学位論文要旨

名 Shiori Okuda

題 目

氏

Studies on the insect transmittability of *Cucurbit chlorotic yellows virus* and *Chrysanthemum stem necrosis vius* (2種虫媒介性ウイルス (ウリ類退緑黄化ウイルス(CCYV)およびキク茎えそウイルス(CSNV))の媒介機構の解明)

Vegetable and flower production is very important industry for Kyusyu region.

However, latest rapid development of ex / import in their products causes epidemics of some plant virus diseases, especially, which are transmitted by minute polyphagous insects.

Cucurbit chlorotic yellows virus (CCYV), which belongs to the genus Crinivirus of the family Closteroviridae, was recorded in 2010 and is rapidly spreading throughout Japan in association with the distribution of its vector, whitefly *Bemisia tabaci* (Okuda et al. 2010). Therefor, it has become one of the major threats to melon and cucumber production.

On the other hands, *Chrysanthemum stem necrosis virus* (CSNV), which belongs to the *Tospovirus* genus in the *Bunyaviridae* family, was first identified in 2006 in field grown chrysanthemum plants in Japan (Matsuura et al. 2007). All species in this genus was transmitted by thrips, such as *Francllinia occidentalis*.

They have been reported their knowledge, but they were not enough to know basic mechanism on the mediation of their insect-transmissible plant virus diseases for establishment of their management systems. Therefor, the following was what I conducted.

Symptom development of CCYV-infected melon plants and virus accumulation in the plants were analyzed throughout the growth stage. And, in order to identify characteristics of CCYV transmission by *B. tabaci* in a semipersistent manner, I analyzed that correlation between virus accumulations in CCYV-infected leaves in various growth stages and those in *B. tabaci* that suck the plants. In addition, time course assay to quantify the amount of CCYV RNA in *B. tabaci* was conducted after a plenty acquisition period. Moreover, experiment to determine the ability of flight and diffusion of *B. tabaci* conducted.

Fifty-three melon (*Cucumis melo*) accessions that originated from India, Pakistan and Bangladesh were evaluated for resistance to CCYV, and JP 138332 showed a low symptoms and much lower CCYV RNA accumulation comparable to the commercial variety.

The vector competence of *Frankliniella occidentalis* for CSNV was evaluated using three vector strains with distinct competences for *Tomato spotted wilt virus* (TSWV), which is type virus *Tospovirus* genus, and the competence of *F. occidentalis* as a vector for CSNV is not related to that for TSWV. Additionally, I investigated the CSNV transmission and acquisition efficiencies of two *F. intonsa* strains, and These results indicate that *F. intonsa* cannot be a major vector for CSNV.

This study was discussed their virus disease controls based on my researches and explanations from an epidemical viewpoint.