5	U
71	1.0	: 6. 0	210	5	U
72	1.0	: 7.0	235	5	U

U:未同定化合物

2.4 赤外吸収スペクトル

2.3 で試験した同じ試料について, 島津製作所製回 折格子型 IR 27 G をもちいて, KBr 錠剤法で4000~ 400cm⁻¹ まで赤外吸収スペクトルを測定した. 錠剤は, KBr 150mg に試料 2 mg を均一に混合し, 真空下で 500kg/cm² の圧力下で成形した.

2.5 示差熱分析(DTA) および熱天秤分析(TGA)

2.3 のX線回折で priceite と確認した 試料につい て、理学電機製 CN 800 2 S 卓上型標準示差熱天秤分 析装置を用いて DTA および TGA の同時分析を行っ た. 測定条件は、次の通りである. 試料量:15mg, 測定雰囲気:空気中,昇温速度:10℃/min, DTA 標 準物: α -アルミナ,感度:±100 μ V, TGA 感度:0.01 mg,フルスケール:10mg.

2.6 電子顕微鏡観察の方法

2.1 および2.2の方法で合成した試料について、日 立製作所製H125S型電子顕微鏡を用い、加速電圧75 KVで、透過像の写真撮影を行った. 観察用試料は、 懸濁法で作製し、カーボン蒸着およびクロムのシャド ーイングを施した.

2.7 Priceite 中の Ca の定量

分析用試料は、CaO:B₂O₃=1.0:2.0, 234℃5時

間で合成した priceite の乾燥物 0.5g を精秤し, 6 N HCl で加熱溶解し, これを 500ml メスフラスコ にて 標線まで希釈した. この液 20ml に純水 30ml を加え, アンモニア 水にて pH7 に調整して, EBT 指示薬, NH₄Cl-NH₄OH 緩衝液をくわえ pH 10 とし, M/100-EDTA 標準液で標定して Ca 量を求めた. 同時に空 試験を行い補正を施した.

3. 実験結果および考察

3.1 X線回折

3.1.1 熱水処理物のX線回折

2.1 および 2.2 の方法で合成した生成物を 2.3 の条件の下でX線回折を行い,その同定結果を表 2 にまとめて示した.これらの中の代表的試料のX線回折図形を図 2~5 に示した.表 2 におけるU および図 4 および 5 に示した□印は,d=5.5Å (I/I₁=100), 2.77Å (54), 2.70Å (32), 2.10Å (35)の面間距離および相対強度を有する未同定相である.

図2 配合組成 CaO: B₂O₃=1.0:0.8,反応時間
5h,熱水処理物の粉末X線回折図形
●:CaHBO₃,○:Priceite

図3 配合組成 CaO: B₂O₃=1.0:2.0,反応時間 5 h,熱水処理生成物の粉末X線回折図形 ●:CaHBO₃,○:Priceite

3. 1. 2 Priceite の生成領域

反応時間5時間における生成関係を図6に示した. priceite の単一相の生成領域は,配合組成と反応温度・ に強く依存しており,配合組成は,CaO: $B_2O_3=1.0$: $1.0\sim1.0:3.5$ の範囲内で,反応温度は,120である.図6に示す相境界線1,2および3は,いずれ も右上りの傾向を示し,反応温度の上昇とともに B_2 O_3 に富んだ側に priceite の生成領域は,拡がっている.

反応時間を20時間にすると相境界線2は、100℃付 近まで低下する.天然 priceite は、平衡に近い条件下 で生成しているものと考えられ、その生成温度は、 100℃よりいくらか低い温度であると予想される.

Priceite の生成領域の外側,特に相境界線3の近傍 では、180℃以上で未同定化合物Uが生成しており、 その他の領域では、CaHBO3が広域に生成している. CaHBO3 は、100℃、100時間反応でも、他相への転移 は、認められず、安定に存在している.相境界線2の 下側の100℃近くで生成する相は、反応時間が1時間

3 4 配合組成 CaO: B₂O₃=1.0.0.0, 反応時間
5 h, 熱水処理生成物の粉末X線回折図形
●: CaHBO₃, □: 未同定化合物,
○: Priceite

程度の条件下で gowerite $(CaB_6O_7(OH)_6 \cdot 2H_2O)^7)$ お よび nobleite $(CaB_6O_{10} \cdot 4H_2O)^9)$ である. これらは, 準安定相とし生成し,反応時間が5時間程度となると 消失する.

3. 1. 3 Priceite のX線回折3強線の相対強度比

配合比を変え、反応条件を一定の条件として熱水処 理して生成した priceite のd = 10.9, 3.62 および 3.48Å の3 強線の相対強度比について比較し、これら を図7に示した.配合比および反応条件が一定の下で 生成した priceite の3 強線は、再現性が良く、強度 のばらつきは、測定誤差の範囲内であった.配合比が 異ると、特に B₂O₃ の割合が増えるに従い、d = 10.9および 3.62Å の回折強度が相対的に増す傾向を示し た.d = 3.48Å の回折強度を 1.0 として他の二つの回 折強度の相対値を図中に示す.米国 Death Valley 産 の天然 priceite³⁾ の3 強線の強度比は、本実験で合成 した、CaO: B₂O₃=1.0:3.5の強度比に近い値となっ ている.このことから、天然 priceite の生成環境が 比較的ホウ酸濃度に富んだ液であると予想される.

図5 配合組成 CaO: B₂O₃=1.0:4.0,反応時間 5 h,熱水処理生成物の粉末X線回折図形 □:未同定化合物,○: Priceite

3. 1. 4 Priceite の焼成物のX線回折

CaO: B₂O₃=1.0:1.25, 235℃, 5時間の条件下で 生成した priceite 約1gを10 $^{\phi}$ ×5mmのダブレッ トにハンドプレスをもちいて成形し,白金板上200~ 1200℃の所定の温度で30分間加熱したのち,空気中 に急冷した.得られた焼成物のX線回折図形を図8に 示す.400℃付近まで priceite の回折線の一部が残っ ているが,600℃では,完全に無定形状態となる.800 ℃では,カルシウムホウ酸塩の無水物 CaB₂O₄ ^{10/13)}が 結晶化する.肉眼で観察しながら,さらに温度を上げ ると1130℃付近で溶融する.しかし,空冷程度の冷却 では,すぐに結晶化するため,図中の1200℃焼成物の X線回折は,鋭い再結晶 CaB₂O₄ の線を示す.

3.2 赤外吸収スペクトル

3. 2. 1 熱水処理物の赤外吸収スペクトル

熱水処理物の代表的試料の赤外吸収スペクトルを図 9に示す.800~1000cm⁻¹は、四面体ホウ素に、また 1300~1400cm⁻¹は、三角形ホウ素に基く吸収⁵と報 告されている.図中に示すいずれの試料も複雑な吸収 スペクトルを示すが、各吸収の波数を照合すると同定 することができる.

3. 2. 2 Priceite の焼成物の赤外吸収スペクトル 図 10 に priceite の焼成物の赤外吸収スペクトルを

→ PB1:相境界線1, → PB2:相境界線2,
→ PB3:相境界線3

 図7 種々の配合組成下に生成する PriceiteのX 線回折3強線の相対強度比 (反応時間5h)

図8 Priceiteの焼成物のX線回折 Priceite: CaO: B₂O₃=1.0:1.25, 235°C, 5h 〇: Priceite, ④: CaB₂O₄

示す. 3.1.4 のX線回折結果と 良く 対応 して おり, 400℃までは, priceite の吸収スペクトルに似ている が, 1310cm⁻¹ の吸収は, 1360cm⁻¹ の吸収の肩になっ ている. 600℃では, X線回折によると無定形であり,

図10 Priceite の焼成物の赤外吸収スペクトル Priceite: CaO: B₂O₃=1.0: 1.25, 235°C, 5h

吸収スペクトルは、三つのブロードで大きな吸収帯と なる. さらに 800℃では、CaB₂O₄の結晶化に伴い、 再び鋭い複雑な吸収を示す.

3 Priceiteの示差熱分析 (DTA) および熱天秤 分析 (TGA)

X線回折により priceite の結晶が良く発達してい ると確認した試料について DTA および TGA 測定を 行った. これらの結果を図 11 に示す. 各吸・発熱反 応の開始およびピーク温度を表3 に示した.

DTA の第一ピークは、220℃から始まる吸熱ピーク でピーク温度は 275℃である. 第二ピークは、330℃ に開始温度をもつ吸熱ピークで、480℃が ピーク温度 である. 天然 priceite¹²⁾ では、本実験のこの第二ピー クは、2 つの吸熱ピークから成ると報告されている. 第三のピークは、640℃ に開始温度をもつ 発熱ピーク で670℃がピークである. これは、700℃付近まで無定 形であったものが、CaB₂O₄ の結晶化に伴う 発熱ピー クと理解される. 1050℃に開始温度を持つ第四のピー クは、溶融に伴う吸熱ピークで、ピーク温度は 1135℃ である.

TGA によると, DTA の第一ピークに相当する温 度域で 2.5H₂O および第二ピークに相当する温度域で 5H₂O の脱水に基ずく減量を確認することができた.

表 3 Priceite の DTA および TGA 測定結果

ピーク No.	ピーク開 始温度(C)	ピーク 温度(C)	吸・発熱	
1	220	275	吸熱	2.5H2Oの脱水
2	330	480	吸熱	5H2Oの脱水
3	715	750	発熱	結晶化 (CaB2O4)
4	1050	1135	吸熱	溶融 (CaB2O4)

(a)

(b)

(c)

 $\boxtimes 12$ \boxplus \blacksquare BBB \blacksquare (a)CaHBO₃ (×9,200)CaO:B₂O₃=1.0:0.5, 235°C, 5h(b)Priceite (×5,200)CaO:B₂O₃=1.0:1.25, 235°C, 5h

(c) 未同定化合物 U (×6,100) CaO: B₂O₃=1.0:7.0, 235°C,5h

3. 4 電子顕微鏡による熱水処理物の形態

透過型電子顕微鏡により CaHBO₃, Priceite および 未同定化合物Uの各結晶の写真を撮影し,図12(a), (b)および(c)にそれぞれ示した. CaHBO₃および priceite は,方解石に類似した形態を示すが,より板 状に近い平行六面体で,0.2~2 μ の粒径を示す.Uは, 前二者とはいくらか異なる形態で,六角板状を呈する ものが多く,0.5~3 μ の粒径を有する.

5 CaOの分析および Priceite の組成式について
3.3 で試験を行ったのと同じ試料について, CaOの
分析を行った.その結果, CaO 含有量は, 31.84wt%
であった.また TGA から求めた H₂O 含有量は,
19.50 wt%である. B₂O₃量は,これらの分析試料重

表 4 Priceite の酸化物組成式の計算値および 実験値(wt%)

CaO (%)	B2O3 (%)	H2O (%)
32.11	49.84	18.05
31.70	49.21	19.09
32.59	48.56	18.85
31.84	48.66	19.50
	CaO (%) 32.11 31.70 32.59 31.84	CaO (%) B ₂ O ₃ (%) 32.11 49.84 31.70 49.21 32.59 48.56 31.84 48.66

量から CaO および H₂O 含有量を差し引いて求めた. これらの値を 4CaO・5B₂O₃・7H₂O, 4CaO・5B₂O₃・ 7.5H₂O および 5CaO・ $6B_2O_3 \cdot 9H_2O$ の各酸化物組成 式中の各酸化物計算量と比較検討を行った. これらの 実験値および計算値を表4にまとめて示した.

表中の組成からして合成 priceite の化学組成は, 4CaO・5B₂O₃・7.5H₂O に最も近い. この化学組成を TGA, DTA などの結果と総合すると priceite の構 造式は, Ca₄(B₁₀O₁₄(OH)₁₀]・2.5H₂O であると推定さ れる.

4. 総 括

 priceite のオート・クレーブを用いた熱水条件 下での合成を試みた.反応温度は、100~235℃,反応 時間、5時間の条件下では、priceite は、CaO:B₂O₃ =1.0:1.0~1.0:3.5の範囲内において、約120℃以 上の反応温度において単一相として生成する.

 2) 合成 priceite の DTA, TGA の測定により, priceite は、275℃で2.5 モルの水を失ない、さらに 480℃で5 モルの水を失なう. そして 750℃で CaB₂O₄ へ結晶化し、1135℃で CaB₂O₄ は、溶融することが解 った.

3) 合成 priceite の化学分析および TGA, DTA

の解析により, priceite の酸化物組成式は、4CaO・ 5B₂O₃・7.5H₂O と考えられ、その構造式は、Ca₄(B₁₀ O₁₄(OH)₁₀] 2.5H₂O と推定された.

4) 天然に priceite が生成する場合, その平衡温 度は, 100°Cよりいくらか低く, borosiferous water 中のホウ酸は, CaO: B_2O_3 の割合が約1:4に近い値 を有しているものと考えられ, これより priceite の 沈澱が生成している可能性を本実験より推定すること ができた.

本研究は、"低圧オート・クレーブによる CaO-B₂ O₃-H₂O 系",島田・福重,日本化学会第21年会, 1968年4月および"priceite の合成",島田・福重, 日本化学会第23年会,1970年4月に口答で発表を行っている.

文 献

1) Centralblatt, Min. Geol. p. 193, (1923).

2) W.F. Foshag, Am. Min., 9, 11-3, (1924).

- H. Kramer and R. D. Allen, Am. Min., 41, 689-700, (1958).
- H.A. Lehman and I. Günther, Z. Anorg. allg. Chem., 318, 217, (1962).
- 5) C.E. Weir, J. Res. NBS. 70A (phys. and chem.) No. 2, 153-164, (1966).
- P.B. Hart and C.S. Brown, J. Inorg. Nucl. Chem., 24, 1057-65 (1962).
- C.L. Christ and J.R. Clark, Am. Min., 45, 230, (1960).
- S. V. Malinko, Zap. Vses. Mineralog. Obshchesive, 92, 355-9, (1963).
- R. C. Erd, J. F. McAllister and A. C. Vlisidis Am. Min., 46, 560-71, (1960).
- 10) ASTM Card, No. 18-280.
- J. R. Clark, D. E. Appleman and C. L. Christ, J. Inorg. Nucl. Chem., 26, 93-95, (1964).
- 12) G. Andrehs, Ber. Deutsch. Ges. geol. Wiss., Reihe B, 11(3) 373-7, (1966).
- E.T. Carlson, Bur. Standards J. Research, 9, 830, (1932).