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Abstract

The stability of circular tunnels in cohesive-frictional soils subjected to surcharge loading
has been investigated theoretically and numerically assuming plane strain conditions. Despite
the importance of this problem, previous research on the subject is very limited. At present,
no generally accepted design or analysis method is available to evaluate the stability of
tunnels/openings in cohesive-frictional soils. In this study, continuous loading is applied to
the ground surface, and both smooth and rough interface conditions are modelled. For a series
of tunnel diameter-to-depth ratios and material properties, rigorous lower- and upper-bound
solutions for the ultimate surcharge loading are obtained by applying finite element limit
analysis techniques. For practical use, the results are presented in the form of dimensionless
stability charts with the actual tunnel stability numbers being closely bracketed from above
and below. As an additional check on the solutions, upper-bound rigid-block mechanisms
have been developed and the predicted collapse loads from these are compared with those
from finite element limit analysis. Finally, an expression that approximates the ultimate

surcharge load has been devised which is convenient for use by practising engineers.
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1. Introduction

Accurately assessing the stability of circular tunnels, pipelines and disused mine workings
in cohesive-frictional soils is an important task due to the ubiquitous construction of buildings
and tunnels in urban areas. Since many tunnels and pipelines already exist at deep levels, new
tunnels and openings are now often being constructed at shallow depths. In these cases, it is
important to know how the stability of these tunnels/openings is affected by surcharge loading.
As no generally accepted design or analysis method is available currently for this problem,
the goal of this study is to equip design engineers with simple design tools to determine the
stability of circular tunnels in cohesive-frictional soils subjected to surcharge loading.
Drained loading conditions are considered, and a continuous load is applied to the ground
surface with both smooth and rough interface conditions. For a series of tunnel
diameter-to-depth ratios and material properties, rigorous lower- and upper-bound solutions
for the ultimate surcharge loading are found by applying finite element limit analysis
techniques [1,2]. The results are presented as dimensionless stability charts for use by
practising engineers, and the actual tunnel stability numbers closely bracketed from above and
below. As an additional check on the accuracy of the results, a variety of upper-bound
rigid-block mechanisms are developed and the solutions from these are compared with those
from finite element limit analysis.

The stability of circular tunnels was studied extensively studied at Cambridge in the 1970s;
see, for example, the work reported by Cairncross [3], Atkinson and Cairncross [4], Mair [5],
Seneviratne [6] and Davis et al. [7]. Later, theoretical solutions for circular tunnel problems
under drained conditions were determined by Muhlhaus [8] and Leca and Dormieux [9].

The application of finite element limit analysis to the undrained stability of shallow tunnels

was first considered by Sloan and Assadi [10], who investigated the case of a plane strain



circular tunnel in cohesive soil whose shear strength varied linearly with depth using linear
programming techniques. Later, Lyamin and Sloan [11] considered the stability of a plane
strain circular tunnel in a cohesive-frictional soil using a more efficient nonlinear
programming technique. This method can accommodate large numbers of finite elements,
thus resulting in very accurate solutions. Recently, Yamamoto et al. [12] studied the stability
of shallow circular and square tunnels in cohesive-frictional soils subjected to surcharge

loading, which is developed further in the present paper.

2. Problem description

The problem description is given in Figure 1. The ground is modelled as a uniform
Mohr-Coulomb material with a cohesion ¢, friction angle ¢' and unit weight y, assuming
drained loading conditions. The circular tunnel is of diameter D and depth H, and deformation

takes place under plane strain. The stability of the shallow tunnel shown in Figure 1 is

described conveniently by the dimensionless load parameter o /c', which is a function of
@', yD/c'and H/D as shown in Eq. (1).

o /c'=f(¢',yD/c',H /D) (1)
Formulating the problem in this manner permits a compact set of stability charts to be
constructed, which are useful for design purposes. The problem parameters considered in this
paperare H/D=1-5, ¢'=0°-35° and yD/c'=0-3. The continuous (flexible) loading
is applied to the ground surface with both smooth and rough interface conditions. To model
the smooth interface condition between the loading and the soil, the shear stress is fixed to
zero (7 = 0) along the ground surface in the lower bound analyses, with no velocity constraints
being imposed in the upper bound analyses. For the rough case, the horizontal velocity is

fixed to zero (u=0) along the ground surface in the upper bound analyses, with no stress



constraints being imposed in the lower bound analyses.

3. Finite element limit analysis

Finite element limit analysis utilizes the power of the lower- and upper-bound theorems of
plasticity theory, coupled with finite elements, to provide rigorous bounds on collapse loads
from both below and above. The underlying limit theorems assume a rigid-plastic soil with an
associated flow rule. The use of a finite element discretization of the soil, combined with
mathematical optimization to maximize the lower bound and minimize the upper bound,
makes it possible to handle problems with layered soils, complex geometries and complicated
loading conditions. The formulations of the numerical limit analysis used in this paper
originate from those given by Sloan [13,14] and Sloan and Kleeman [15], who employed
active-set linear programming and discontinuous stress and velocity fields to solve a variety
of practical stability problems. Since then, numerical limit analysis has evolved significantly
with the advent of very fast nonlinear optimization solvers, and the techniques used in this
paper are those described by Lyamin and Sloan [1] and Krabbenheft et al. [2].

Briefly, these formulations use linear stress (lower bound) and linear velocity (upper
bound) triangular finite elements to discretize the soil mass. In contrast to conventional
displacement finite element analysis, each node in the limit analysis mesh is unique to a
particular element so that statically admissible stress and kinematically admissible velocity
discontinuities are permitted in, respectively, the lower-bound and upper-bound formulations.
The objective of the lower-bound analysis is to maximize the load multiplier subject to the
element equilibrium, stress boundary conditions and yield constraints. For the upper-bound
analysis, the internal power dissipation minus the rate of work done by the prescribed external

forces is minimized with respect to the velocity boundary conditions, compatibility and flow



rule constraints. Both formulations result in convex mathematical programs, which (after

considering the dual to the upper-bound optimization problem) can be cast in the following

form:
Maximize A
subject to Ao = po+ ip (2)

£(6)<0, i={1,...,N}

where A is a load multiplier, ¢ is a vector of stress variables, A is a matrix of equality
constraint coefficients, po and p are vectors of prescribed and optimizable forces, f; is the
yield function for the stress set 7, and NV is the number of stress nodes.

The solutions to problem (2) can be found very efficiently by solving the system of
non-linear equations that define its Kuhn-Tucker optimality conditions. The interior point
procedure used is based on efficient conic programming implementation, requires usually
30-50 iterations, regardless of the problem size, and is many times faster than previously
employed linear programming schemes. The solutions of the lower- and upper-bound
computations bracket the actual collapse load from below and above and, thus, give a clear
indication of the accuracy of the results.

Figures 2(a) and (b) show the lower-bound and upper-bound half-meshes for /D=3 with
rough interfaces. The meshes are symmetric, and similar meshes are used for the lower- and
upper-bound analyses. The lower-bound mesh has 20,000 triangular elements and 29,850
stress discontinuities, while the upper-bound mesh has 28,800 triangular elements and 43,020
velocity discontinuities. In the lower-bound analysis, extension elements are included along
the soil domain boundaries to represent a semi-infinite material. This feature is necessary to

guarantee that the lower bounds are fully rigorous, and is a convenient means of extending the



stress field throughout a semi-infinite domain in a manner which satisfies equilibrium, the
stress boundary conditions and the yield criterion. The size of the soil domain for each of the
tunnel geometries considered is chosen such that the plasticity zone at failure lies well inside
the domain. Careful mesh refinement is required to obtain accurate solutions, with the mesh
density being high around the tunnel face with a smooth transition to larger elements near the

boundary of the mesh.

4. Upper-bound rigid-block analysis

Semi-analytical rigid-block methods were used to find upper-bound solutions for the cases
considered. These provided an additional check on the limit analysis results. Six types of
rigid-block mechanisms were constructed, as shown in Fig. 3. In this Figure, 4; is the area of
the rigid block i; V; is the kinematically admissible velocity of block i; Vj; is the velocity jump
along the discontinuity between blocks i and j; /; is the distance between points i and j;
(a,5,7,0,6,4,w) are angles that determine the geometry of the rigid-block mechanism; and ¢'
is the dilatancy angle. The compatible velocity diagrams using V; and V; are given at the right
side of the block mechanisms. All velocities can be obtained using the geometry of these
diagrams. With an associated flow rule we assume the dilatancy angle is equal to the friction
angle. Although it is well known that the use of an associated flow rule predicts excessive
dilation during shear failure of frictional soils, it is unlikely this feature will have a major
impact on the predicted limit loads for cases with low to moderate friction angles. Generally
speaking, any inaccuracy caused by an associated flow rule will be most pronounced for soils
with very high friction angles and/or problems that are subject to high degrees of kinematic
constraint (which is not the case for the tunnel considered here). Mechanism 1 is a simple roof

collapse mechanism which is suitable for shallow tunnels, while the mechanisms 2-6 are more



complex examples of both roof and side collapse mechanisms. The total number of angular
parameters for mechanisms 1-6 are 1, 4, 7, 4, 3 and 7, respectively. The soil mass was
assumed to be governed by the Mohr-Coulomb failure criterion and an associated flow rule,
with the geometry of the blocks being allowed to vary while being constrained such that their
areas and boundary segment lengths remain non-negative. The details of rigid-block analysis
can be found in Chen [16]. The upper-bound solutions derived from mechanisms 1-6 are

given as follows:

Mechanism 1
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Mechanism 6
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Vil sin(é —¢')

The minimum upper-bound solution for each mechanism was obtained by optimizing its
geometry using the Hooke and Jeeves’ algorithm with discrete steps (Bunday [17]). This
method works by performing two different types of searches: an exploratory search and a
pattern search. The rigid-block analyses are fast and, provided an appropriate mechanism is
chosen, can give useful upper-bounds on the true collapse load. These solutions can also be
used to check the finite element limit analysis solutions.

Table 1 shows the comparison of the upper-bound solutions obtained from mechanisms 1-6
for H/D=1-3, ¢'=0°-20° and yD/c'=0-3. It is found that the upper-bound
solutions from the different mechanisms increase in the following order: Mechanism 3,

Mechanism 6, Mechanism 2, Mechanism 4, Mechanism 5 and Mechanism 1. Note that the

solutions from Mechanism 6 are larger than those from Mechanism 2 for H/D=1, ¢'>5°
and yD/c'=0-3, and the solutions from Mechanism 1 tend to be infeasible due to
geometry constraints for the cases of high ¢' when H/D increases. As expected, the best
upper-bound solution is given by Mechanism 3, which has the largest number of variables

with 3 rigid blocks and 7 angular parameters.

5. Results and discussion

Figures 4-7(a), (b), (c) and (d) show the rigid-block mechanisms, power dissipations,



deformed meshes and plastic multiplier field for the various cases. The optimum rigid-block
mechanism is obtained from the upper-bound rigid-block analysis, and the power dissipation,
deformed mesh and the plastic multiplier field are obtained from the finite element
upper-bound and lower-bound analyses. The intensity of the power dissipation and the plastic
multiplier field is shown by the grey shading. Lower- and upper-bound estimates of the
dimensionless load parameter, o, /c', obtained from finite element limit analysis and
rigid-block analysis, are included in each figure. In this paper, Eq.(9) is used to measure the

gap between the bounds, and is thus a direct estimate of the error in the solutions.

Error(%) =+100x(UB—LB)/(UB+LB) 9)

Generally, the distributions of the power dissipation from the upper-bound analyses agree
fairly well with the plastic multiplier field obtained from the lower-bound analyses. Figures
4(b) and (d) show that, for small friction angles, the failure surface originates around the
middle part of the tunnel and curves toward the ground surface. It can also be seen that the
failure mechanisms from the rigid-block technique agree well with those observed from finite
element limit analysis. For the case of moderate friction angles presented in Figs. 5(b) and (d),
the failure surface also originates around the middle part of the tunnel, but its curvature is
much more pronounced right above the tunnel. As expected, the ultimate surcharge load in
this case is higher than that shown in Fig. 4. For shallow tunnels (//D=1) shown in Figs. 4
and 5, the failure mechanism is confined to the upper half of the tunnel. When H/D increases,
as shown in Figs. 6 and 7, the failure mechanism extends downwards to eventually encompass
the entire tunnel. These deeper collapse mechanisms are more complex than those for shallow
tunnels. The errors for the cases shown in Figs. 4, 5, 6 and 7 are 0.3%, 0.3%, 0.4% and 0.8%,

respectively. Thus, the rigorous lower- and upper-bound solutions bracket the true ultimate
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surcharge load quite accurately for soils with moderate frictional angles. In general, the
upper-bound solutions obtained from both the rigid-block and finite element limit analyses

are in good agreement for smaller values of H/D or ¢'. For other cases, the accuracy of the

first three mechanisms is limited by the assumption that the failure mechanism extends
downwards from the ground surface at an angle of ¢' to the vertical. Deep tunnels develop
quite complex collapse patterns, and the simple rigid-block mechanisms proposed in this
study are most accurate for shallow cases. Furthermore, due to the effect of dilation along the
velocity discontinuities, it is more difficult to formulate an appropriate rigid-block mechanism
for cohesive-frictional soils than for purely cohesive soils.

Figure 8 compares the stability numbers obtained from both rigid-block and finite element

limit analyses for a smooth interface condition, with rigid-block results being shown for ¢'
values up to 20°. As expected, the stability numbers decrease when yD/c' increases. For
small values of @', the rigorous lower- and upper-bound solutions bracket the true ultimate

surcharge load very accurately and cannot be distinguished on the scale of the plot. For

¢'=30°, the stability number increases rapidly with increasing values of H/D, but even in

this case the maximum error in the limit analysis computations does not exceed £6%. For the
cases of (@¢'=5°,H/D<5), (¢'=10°, H/D<3) and ( ¢'=20°, H/D<1), the
upper-bound solutions from the rigid-block method agree well with those obtained from finite

element limit analysis. However, for cases with high values of H/D or ¢', the accuracy of the

solutions from all the rigid-block mechanisms becomes poor. In some cases where

yD/c'=3 and H/D>4, as shown in Figures 8(b) and (c), feasible solutions from the

rigid-block and finite element limit analyses could not be obtained because the tunnel
undergoes local roof collapse due to the effect of soil self-weight. Note that the sign

convention for the stability charts is that a positive value of the stability number implies that
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the ground can support a compressive normal stress, while a negative stability number means
that we can only apply a tensile normal stress to the soil surface. Figure 9 shows the stability
numbers obtained from finite element limit analysis for the case of a rough interface. The
general trend of the stability numbers is mostly the same as for the smooth case, but the
ultimate surcharge loads are slightly higher with maximum bounds error of +6%. Therefore,
the rigorous lower- and upper-bound solutions bracket the true ultimate surcharge load quite
accurately, even in the case of deeper tunnels (H /D =5) and moderate soil friction angles
(¢'=30°).

Finally, based on the results obtained using finite element limit analysis, an expression that

approximates the ultimate surcharge loading is as follows:

o,lc'= [a +explbg” )](H  pYfeles” )[1 +(g+hg)H /DY (D1 c')] (10)

where the regression coefficients a, b, ¢, d, e, f, g h, k and m are obtained by a least squares
fit to the average values of the lower- and upper-bound solutions. Table 2 provides the values
of the regression constants for both smooth and rough interface conditions, while Tables 3
and 4 compare the average values from finite element limit analysis with those obtained from

equation (10). As can be seen from these tables, the stability number o, /c' calculated using

this empirical equation predicts the average value of the numerical solutions quite accurately,

being to within 5% for all the values of /D and ¢' considered.

6. Conclusions
The stability of a plane strain circular tunnel, in a cohesive-frictional soil subjected to

surcharge loading, has been investigated using upper-bound rigid-block analysis and finite
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element limit analysis. The results of these analyses have been presented in the form of
dimensionless stability charts. The lower and upper bounds obtained using finite element limit
analysis bracket the actual ultimate surcharge load to within +6% or better. As an additional
check of the validity of the finite element limit analysis results, several upper-bound
rigid-block mechanisms were developed. A comparison of the upper-bound solutions
obtained from the rigid-block analysis with those of finite element limit analysis shows good
agreement when ¢' and H/D are small. An empirical equation for estimating the ultimate
surcharge load that can be applied to the surface of a cohesive-frictional soil above a shallow
circular tunnel has been proposed. This equation is based on average values of the lower- and
upper-bound solutions from finite element limit analysis, and predicts these values to within

5%.
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