Fig. 2. Finite element mesh for H/D=1 and S/D=2 showing boundary conditions for numerical limit analysis.

Fig. 3. Upper-bound rigid-block mechanisms for dual circular tunnels.

- (a) mechanism 1
- (b) mechanism 2
- (c) mechanism 3

Fig. 4. Comparison of rigid-block mechanism with finite element limit analysis (*H*/*D*=1, $\phi'=10^{\circ}$, $\gamma D/c'=1$, *S*/*D*=1.5, smooth interface).

- (a) Plastic multiplier field
- (b) Power dissipation
- (c) Rigid-block mechanism

Fig. 5. Comparison of rigid-block mechanism with finite element limit analysis (*H*/*D*=1, $\phi'=20^{\circ}$, $\gamma D/c'=1$, *S*/*D*=2.0, smooth interface).

- (a) Plastic multiplier field
- (b) Velocity plot
- (c) Rigid-block mechanism

Fig. 6. Comparison of rigid-block mechanism with finite element limit analysis (*H*/*D*=3, $\phi'=10^{\circ}$, $\gamma D/c'=1$, *S*/*D*=2.0, smooth interface).

- (a) Plastic multiplier field
- (b) Power dissipation
- (c) Rigid-block mechanism

Fig. 7. Comparison of rigid-block mechanism with finite element limit analysis (*H*/*D*=3, $\phi'=10^{\circ}$, $\gamma D/c'=1$, *S*/*D*=3.5, smooth interface).

- (a) Plastic multiplier field
- (b) Power dissipation
- (c) Rigid-block mechanism

Fig. 8. Numerical results from finite element limit analysis (*H*/*D*=3, $\phi'=10^{\circ}$, $\gamma D/c'=1$, *S*/*D*=7.0, smooth interface).

- (a) Plastic multiplier field
- (b) Velocity plot

Fig. 9. Stability bounds for dual circular tunnels at H/D=1 ($\phi'=5^{\circ}$, 10°, 15°, 20°, smooth interface).

- (a) $\phi'=5^{\circ}$
- (b) $\phi' = 10^{\circ}$
- (c) $\phi' = 15^{\circ}$
- (d) $\phi' = 20^{\circ}$

Fig. 10. Stability bounds for dual circular tunnels at H/D=3 ($\phi'=5^{\circ}$, 10°, 15°, 20°, smooth interface).

- (a) $\phi'=5^{\circ}$
- (b) φ'=10°
- (c) $\phi'=15^{\circ}$
- (d) φ'=20°

Fig. 11. Stability bounds for dual circular tunnels at H/D=5 ($\phi'=5^\circ$, 10°, 15°, 20°, smooth interface).

(a) $\phi' = 5^{\circ}$

- (b) φ'=10°
- (c) $\phi'=15^{\circ}$
- (d) *\phi*'=20°

Fig. 12. Relationship between critical tunnel spacing S/D and H/D ($\phi'=5^{\circ}$, 10°, 15°, 20°, smooth interface).

- (a) *φ*'=5°
- (b) φ'=10°
- (c) $\phi'=15^{\circ}$
- (d) φ'=20°

Fig. 1. Plane-strain dual circular tunnels in cohesive-frictional soil.

Fig. 2. Finite element mesh for H/D=1 and S/D=2 showing boundary conditions for numerical limit analysis.

Fig. 3. Upper-bound rigid-block mechanisms for dual circular tunnels.

(a) Plastic multiplier field (b) Power dissipation (c) Rigid-block mechanism Fig. 4. Comparison of rigid-block mechanism with finite element limit analysis $(H/D=1, \phi'=10^\circ, \gamma D/c'=1, S/D=1.5, \text{ smooth interface}).$

(a) Plastic multiplier field (b) Velocity plot (c) Rigid-block mechanism Fig. 5. Comparison of rigid-block mechanism with finite element limit analysis $(H/D=1, \phi'=20^\circ, \gamma D/c'=1, S/D=2.0, \text{ smooth interface}).$

(a) Plastic multiplier field (b) Power dissipation (c) Rigid-block mechanism Fig. 6. Comparison of rigid-block mechanism with finite element limit analysis $(H/D=3, \phi'=10^\circ, \gamma D/c'=1, S/D=2.0, \text{ smooth interface}).$

(a) Plastic multiplier field (b) Power dissipation (c) Rigid-block mechanism Fig. 7. Comparison of rigid-block mechanism with finite element limit analysis $(H/D=3, \phi'=10^\circ, \gamma D/c'=1, S/D=3.5, \text{ smooth interface}).$

(a) Plastic multiplier field Fig. 8. Numerical results from finite element limit analysis $(H/D=3, \phi'=10^\circ, \gamma D/c'=1, S/D=7.0, \text{ smooth interface}).$

(b) Velocity plot

Fig. 9. Stability bounds for dual circular tunnels at H/D=1 ($\phi'=5^{\circ}$, 10° , 15° , 20° , smooth interface).

Fig. 10. Stability bounds for dual circular tunnels at H/D=3 ($\phi'=5^{\circ}$, 10°, 15°, 20°, smooth interface).

Fig. 11. Stability bounds for dual circular tunnels at H/D=5 ($\phi'=5^{\circ}$, 10°, 15°, 20°, smooth interface).

Fig. 12. Relationship between critical tunnel spacing S/D and H/D ($\phi'=5^{\circ}$, 10°, 15°, 20°, smooth interface).