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Preface

The conformal theory in Finsler geometry has been discussed by many author and many results
have been obtained. M. Hashiguchi ([Ha]) treated the conformal theory of Finsler metrics and
obtained respective conditions under which a Finsler space is conformal to a Berwald space
and to a locally Minkowskian space. M. Hashiguchi and Y. Ichijyo ([Ha-Ic]) treated conformal
transformations of generalized Berwald space, especially Wagner space.

T. Aikou ([Ail], [Ai2]) has introduced the notion of locally conformal Berwald manifold,
which is also called a Wagner manifold, and investigated the class of Finsler manifolds which
are locally conformal to a Berwald manifold using the so-called average Riemannian metric and
averaged connection defined in [Ma-Ra-Tr-Ze] and [To-Et], respectively.

The purpose of this thesis is to study the conformal theory in Finsler geometry using the
Finsler-Weyl structure which is a natural extension of Weyl structures in Riemannian geometry.
In the last chapter we shall characterize conformal flatness of Finsler metrics and Randers
metrics.

Chapter 1 is about the preliminaries. First we shall explain Ehresmann connections and
non-linear connections on tangent bundles, then we shall introduce a connection usually defined
to be a covariant derivation which satisfies the Leibniz rule. In the last section we will discuss
conformal classes, Weyl connections and Lyra connections.

Chapter 2 discusses some basic concepts of Finsler manifolds, such as Minkowski norms and
Finsler metrics. There are many examples of Finsler manifolds, such as smooth manifold with
Riemannian metrics and smooth manifold with Randers metrics, where a Randers metric is a
typical non-Riemannian Finsler metric.

Chapter 3 discusses Berwald connections on Finsler manifolds. By a clever observation of Z.
I. Szabé , if a Finsler manifold is a Berwald manifold, then its Berwald connection is induced
from the Levi-Civita connection on a smooth manifold with a Riemannian metric, and such
a Riemannian metric is given by the so-called averaged Riemannian metric obtained from the
given Finsler function [Ma-Ra-Tr-Ze|. Landsberg manifolds also form a special class of Finsler

manifolds, which includes Berwalds manifolds. Following [To-Et], we shall define the averaged
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connection obtained from the Berwald connection.

Chapter 4 introduces another Finsler connection which satisfies the so-called almost G-
compatibility, which is called the Rund connection. Curvature and torsion of Rund connection
is also defined in the next section. We list up some identities concerning curvature and torsion
as well.

Chapter 5 investigates geometry of conformal Finsler manifolds. We shall extend the notion
of Weyl structures to the category of Finsler geometry, specifically the Finsler-Weyl connec-
tion and Wagner connection in Riemannian geometry. In the last section we shall discuss the

conformal flatness of Finsler metrics and conformal flatness of Randers metrics.
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Chapter 1

Connections for tangent bundle

1.1 Ehresmann connections in tangent bundles

Let m : TM — M be the tangent bundle over a smooth manifold M of dim M = n and
dr : TTM — TM its derivative . Let y € T, M be a tangent vector at x € M, where
T, M = 7~1(z) is the tangent space at 2 € M. Then the pair v = (z,y) denotes a point in T'M.
We denote by TM the pull-back of tangent bundle TM by 7 : TM — M:

TM ={(v,y) € TM x TM|y € Tp(y M} = [[ TwiwyM.
veT M

The following diagram is commutative.

— s

™ TM
O 7r
™M M

The fiber (ﬁ\?)u over v € T'M is isomorphic to the fiber Ty, M over 7(v).

A tangent vector Z, € T,TM at v € TM is said to be vertical if dm,(Z,) = 0 is satisfied.
Any integral curve of vertical vector fields lies entirely in the fiber Tr(,)M. We denote by V,
the tangent space of all vertical tangent vector at v € T'M which is identified with the tangent
space Ty(Tr(,yM) at v in the fiber Ty, M. Since 7 is a submersion, the tangent space T, T M
at v € T'M is mapped onto the tangent space Ty ()M at mw(v) € M by the derivative dm,:

Vo = Ty(Ty(yM) = ker{dmy : T,TM — Ty M}

9



10 CHAPTER 1. CONNECTIONS FOR TANGENT BUNDLE

Then we define a space V' by

VE JT Vo= [ Tu(TwwyM) = ker{dr : TTM — TM}
veT M veT M

and a map p: V — TM by p(V,) =v. Then p: V — TM has a bundle structure over T'M of
rank(V)=n. The bundle V is called the vertical sub-bundle of TTM. The bundle V is always
integrable, that is, the space of sections of V is a Lie algebra under the usual Lie bracket of

tangent bundle. Since the quotient bundle TT'M/V is isomorphic to the pull-back bundle f]\?,

we obtain the following short exact sequence of tangent bundle over T'M:

©) -V —— TTM —& M

0, (1.1)

where ¢« : V < TTM is the inclusion and dr = (m,dm), which implies the natural identification
TTM =V @ TM.
Since any point (7(v), Z) € Tr(,)M is naturally identified with the velocity vector

dc

— T
dt € U(TTI'(U)M)

t=0
of a curve c(t) = v + (7(v),tZ) in the fiber T, (,)M. Therefore the induced bundle TM is

isomorphic to the sub-bundle V:
TM =V (1.2)

We shall denote by me : RT x TM — TM the natural action of the multiplier group R
by scalar multiplication: my(v) = A - v for any v € TM and A € RT. This action m of RT on
TM induces a vector field £ along the fibers by

Ef) = —|  f(r-v) (1.3)

for all f € C°(T'M), that is, &, = (v,v). This field £ is called the Liouville vector field in T M,
or as a section of V', called the tautological section of V.

Since every subspace of T, TM complementary to V, is mapped isomorphically onto the
tangent space T, M, there is no canonical subspace complementary to V,,. Thus we shall fix a

selection of complementary subspace at each point v € T M.

Definition 1.1. Let m : TM — M be the tangent bundle over M. An Ehresmann connection
on 7 is a collection H = {H,|v € TM} of subspace H, C T,,TM such that
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1. The assignment T'M > v — H, C T, TM depends on v € T'M smoothly,

2. dmy : Hy — Tr(,)M is a linear isomorphism for all v € T'M and H, is complementary to
\ /8%
T, M =V, ® H,. (1.4)

The subspace H,, is called a horizontal subspace at v € T M.

An alternative method to specify an Ehresmann connection is to give a splitting 6 : TTM —

V of the exact sequence (1.1)
. —

TTM —4& M

0 1% 0,

namely 6 : TTM — V is a bundle morphism satisfying 6 o « = Idy for the identity morphism
Idy of V. Therefore 6 is a projection from TTM onto V. We set

H, ¥ ker(6,) (1.5)

at each point v € TM. Then T,TM /ker(6,) = im(0,) = V. Therefore we obtain the splitting
(1.4). Defining

BE ] H, (1.6)
veETM

we obtain a bundle p : H — T'M by p(H,) = v, which is also isomorphic to the induced bundle

TM. Then we have the direct-sum decomposition

TTM =V & H (1.7)

Definition 1.2. The bundle H = ker(6) is called the horizontal sub-bundle defined by 6. A

section of H is called a horizontal vector field on T'M

An Ehresmann connection for T'M is a subbundle H C TTM complementary to V.

Definition 1.3. An Ehresmann connection 6 of a tangent bundle 7 : TM — M is called a

non-linear connection for T'M if it satisfies the following conditions:

(N-1) The distribution H : TM 3 v — H, C T,,TM is smooth on TM \ {05/} and is continuous
on the whole of T M, where 0,7 is the zero section of T'M.

(N-2) The distribution H is invariant under the action m of R* on TM, i.e.,

dmy(H,) = Hey (0 (1.8)



12 CHAPTER 1. CONNECTIONS FOR TANGENT BUNDLE

for any A € R and v = (z,y) € TM.

Remark 1.1. If H is smooth on the whole of T'M, then it is called linear.

Usually an Ehresmann connection 6 of a tangent bundle is assumed to be smooth on the
whole total space TM. However, we assume the smoothness of # only on the outside of the
zero-section for application to Finsler geometry.

Let 8 be a non-linear connection for T'M. A vector field X in M is parallel along a regular

curve ¢ : [a,b] — M with respect to 6 if it satisfies the ordinary differential equation
(X oc)'8 =0, (1.9)

or, equivalently, its velocity vector field (X o ¢)’ is always horizontal, i.e., (X o¢)'(t) € H(xoc) )
for all ¢ € [a,b]. Equation (1.9) has a unique solution X, for each initial value v € T, e(a)yM, on

which it depends smoothly. The parallel transport P : Tyo)M — T,) M defined by
Puyy(v) = X, (t) (1.10)

has the homogeneity property
Pc(t)(/\ . U) =\ Pc(t) (’U) (1.11)

for any v € T (oM and X € RT, where we write X - v := my(v) for simplicity.

Proposition 1.1. An Ehresmann connection 0 is a linear connection if and only if the parallel

translation P. along any curve ¢ = c(t) in M is a linear isomorphism between the fibers.

1.2 Connections associated with non-linear connection

Let A* be the space of smooth k-form, in particular A° is the space of smooth function, I"(F)
be the space of smooth sections of a vector bundle F and A*(F) is the space of smooth k-forms
with values in F. Then A°(F) = I'(F).

If a non-linear connection 6 is specified in T'M, then there exists a partial connection 9 :
r'v) - Ve H*) along H = ker(f) in the bundle V, where H* is the dual bundle of
H. Moreover, any partial connection § can be extended to a connection D : I'(V) — I'(V ®
T*TM) = AY(V) so that the following diagram is commutative ([Ba-Bo)):
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rv)—2 . perTM)

O

1®p
(Ve H*)

where p : T*T'M — H* is the natural projection and T*T M is the dual bundle of TT M.

Suppose that a non-linear connection 6 is given in T'M. Since we do not assume the differen-
tiability of § at the zero-section, the parallel translation P, along any curve c in M is compatible
only with scalar multiplication. Therefore we cannot define a connection V on T'M from any
non-linear connection 6 in general. However, we shall show that any 6 induces a connection D
on the vertical subbundle V as the extension of a partial connection 4.

A connection in the bundle V is usually defined to be a covariant derivation in V| i.e., as a
homomorphism D : I'(V) — A!(V) satisfying the Leibniz rule. We shall introduce a connection
D associated with a non-linear connection 6.

Since the vertical sub-bundle V is isomorphic to the induced bundle ™ , any vector field
X in M is naturally lifted to a section XV € I'(V). The section X" is defined as a vector
field which is tangent to the curve ¢(t) = (x,y + tX(z)) in the fiber T, M at t = 0. The
map T, M > X(z) — XV (v) € V, is an isomorphism. Thus the vector field XV is uniquely
determined by X. So the vector field XV is called the vertical lift of X. In the sequel we use
the superscript V for the vertical lifts of vector fields on M.

On the other hand, for any vector field X in M, there exists a unique section X of H such
that dm,(XH) = Xr(v) at any point v € TM. The vector field XH on the total space TM is
called the horizontal lift of X. In the sequel we use the superscript H for the horizontal lifts of
vector fields on M

In this thesis we use extensively the coordinate system {7 ~1(U), (z*,y")1<i<n} in TM induced
from a coordinate system {U, (z°)}1<;<, in M, where y',--- 4™ are the fibre coordinates in each
T,M, z € U. Then the vertical lift X" of X =3 X¥(9/0z") is given by

.0
vV _ 7
xV=%"x 5 (1.12)

and the horizontal lift X of X is given by

) d
x"=3"x <aa:i ZN}ayl), (1.13)

for some functions N ; defined in 7=(U). These local function N j’ are called the coefficients of
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H. The coefficients N]’-' are smooth away from the zero-section. The assumption (N-2) means
that the coefficients IV ; are homogeneous of degree one with respect to the variables y',- -, y™.

Thus, by Euler’s theorem, '
ON?

J. 1 v
Z oyt Y T Nj. (1.14)
The Liouville vector field is given by
0
_ !
From the homogeneity condition (N-2), the coefficients IV ; are linear in the variables y', - - - , "

if H is linear. Thus, if H is linear, the coefficients N ; are written as
Ni= v Iy,
where F;k = F;k(x) are coefficients of affine connection in T'M.

Since any vector field Y on M is a smooth map Y : M — TM such that moY = id, its
derivative dYy : ToM — Ty (,)T'M satisfies

(o (5)- ()

for any reguler curve ¢ in M. Then the equation

de\ v de\ "
dY % _‘C(dc/dt)HY —+ %

holds, where £ yr denotes the Lie derivative by X!, Since H = ker(f), we obtain

voors(g) =t (c(dc/dt)HYV + (jt)H> = 0L gy Y.
and Y is parallel with respect to 6 if and only if
O(LxuYV)=0
for all X € I'(TM). Thus it is natural to define D : I'(V) — I'(V ® H*) by

DynYV :=0(LynYV)=[X" YV (1.16)
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Let {U} be an open cover of M. A vector bundle is said to be relatively flat if the transition
maps Gyy of V depend only on base point x € M. The family Gyy is given by Gyy = 7*gyv
where {gyy} are transition maps. Since the vertical sub-bundle V' is relatively flat, we can

define D so that D is flat in the vertical direction, i.e.,

DyvYV =0. (1.17)

Definition 1.4. The connection D : I'(V) — I'(V @ T*TM) := AY(V) defined by (1.16) and
(1.17) is called the canonical connection on V associated with the given non-linear connection
6.

From (1.15) and (1.17), we have DyvE = XV, and the homogeneity condition (1.8) implies

Dxu& = L& = 0. Therefore the given non-linear connection 0 is recovered by D.
Proposition 1.2. The canonical connection D associated with 0 satisfies
DE =20 (1.18)

for the tautological section £ of V.

1.3 Levi-Civita connection of Riemannian manifolds

A Riemannian metric g on a smooth manifold M is a smooth assignment g : M > x — g,, of an
inner product g, : T,M x T, M — R on T, M. Any Riemannian metric g induces a Riemannian

metric g on V by defining
g YY) = g(X,Y), (1.19)

Definition 1.5. A linear connection V is said to be metrical if its parallel transport P. : TM —

TM with respect to V along any curve ¢ = ¢(t) in M preserves the metric g.

Let H be the linear Ehresmann connection defined by V. Let X be a vector field in M,
and let {¢;} be the one-parameter group of local transformations generated by X. Denoting by
{1} the horizontal lift of {¢;} with respect to V, we obtain

Hx~

v g=9

or equivalently

£XH§: O
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where X* is the horizontal lift of X with respect to V. The Lie derivative £y g is given by
(Lxng)(Y",2") = XTg(Y", 2Y) = g(LxnY", 27) = g(Y" Lxn Z")
= X"gY, z2") —g((VxY)", 2") - g(v¥, (Vx 2)")
=Xg(Y,Z) —g(VxY,Z) — g(Y,VxZ)
= (Vxg)(Y,2).

Then we have

Proposition 1.3. In a Riemannian manifold (M, g) there exists a unique linear connection V9
of TM such that

(1) V9 is metrical:
Vig =0 (1.20)
(2) V9 is torsion free:
VLY — VEX — [X,Y] =0 (1.21)

for all X, Y € I'(TM).

Definition 1.6. The linear connection VY is called the Levi-Civita connection of (M, g).

We suppose that the curvature RV’ = V9 o V9 of the Levi-Civita connection V9 vanishes

identically. Then RV’ = 0 is an integrability condition for the system of differential equations

dA = —wWIA,

arl’ 7 dxn
on U and A = (A;) is a GL(n,R)-valued smooth function on U. Since VY is torsion-free, we

have w9 A dx = 0 and

0 0
where wY is the connection form of V9 with respect to the natural frame field { e }

; .
A% _ DAL
oxk  Oxd

in local coordinates. Therefore there exist some local functions fi(x!,---,2™) such that A} =

OFft ) )

afj. Then, if we take a change of local coordinate as z* = fi(x!,---  2™), the connection form

x
@9 of RV’ with respect to (%,7) vanishes on U. Hence the components g;; of g with respect
0 0 . _ . . . .
to § 7= » 5= ¢ are constans. Since (gij) is a positive-definite matrix, we may assume that
0T oT"
9;; = 0ij in such a local coordinate system (m', .- ,7"), namely (M, g) is locally Euclidean.

Theorem 1.1. The Levi-Civita connections V9 is flat if and only if (M, g) is locally Euclidean.
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1.4 Conformal class, Weyl connections and Lyra connections

Let V be a linear connection on 7'M of a Riemannian manifold (M, g). We suppose that parallel
translation P, along any curve ¢ = ¢(t) in M is always a conformal map between tangent spaces,
namely, P, preserves the angle of two vector fields on M.

Let H be the linear Ehresmann connection determined by the given V, and let g be the
metric on V induced from the given g. Then the assumption above means that the induced
metric g on V is preserved up to a conformal factor by the parallel translations with respect
to H. For any vector field X on M and the one parameter group ¢; of local transformations

generated by X, this assumption is given by

o = exp <2/ wg) J (1.22)
Pt

for some one-form w, € AY(M) := I'(T* M), where ¢f1" is the horizontal lift of ¢; with respect
to H. Thus the Lie derivative Lxug is given by

£ = 2uwy(X)7. (1.23)

where the horizontal lift X of X € I'(T'M) is defined with respect to H.

We have
LynYV = (VxY)V (1.24)

and this implies
(Lxng)(YY,Z2") = (Vxg)(Y, Z)

for all X,Y € I'(T'M). Consequently the assumption (1.23) can be written as

Vg=2w,®g (1.25)

Two Riemannian metrics g and g on M are said to be conformally equivalent if there exists
a smooth function o on M such that § = €27(*)g. This definition induces an equivalence relation
on Riemannian metrics on M and the equivalence class of g is called the conformal class of g
and denoted by C:
C= {e%(v’v)g( o€ A= (M)},

20(x)

For any metric g = e g in the class C, we have

Vg = 2¢*@) (do + wy) ® g = 2(do + wy)g.
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Thus, setting
wg = wy + do, (1.26)

we obtain Vg = 2wy ® g, and thus the parallel displacement P. with respect to V is also a
conformal map with respect to the metric g € C. This shows that V preserves the conformal

class C if and only if there exists a map w: C > g — w, € Al satisfying (1.25) and (1.26).

Definition 1.7. The pair (C,w) of a conformal class C and a map w : C 3 g — wy satisfying
(1.26) is called a Weyl structure on M. A symmetric linear connection V on M is called a Weyl
connection of (C,w) if V preserves the conformal class C, that is, V satisfies (1.25) for all g € C.

The 1-form w, corresponding to g € C is called a Lee form of (C,w).

The Weyl connection of (C,w) is thus torsion free but not metric preserving. On the other

hand, there exists a unique connection V such that V is metrical with respect to g:
Vg=0
and V is semi-symmetric:
VxY = VyX — [X,Y] = w,(Y)X — wy(X)Y.
Such a connection V is called the Lyra connection of (C,w)([Se-Va]). The relation between V

and V is given by
VxY =VxY —wy(X)Y.



Chapter 2

Finsler manifolds

2.1 Minkowski norms in vector space

Let V be a vector space of dim V =n

Definition 2.1. A function L : V — R is called a Minkowski norm if the following conditions

are satisfied.
(1) For every v € V, L(v) > 0 and the equality holds if and only if v =0
(2) For every v € V and every A > 0, the homogeneity condition
L(Mv) = AL(v) (2.1)
is satisfied.

(3) For all v,w € V, the triangle inequality

L(v+w) < L(v) + L(w) (2.2)

is satisfied.
For every v € V, we set ||v]| = L(v), and we call it the Minkowski norm of v. Notice that
we do not assume the reversibility condition ||v|| = || — v||, thus || @ || is not a norm in the usual

sense. Therefore the indicatrix I defined by
I'={veV||=1} (2.3)

19
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is a hypersurface in V which is not symmetric around the origin in general. The pair (V, L) or

(V,| o) is called a Minkowski space.

Definition 2.2. Let (Vy, L;) and (Vg, L) be two Minkowski spaces. A map P :V; — Vy is

called a norm-preserving map if it satisfies L1(v) = Lo(P(v)), that is,
[vlly = [|P(v)]l2 (2.4)
for every v € V1. We also call a map P : V; — Vg an isometry if P satisfies
lv = wll = [[P(v) = P(w)ll2 (2.5)

for every v, w € Vy. If there exists an isometry P : V] — Vy, we say that (Vy, L) is isometric

or congruent to (Va, Ls).

If an isometry P : Vi — Vj satisfies P(0) = 0, then by substituting w = 0 in (2.5), we
obtain (2.4). Therefore any isometry is a norm-preserving map.

Any norm-preserving map P : V; — V satisfies P(0) = 0, but not an isometry in general.
If a norm-preserving map P : V; —> V5 is linear, then it is trivial that P is an isometry.

Let V be a vector space with a Minkowski norm || e ||. We set
1 1
lvllo = 5 (lwll + 1 = vll) = S[L(v) + L(~v)]

for every v € V. Then || o ||p is a norm in the usual sense, that is, the following condition are
satisfied.

(1) For every v € V,||v|lo = 0 is satisfied, and the equality holds if and only if v = 0.
(2) For every v € V and every A € R
[Avflo =[ AT llvllo (2.6)
is satisfied.
(3) For any v,w € V, the triangle inequality
[0 —wllo < [[ollo + | = wllo (2.7)

is satisfied.



2.2. FINSLER METRICS 21
Assume that P : Vi — V5 is an isometry. Then using the symmetrized norm we have

1P) ~ Pl = 5(IP@) = Pa)l + | - Pw) + Pw))
= 2l —wlh + |~ v+ wlh)

= [lv = wllo

Therefore, if P is an isometry between Minkowski spaces, then P is also an isometry with respect

to the usual norm || e [|o. Consequently, the Mazur-Ulam theorem, we have following

Theorem 2.1. (Mazur-Ulam). If Vi and Vo are Minkowski spaces and if P is an isometry
from Vi onto Vo with P(0) =0, then P is linear.
2.2 Finsler metrics

Let M be a smooth connected manifold of dim M =n, and 7 : TM — M its tangent bundle
over M. We use the chart (m=1(U), (2, yi)(lgign) on TM induced by a chart (U, xi)(lgign) on
M, where y1,--- ,y"™ are the fibre coordinates in each T, M, x € U.

Definition 2.3. A function L : TM — R is called a Finsler metric or length function on M if

L satisfies the following conditions.

(1) L satisfies L(x,y) > 0 for every y € T, M, and the equality holds if and only if y = 0.

(2) For every y € T,M and A € R", the homogeneity condition L(z,\y) = AL(z,y) holds at
each point z € M.

(3) L is continuous on T'M, and L is smooth on the slit tangent bundle 7'M \ {0/}
(4) For any y1,y2 € T, M, the triangle inequality
Lz, y1 +y2) < L(w,y1) + L(,12) (2.8)
holds at each point x € M.

The pair (M, L) is called a Finsler space.

For every tangent vector y € T, M, we set

lylle % Lz, y). (2.9)
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Then each tangent space T, M at x € M is regarded as a Minkowski space with the Minkowski

norm || e || = L(x,e), where z is fixed.

Definition 2.4. The hypersurface I, = {y € T, M|L(x,y) = 1} in each tangent space T, M is
called the indicatrix at x € M of (M, L).

Definition 2.5. A Finsler metric L on M is said to be strongly-convex if the n x n-matrix (G;;)

defined by the Hessian
1 0%L?
ii(T,y) = ==——— 2.1
Cyla) = 5505 (2.10)

is positive-definite at each point of 7=1(U)

If L is strongly-convex, then the Hessian (Gj;) defined by (2.10) induces an inner product
G (2, on the fiber V{, .y = Ty, (T M) of the vertical sub-bundle V' C TT'M by

o 0
Giew (47237 = Gt (211)

Let ¢: I =[0,1] — M be a smoot curve with the starting point p = ¢(0) and the terminal
point ¢ = ¢(1). A smooth curve ¢ = ¢(t) is said to be regular if ¢(t) := de/dt # 0 for every t € I.
The length I(c) of a curve ¢ = ¢(t) is defined by

1 1
I(c) = /O é(t)]|dt = /0 L(c(t), &(t))dt (2.12)

Since L satisfies the homogeneity condition, this definition is well-defined, that is, the length of
a curve c is invariant by any change of parameter ¢ which preserves the orientation of c.
For the set I'(p,q) of all regular oriented curves from the starting point p to the terminal

point g, we define a functional Fr, : I'(p,q) — R by

1 1
Fue) = [ Neludt = [ Lieto).eqo)a (213)
0 0
For an ordered pair (p,q) € M x M, we define a function

dr(p,q) = Celi}(lﬁ q)]:L(C)-

The function dj, satisfies the following conditions:

(1) dL(pv Q) >0,
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(2) dr(p,q) = 0 if and only if p = g,
(3) di(p,q) < dp(p.7) +dr(r,q).

Since the reversibility condition L(z,y) = L(z,—y) is not assumed, the reversibility condition

dr(p,q) = dr(q,p) is not satisfied in general. Thus dy, is a pseudo-distance on M.

2.3 Geodesics in Finsler manifolds

Let c(t) = (z!(t),--- ,2™(t)) be an oriented regular curve on a smooth manifold of dim M = n.
If a strongly-convex Finsler metric L is given on M, the length of ¢ is defined by (2.12). A
curve in (M, L) is called a geodesic if it is locally a distance-minimizing curve. For any curve
¢ = c(t) € I'(p,q), with the starting point p = ¢(0) and the terminal point ¢ = ¢(1), and for a
sufficiently small e(—e < s < ¢), we take a variation I : ¢5(t) = c(t) + sX of ¢, where X = X(¢)
is any smooth vector field defined along the curve ¢ satisfying X (p) = X(q) = 0. Then, since

co(t) = c(t), we have
oL . s
X SO DT
PEXT) 4G4

. . oL
les@)ll — E@)] = s (Z .
d 1 oL . oL -
e s) = - X" X" .
ds ‘50 fL(C ) /0 ( oxt + Z 6yz ) dt

Therefore we obtain
OL _ .
X' =
oy* )
d
d

SSOWSFH Dhxis (Y 2} - 4 (2 2
=5 } [T () xa
/Z[ax’ dt<8L>]Xidt:0'

Consequently a curve ¢ = ¢(t) € I'(p, q) is a critical point of the functional F7, if and only if

oL d [OL
o T o <ayi> =0 (2.14)

X%LZ

On the other hand
i oL

dt Oyt

implies
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is satisfied along c¢. This differential equation is called the Fuler-Lagrange equation of the

functional F7,.

Definition 2.6. A smooth curve ¢ = ¢(t) is called a geodesic if (2.14) is satisfied along c.

Suppose that v = v(t) € I'(p, q) is minimizing the functional Fp, that is, v satisfies F1(c) >
Fr(v) for all ¢ € I'(p, q). Therefore we have

dr(p,q) = Fr(v). (2.15)

Then + is a critical point of the variation Fz(cs), and the Euler-Lagrange equation (2.14) is
satisfied along . Consequently ~ is a geodesic in (M, L).

Proposition 2.1. If v € I'(p,q) is an Fr-minimizing curve, then v is a geodesic.

In the sequel, we set F = L? = Y Gi;j(z,y)y'y’ and we treat the energy functional F¢

depends on the parametrization unlike the functional Fp,,

1 [b,
Falc) = 2/@ GG(E, E)dt, (0<a<b<1)

where ¢IG(€,E) is given by
GG(E,E) = Geqryen (¢), é(t)Y) = Lic(t), é(t))? (2.16)

and ¢(t)V = (£ 0 é)(t) is the vertical lift of ¢ along the canonical lift of ¢ = (c(t), é(t)).

v
Eoc¢

p

[~ TM

Since ¢G(E,&) = L(c(t), é(t))?, the Cauchy-Schwarz inequality

< / ’ Le(t). c’(t))dt)

Fr(e)? <2(b—a)Fg(c), (2.17)

2

< /bL(c(t), o(1))2dt - /b 1241

yields
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where the equality holds if and only if ||¢(¢)|| = L(c(t), ¢(t)) is constant, that is, the parameter
t is normal, since

L(c(t),é(t)) = L <c(s), jg‘j;) = %.

Suppose that a curve v = ~y(t) with normal parameter ¢ is Fg-minimizing, then we have

File) = {2(b - a) F(e)}'/?
> {2(b - a)Fa(7)}'/?

= Fr(7)

for all ¢ € I'(p, q).

Proposition 2.2. If a regular curve v in M is Fg-minimizing, then v is a geodesic in (M, L)

Therefore it is enough to investigate curves minimizing the energy functional Fg. The
Euler-Lagrange equation of the functional Fg is given by

oF d (OF oL d (0L 0L OL
ozt dt <8yi> =2k L%Ui ot <6yi>} 283/ dt (2.18)

If we change the parameter ¢ to the arc-length s, that is, if we assume

dzx
L — =1
<x7 dS > )

OF d (9F
o s <ayi) =0. (2.19)

then equation (2.14) is written as

This equation is computed as follows:

d (0F oF d ; 0G i,
— — [ E J IR 5,k
s(f)yi) oz’ ds< G”y) ozt Y
d*z7 1 Gk
1 k k k
Za” +ZG”d2_§ o2 VY

5, 1 (%Gu | G 0Gy do) da*
- s oxF oxJ oxt ds ds

Therefore we have
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Proposition 2.3. The differential equation of geodesics is given by

2yt , 29 da¥
6282 + Z{f }(V(S)WI(S))%% =0, (2.20)

where s is the arc-length with respect to the Finsler metric L and

i _1 ir aGrj 0G, i 8ij
{ife =5 e (Gt + G - 52, 221

are the Christoffel symbols of the metric tensor G = (Gyj) and (GY) is the inverse matriz of
(Gij)-

If we define a local function G* by

i 1 i j
G'z,y) =5 Z{J k}(w,y)zﬂy’“, (2.22)
then (2.20) is written as follows
d?z! ; dx
— +2G" — | =0. 2.23
a2 * (x’ ds) (223)

Let v = v(s) be a geodesic in a Finsler manifold (M, L) and J(s) = (v(s),7'(s)) the natural
lift of v to the total space T'M, where the parameter s is the arc-length with respect to the

metric L.

™M

The velocity vector field of the natural lift of a geodesic 7(s) is given by

dy dzt 0 Azt 0 dz? 9 - dr\ 0
&Y _ ‘ ) =N 9 N (o, ) L
ds Z ( ds 07 | ds? 8y’> ds O’ Z ¢ (x, ds> Ay’

The functions G? defined by (2.22) are homogeneous of degree two, that is, 2G* = >

holds, and thus
i dx OG! dz\ da’
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Consequently we have

dy dz? [ O 0G" de\ 0
&= 2 ds [aﬂ 2 oy (x ds> ayz} -

d d
Since dr | 1) = &F # 0, this shows that
ds ds

‘Clll e TTM/V (2.24)
S

at each point in y(s) € TM. Therefore we determine the horizontal sub-bundle H C TTM so

that the velocity vector field of 7(s) always lies in the horizontal space at each point ¥(s):

dy
s € M-

For the function G%(x,y) given by (2.22), we define

i det OG"
Ni(z,y) = oy (2.25)
and § € AY(V) by
=3 a@gid:efE: 8.®<dyi+§ Ni(z y)dxj). (2.26)
8yz ayz I\

Then 6 defines a non-linear connection on the tangent bundle TM of (M, L).

Definition 2.7. The non-linear connection 6 defined by (2.26) is called the Berwald non-linear
connection of (M, L).

2.4 Examples of Finsler manifolds

Let M be a smooth manifold with a Riemannian metric g = Y g;;(z)d2* ® da?.

2.4.1 Riemannian metrics

For every y € T, M, if we define a function L : TM — R by

L(z,y) = /Y _ gij(x)yiyd. (2.27)
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The norm ||X|| of any vector filed X in M is measured by

X1 = Vg(X, X).

Then L is a Finsler metric on M, and therefore any Riemannian manifold belongs to the class
of Finsler spaces.

Each indicatrix I, = {y € T, M| m = 1} at x € M is considered as the unit sphere
with the center y = 0in T, M, since around each x € M we may choose a local orthonormal frame
field. As stated in the previous chapter, the parallel transport P, along any curve v : [a, b] — M
with respect to the Levi-Civita connection V¥ is a linear isometric map from the Euclidean space
(Ty(@yM, g(a)) to the one (T )M, g,m)). Thus the unit sphere I, is also linear isometric to
L,)- A Riemannian manifold (M, g) is a space modeled on a unique inner product space.

2.4.2 Randers metrics

A simplest modification of a Riemannian metric ¢ = > g;;(z)dz’ @ da’/ was introduced by
Randers from the physical view point. Let 8 = _ Bi(x)dz’ be a differential one-form on M
whose norm |||, with respect to g satisfies ||5|y < 1. We define a function L : TM — R by

L(z,y) = /> gi(@)y'y? +>_ Bi(x)y'. (2.28)

Such a non-Riemannian Finsler metric L on M is called a Randers metric (cf. [Mal]). The

norm || X || of any vector filed X in M is measured by

X1 = vg(X, X) + B(X).

A Randers metric is an asymmetrical modification of g because of L(z,y) # L(x,—y). Such a
metric is characterized as a metric such that each indicatrix I, is a quadratic hypersurface in

each tangent space T, M whose center is not the origin y = 0 of T, M ([Ha-Ic]).



Chapter 3

Berwarld connections

3.1 Inner product on V

Let L be a strongly-convex Finsler metric on a smooth manifold M. Since the smoothness of L
at the zero-section is not assumed, every quantity obtained from L is not smooth on the whole
total space TM. In this section we shall show that a natural Ehresmann connection 6 can be
introduced on T'M from the given Finsler metric L.

Let TM be the pullback of TM by 7 : TM — M

— T

™M TM
O T
™ M

Since the induced bundle TM is isomorphic to both the horizontal sub-bundle H and the vertical
sub-bundle V' of T?M := TTM, we shall consider both an Ehresmann connection # and the

derivative dr as projections from T?M onto V, and we use the notations introduced in the first

chapter.
Let (z!,---,2™) be a local coordinate in an open subset U in M. With respect to the natural

0 0 0
local frame field — =< —, -+, = p over U, any tangent vector y € T, M is written as

0 Ox! oxn

(0
_ 7
v=2 (8w>

Then (z!,---, 2", y',--- ,y") induces a local coordinate on 7~ (U) C TM. Then the projections

29
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0 and drn are expressed as

QZZa(Zi@ei and dw:zaéy)i®dxi

respectively.

If a strongly-convex Finsler metric L is given on M, there exists an inner product G on
the vertical sub-bundle V' defined by (2.11). By the homogeneity condition of L the following
identity holds:

L(x,y)2 = ZGij(xvy)yiyj = G(S’S)’ (3'1>

for the tautological section £ of V. Since we do not assume the smoothness of L at the zero-
section y = 0 in T'M, the Hessian G;; is not smooth at y = 0.

Since each fibre V{, ,y of V over (z,y) € T'M is identified with the tangent space T},(T,. M),
the inner product G(, ) on V{,,) may be considered as a Riemannian metric on the tangent
space T, M. Thus we call the tangent spaces with such a Riemannian metric G' the tangential

Riemannian spaces of (M, L)

3.2 Berwald connection

Let 6 be the Berwald non-linear connection of a Finsler manifold (M, L), namely, 6 is defined
by (2.26) for the coefficients N;(x,y) given by (2.25).

Definition 3.1. The canonical connection D : I'(V') — A}(V) in V associated with the Berwald

non-linear connection 6 is called the Berwald connection on (M, L).

In the sequel, on a Finsler manifold (M, L), we always take the Berwald non-linear connection
0, especially unless otherwise stated. The coefficients of a connection form w;- => Fj’k(x, y)dx®

are given by ‘
. ON} 092G
_ J

and the equation (2.20) of geodesics is written as follows:
dei+ZFi g, ) datdat (3.2)
ds? K\ ds ) ds ds '

Since the connection coefficients I ]Zk satisfy the symmetry condition I ;k =1 ,ij, the projection

dm is parallel with respect to D :
Ddm = 0. (3.3)
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Proposition 3.1. The Berwald connection D is symmetric.

Since the Berwald connection D is the canonical connection associated with 8, we have
DXHE == 0
for any vector field X in M. The homogeneity of N ; implies Ni =S¢/ I’ ;k and thus

x"(r?) =x"G(E )
= X" Gij (z9)'y)

= Soxt (G - TN ) v -2 3 G
- Sox (G e eu{l ) v

=0.

Consequently we obtain
LyuL=XT(L)=0. (3.4)

Proposition 3.2. The Berwald connection D on a Finsler manifold (M, L) is almost L-metrical.

Let ¢: I — M be a smooth curve in M. It may be assumed without loss of generality that
c is a regular curve. Suppose that a vector field X on M is parallel along ¢ with respect to the

Berwald non-linear connection 6. Then, X is parallel along ¢ if and only if

coro(4) <o

This equation is written as

dX? i da?
-+ Zz\g(c(w,){(t))W = 0. (3.5)

Since the norm || X (¢)|| of X(t) is given by || X (¢)|| = L(c(t), X(t)), if X is parallel along c,
then (3.4) implies
d

d
— | X (t
SIX @Ol = =

—L(c(t), X(1)) =0

Therefore we have
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Proposition 3.3. Let ¢ be any smooth curve with initial point p in a Finsler manifold (M, L).
Then the parallel translation P, along c is a norm-preserving map, i.e., for any Y € T,M we
have

1Yl = [PVl (3.6)

In particular P, satisfies P.(0) = 0.

The indicatrix I, is a compact hypersurface in T, M given by the set of tangent vectors of
unit norm. Since P, preserves the norm, we have || P.(y)||z = ||y||r = 1 for any y € I,,. Therefore

we obtain

Proposition 3.4. In a Finsler manifold (M, L), the parallel translation P. along any smooth

curve ¢ preserves the indicatriz, i.e.,

3.3 Curvature and torsion of Berwald connection

The curvature Rp of the Berwald connection D on a Finsler manifold (M, L) is defined by
Rp = D?. Since D is a canonical connection associated with 6, the curvature Rp is decomposed

into the sum Rp = RgH + Rgv, where RgH and Rgv are defined by

RpM(X,Y)Z2Y = Rp(X",Y" 2V = DxuDyuZ" — DyuDxuZ" — Dixu ymZ"
and

REV(X,Y)Z" := Rp(X",YY)ZV = DxuDyvZ" — DyvDxuZ" — Dixn yv)Z"

for all vector fields X,Y and Z in M. The components R;'- i Of Qg H are given by

. o \H? o \? . .
k= (W) I — (axz> Li+ > Lokl =D Lok (3.7)
and, furthermore the components P;kl of Qg V' are given by

ory, — &N; G

jkl = — oyl Oykoy! -  Qyioykoy!” (3.8)
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Therefore the curvature form 2p = (QJ’) of D is given by

ZR]klxyd:L‘ A da’ —I—Z klxyd:c N (3.9)
k<l

From (3.7) and (3.8), these coefficients satisfy R;'-,Cl = R]lk and P ]kl lek, or equivalently

REH(X V)= -REH(Y, X)), RYV(X,Y)=RHEV(Y, X) (3.10)

for all vector fields X,Y in M.

First we shall consider the case where the curvature Rp vanishes identically.

Definition 3.2. A Finsler manifold (M, L) is said to be locally Minkowski or flat if there exists
an open covering of M with respect to which the metric L is independent of the base point
z € M.

The aim of this section is to characterize locally Minkowski spaces in terms of curvature
Rp of the Berwald connection D. Before proving the main theorem, we shall show the trans-

formation laws of curvature forms with respect to a coordinate change in the base space M.

Let U and U be two coordinate neighborhoods in M with local coordinate (x!,---,z") and
(', ,T") respectively such that U N U # 0. The relations between the respective fibre co-
ordinates (y',---,y") and (y',---,7") relative to («',---,2") and (z',---,Z") are given by
. oz’

7=> o lyl Considering y = (y%,--- ,y") and y = {(g',--- ,7") as column vectors, we write

84
this relations as § = Ay, where we set A = a—ml . Then, using matrix notations, the natu-

x

0 0 0 0
ral local frame fields e = { —,---, — ) and € = ¢ —,--- , =, ¢ of V are related to the
oy! oy 9y oy"
following equation

ey =eA. (3.11)

Therefore the respective connection forms w and @ of D relative to e and € are related as

w=A"YdA+wA). (3.12)

We express the curvature Rp as

Rp=e@N=ex N
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for the respective curvature forms 2 and £2 of D relative to ¢ and €. Then (3.12) implies
2 =A""0A

Suppose that (M, L) is locally Minkowski. Then the metric L is independent of local coordi-

nate T = (!, ,2") in M. Then the components G;; of the metric tensor G in V with respect

to this local coordinate (7,y) are also independent of Z. This fact implies { l%m} = 0. Therefore

-1 S {i | =0
that is, @ = 0 in U. This shows that Rp = 0.

Conversely we suppose Rp = 0. This assumption is the integrability condition for the system

we have

of differential equations
dB = Buw, (3.13)

where B = (B}) is a certain local function with values in GL(n,R). In fact,
0 =d(dB) = d(Bw) =dB ANw + Bdw = B(dw + w Aw) = B2p.

Furthermore wAdx = 0 is satisfied, since D is symmetric. Then, from (3.7) we have dBAdz = 0,

namely A
oB; _ 331’?
ozk  Ozd
in local coordinates. Therefore there exist some local functions fi(z!,---,2™) such that B; =
oft ) )
fj. Then, if we take a change of local coordinate as ' = fi(x!,--- ,2"), the connection form

x
w of D with respect to (Z,7) vanishes. Then, from (3.4), we have

o\ oL — OL 0L
< ot ) ot Z Yo lmi oyt o7

Therefore L is independent of the local coordinate (Z!,--- ,Z") in M. Consequently we obtain

Theorem 3.1. A Finsler manifold (M, L) is locally Minkowski if and only if its Berwald con-
nection D is flat, that is, RgH = Rgv =0.

Because of (3.3), the projection dr from T2M onto V is parallel with respect to D. The

torsion Tp of the Berwald connection D is defined by :

Tp = DO. (3.14)



3.4. BERWALD SPACES 35

Since D is the canonical connection, the torsion T is of the form Tp = Tg H where Tg H g

given by

0
TgH:Zayi

where the coefficients };l are given by

c (0N (2N

Since Tg V' =0, the Ricci identity D2 = Rp& implies

® <Z R (x,y)daz® A dxl> , (3.15)

k<l

Proposition 3.5. The curvature Rp of D satisfies the following identities
REHe = THH (3.17)

and
REVE =0 (3.18)

for the tautological section &.

3.4 Berwald spaces

As stated in the previous chapter, if a strongly convex Finsler metric L is given on M, then each
tangent space T, M has two metrical structures. One is the normed space with the Minkowski
norm || X||, = L(z, X) for any X € T, M, and another one is the inner-product space with the
Riemannian metric G on T, M defined by (2.11). In this section we shall consider the case where
the parallel translation P, with respect to the Berwald non-linear connection 6 preserves these
structures.

First we shall consider the case where the parallel translation P, is an isometry between the

tangential Minkowski spaces. By Definition 2.2 this condition is written as
X =YL = [[Pe(X) = P(Y)l|z

for any X,Y € T, M. Then, from Theorem 2.1 in the previous chapter, P, is a linear isomorphism.

The converse is also true. Therefore we have

Proposition 3.6. The parallel translation P, along any curve c is an isometry between the

tangential Minkowski spaces if and only if P. is a linear isomorphism.
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Definition 3.3. A Finsler manifold (M, L) is called a Berwald space if the parallel translation

P, along any curve c is a linear isomorphism.

Therefore, from Proposition 3.6 we have

Proposition 3.7. A Finsler manifold (M, L) is a Berwald space if and only if its Berwald

connection D 1is induced from a linear connection 6 in T M.

A necessary and sufficient condition for the parallel translation P, to be a linear isomorphism
is that the coefficients N; of 0 defined in (2.25) are linear in fibre coordinate (y',---,y"), that
is, the Berwald non-linear connection 6 is reduced to a linear connection on T'M. The Berwald
connection D is induced from a linear connection VM on T'M. Thus, using the connection

coeflicients ’yji- . () of VM the coefficients N ; of 0 is written as

which implies F;k = 'y;k(x) From (3.8) we obtain

Proposition 3.8. A Finsler manifold (M, L) is a Berwald space if and only if its Berwald

connection D satisfies RV = 0.

If (M, L) is a Berwald space, the connection coefficients F;k of D are independent of the fibre
coordinate (y!,---,4"), but the metric L is not necessary induced from a Riemannian metric

on the bace space M. The following theorem is an epoch-making theorem in Finsler geometry.

Theorem 3.2. (Szabo[Sz]) If (M, L) is a Berwald space, then there exists a Riemannian metric
9= Zgij(x)dxi ® dxd on M such that
D=V’ (3.20)

for the Levi-Civita connection V9 in (M, g).

3.5 Landsberg spaces

In this section we shall consider the case where the parallel translation P, is an isometry between
the tangential Riemannian spaces. Since the fiber V|, ) of the vertical bundle V' at any point
(z,y) € TM is identified with the tangent space T} (T, M), the metric G on V given by (2.11)
defines a Riemannian metric G on the fiber T,, M. We call such a Riemannian space (T, M, G,)

a tangential Riemannian space.
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Definition 3.4. A Finsler manifold (M, L) is called a Landsberg space if the parallel translation
P, with respect to the Berwald non-linear connection 6 is an isometry between the tangential

Riemannian spaces.

From the definition, if ¢ is closed curve with the base point p € M, then the parallel transla-
tion P, : T,M — T,M is a isometric transformation in the Riemannian space (7,M,G,). Thus
the holonomy group H), at p in a Landsberg space is a Lie group.

By definition (M, L) is a Landsberg spaces if and only if
LyxnG =0 (3.21)

is satisfied for any vector field X on M. For any vector fields Y, Z on M and their vertical lifts
YV, ZV, both of LxuY"V and LyuZ" are vertical vector fields. Then we have

Lxe)YYV,ZV)Y=XEaV,2V) - GLxnYV,ZV) -GV, LxuZ")
=X2q(yV,z"V) - G(DxrY"V,Z2V) -~ G(YY,Dxn Z")
= (DxuG)(YY,Z").

Therefore (3.21) is equivalent to
DynG =0 (3.22)

Proposition 3.9. A Finsler manifold (M, L) is a Landsberg space if and only if the Berwald

connection D is compatible with the metric G in horizontal direction.

The Berwald connection D satisfies (3.4) thus X*/(L?) = 0 for any vector field X on M:

OL? L OL?
ot ZNZ’@TJI =0. (3.23)
Here we suppose that (M, L) is a Berwald space. Then the connection coefficients of D are given
by the coefficients F;k(az) of a linear connection V in TM. Differentiating (3.23) by »/ and y*

continuously, we have

o H
0= (6%’) Gir = ZEZJ($)le - Zpilk(fE)Gjl = D(5/921)1 G jk-

This shows that if (M, L) is a Berwald space, then the Berwald connection D is compatible with

the metric G of V in horizontal direction. Therefore we have

Proposition 3.10. Any Berwald space (M, L) is a Landsberg space.
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Remark 3.1. As far as the another knows, there is no example of Landsberg space which is
not a Berwald space. Still finding an example of non-Berwald Landsberg space is an important

open problem in Finsler geometry. [

Let du be a differential n-form on T'M defined by
=Vdet G dy' A--- A dy™. (3.24)

The restriction of du to each fiber V{, ) of the vertical bundle V' defines a volume form on V..
For any vector field X on M, the Lie derivative £ymdyu by the horizontal lift X is given by

0 0
v (5o 3
0 0 0 0 0
_ H H
- (d“<ay1""’aw>)‘Zd”<al"">[x ay}ay)
i (2N vaera - ONI" 9
:ZX (z) i det G Zd,u 9y 17-. Z 3yk aym"” ¥

=Y X'(a) _(a?ﬂ)H det G — Y I +/det ]
=Y Xi(a) _;(det G2 <aij>Hdet G~ (3 ) Vet ]

If (M, L) is a Landsberg space, then (3.22) implies

H
((;Zj) vdet G =2 det GZFJ

Therefore we obtain
Proposition 3.11. If (M, L) is a Landsberg space, then

for any vector field X on M.

Let {¢} be the (local) flow of the horizontal lift X*/. For any compact subset Ko C Ty, M,
we set K; = o1 (Kp). Then the volume vol(K;) of K; is given by

vol(Kt)Z/ duz/ duz/ o (dp).
K, oH (Ko) Ko
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If (M, L) is a Landsberg space, then (3.25) implies ¢/ (du) = du, thus vol(K;) = vol(Kp). In

particular, the volume of the indicatrix I, is independent of the base point = € M.

Proposition 3.12. For a Landsberg space (M,L), the volume vol(I,) of the indicatriz I, is

constant.
3.6 Averaged metrics and connections
Let I, = {y € T, M|L(x,y) = 1} be the indicatrix at x € M. For any y € I, the identity
G(:L‘,y)(578) = L(l’,y)Q =1
holds, thus the Liouville vector field £ on E is a unit vector field at each point y € I,.
im OL 8L2 0 1 : 0 1
Gm_— ) ==Y GGy ) = —&(x,
2. dym <8y> 2LZ (W) LZ m <3y1) A

also implies that £ is the outward-standing unit normal field of I, at each point y € I,.. Therefore,

if we define duy by
dpr = (€)dp, (3.26)

we may consider the restriction of duy to each fibre as the volume form of I,.
For the horizontal lift X of any vector field X on M, the fact

AT () (Lxu E) = dm(y ) [ X7, E] =0

z,y)
implies the following.

Lemma 3.1. The Liouville vector field £ is invariant by parallel translation, that is,
LxnE =0 (3.27)

is satisfied for the horizontal lift X™ of any vector field X on M. In particular, if (M, L) is a
Landsberg space,
£XHd/,L[ =0. (3.28)

Let X and Y be vector fields on the base space M. For the respective vertical lifts X" and
YV, it is easy to see that the map g, : T, M @ T, M — R defined by

9:(X,Y) = wl / G(XV,YV)dur (3.29)
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is an inner product on T, M. Therefore g = {g,} defines a Riemannian metric on the base space
M.

Definition 3.5. ([Ma-Ra-Tr-Ze]) The Riemannian metric g defined by (3.29) is called the av-

eraged Riemannian metric on the Finsler manifold (M, L).

Let g be the averaged Riemannian metric on a Finsler manifold (M, L) and X a vector field
on M. Then we define a map Vy : TpM — T, M so that

9(VxY,2) = Uol /GDXHY ZVYdpr (3.30)

is satisfied for any Y, Z € T, M. We show that V : T,M @ T,M > (Y, Z) > Vy Z € T, M is a
linear connection on TM. By definition it is enough to show that V satisfies the Leibniz rule.
For an arbitrary function f € C*°(M) we have

o(Vx(f- V). 2) = / G(Dxn(fY)V. 2" )dpus

vol(I,)
1
ol AYY + fDyuYV, ZVdpu;
(

~ ol I,
X(f)
vol(Ix)
X(fg(Y,2) + fg(VxY, Z)
=g(X(f)-Y+f-VxY,2)

/ G(X
/G(YV ZV)dur + Ol{Im)/I G(DxuYV,ZV)du;

for any vector fields X,Y in M. Therefore we obtain
Vx(f-Y)=X(f)Y +f VxY,

thus V defined by (3.30) is a linear connection on T'M. Moreover we have

Lemma 3.2. The linear connection V defined by (3.30) is symmetric.
Proof. The following identity holds:

(Ddm)(XH Y?) = Dyndrn(YH) — Dyrdr(XH) — dr(( X", Y1)
=DynYV — DyuXV —dn([X,Y]")
=DyuYV = DyuXV - [X,Y]".
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Thus, since the Berwald connection D is symmetric, the identity (3.3) implies

_ _ 1
mVXY—VWY—Mﬂ%Z%:&ﬂrjIGu%ﬂYV—DWJW—L&YWJWMM:ﬂ

for any vector fields X,Y and Z on M. Consequently we have VyY — Vy X — [X,Y]=0. [

Definition 3.6. (cf. [To-Et]) The symmetric linear connection V defined by (3.30) is called the

averaged connection on the Finsler manifold (M, L).

Then, as a generalization of Theorem 3.2, we have

Theorem 3.3. [Ai3] If (M, L) is a Landsberg space, then the averaged connection V is the

Lewvi-Civita connection of the averaged Riemannian metric g.

Proof. Let X be an arbitrary vector field on M. We denote by {¢;} the 1-parameter family
of local transformation group generated by v, and by {p!’} the horizontal lift of {¢;}. In
Proposition 3.4 we have proved the equation ¢f! (I) = Iy, (,)-

We assume that (M, L) is a Landsberg space. Then (3.28) shows

UOZ(Lpt(x)) = /

du1=i/)wf%du1=(/idu1::v0KLJ
<PtH(Iz) Iy I

therefore the volume vol(I,) of indicatrix is constant. Then we have

o

i)
d

— d
dt —o [/gpfl(lz) f(xay) ILLI]

d o
- [ = *f1d
LﬁmMﬂM

= | X0

d

X( ] f(sc,y>dm) _ 4 f<x7y>dm]

for all X € I'(TM) and f € C°°(T M), where ¢; and o denote the 1-parameter family of local

transformations generated by X and X respectively. Thus we have

X(o(:2) = s [ XMGOY .2 ),
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Therefore, from (3.22) we obtain

Vxg(Y,Z)=X(g(Y,2)) —g(VxY,Z) — g(Y,Vx Z)

B voltf ) /f XHGY,2Y) = GDxnY", 27) = GOV, Dxn 2V )]dps
- ’UOltIz) /1 (DxuG)(Y", Z2Y)dpr

Since V is symmetric, V is the Levi-Civita connection of the averaged Riemannian metric g. [

Suppose that (M, L) is a Berwald space. Since the Berwald connection D is induced from a
symmetric linear connection V/ on T'M, that is, Dxn YV = (V4 Y)V, the averaged connection
V is given by

1

9(VxY, Z) = vol(I)

[ G 2 = g(VxY. 2),

Iy

thus V = V. Since every Berwald space is a Landsberg space, the averaged connection V is the
Levi-Civita connection V9 of the averaged Riemannian metric g. Consequently Theorem 3.2 is

rewritten as follows.

Theorem 3.4. The Berwald connection D of a Berwald space is induced from the Levi-Civita

connection VI of the averaged Riemannian metric g.



Chapter 4

Rund connections

4.1 Rund connections

The Berwald connection D on (M, L) is the canonical connection defined in Chapter 1, however,
D is not necessary metrical with respect to the metric G on V. In this sense the Berwald connec-
tion D is somewhat unfortunate. In this section we shall introduce another Finsler connection
V on V which satisfies the almost G-compatibility. Similarly to the case of D, we also assume

that V is flat in the vertical direction.

For this purpose, for every X € I'(T'M), we shall define Pyu : I'(V) — I'(V') by
(DxnG)(YY,Z2") = 2G(Pxu(Y"),2") (4.1)
for all vector fields Y, Z on M. Then it is easily shown that Px# is a tensor field, i.e.,
e Pxu(YV +2V)=Pxu(YV)+ Pxu(ZV)
o Pyu(f-YV)=fPyu(YV) for all f € C®(M),
i.e., Pyn € End(V'). Then we can easily show that Pyxr is symmetric:
G(Pxn(Y"),2V)=G(Y", Pxn(Z")) (4.2)
for all Y, Z € I'(T'M). Therefore (4.1) is written as follows:

XTaQV,zV) = GDxuaYV + Pxu(YV),ZV) =GV, DyuZV + Pxu(ZV)) =0

43
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If we define Vyu : I'(V) — I'(V) by
VynYV = DynYV 4+ Pyu(YV). (4.3)
then V yru is a covariant derivation in V' such that
VxuG =0. (4.4)

Since H = ker(f) is defined by the Berwald non-linear connection 6, it is natural to as-
sume that V recovers the Berwald non-linear connection 6 similarly to the case of the Berwald
connection D, namely, we assume

VE=14 (4.5)
Then, from (4.3) we have

Proposition 4.1. The connection V satisfies (4.5) if and only if the tensor field P satisfies
Pxu(£)=0 (4.6)

for every X € I'(H).

A vector field Y on M is parallel with respect to # if and only if the vertical lift YV along
Y is covariantly constant with respect to the Berwald connection D, that is, Dyu (oY) =0
for all vector field X on M. Furthermore, since (4.3) and (4.6) imply

VxH<gOY) :DxH(EOY)+PxH((‘:OY) :DXH(gOY),
we have

Proposition 4.2. A vector field Y on a Finsler manifold (M, L) is parallel with respect to the
Berwald non-linear connection 8 if and only if the vertical lift YV along Y is covariantly constant
with respect to V, namely

Vxu(EoY)=0 (4.7)

for all X € I'(TM).

Lastly, since D satisfies the symmetry condition (3.3), it is natural to assume that V also
satisfies the symmetry condition
Vdr = 0. (4.8)
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Definition 4.1. Let 6 be the Berwald non-linear connection on a Finsler manifold (M, L). A

connection V : I'(V) — AY(V) is called a Rund connection if V satisfies the following conditions.
(1) V associates with 6, i.e., V satisfies (4.5).
(2) V is symmetric, i.e., V satisfies (4.8).
(3) V is almost G-compatible, i.e., V satisfies (4.4).

(4) V is flat in the vertical direction.

Proposition 4.3. The Rund connection V on a Finsler manifold (M, L) is uniquely determined.

Since 6 is the Berwald non-linear connection, (3.4) implies
VyulL=X"(L)=0
for any X € I'(TM). Therefore the Rund connection V is also almost L — compatible.
Proposition 4.4. The connection V satisfies (4.8) if and only if the tensor field P satisfies
Py (YY) = Py (XY) (4.9)
for all vector fields X,Y in M.
Proof. Since (3.3) and (4.8) show that
(Vdr)(XT, vy =VyuYV = Vyu XV —[X,Y]V =0

and
(Ddr)(XP, Y)Y = DynYY — Dyu XV - [X,Y]V =0
for all X,Y € I'(T'M), we have
Pyu(YV) = Py (XV)=VyuYV = DynYV — (Vyu XV — DyuX")
=VyuYV =V XV —[X,Y])V = (DyuYV — Dyu XV - [X,Y]")
=0.

The identities (4.2) and (4.9) lead us to
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Proposition 4.5. The covariant derivative DxuG is totally symmetric, that is,
(DxnG)(YY,ZY) = (DynG)(Z2",XV) = (DzuG)(X", YY) (4.10)

for all vector fields X,Y, and Z on M.

Remark 4.1. From (4.10), the covariant derivative DG of the metric G in the horizontal
direction is totally symmetric. Hence the pair (G, D) is called a Finsler-statistical structure in
[Na-Ai]. If we put

o 0
Dioyjoaryn <ayi’ 8yj> = Gigik

then (4.10) is written as Gij.x = Gk = Griyj-

Let H} be the connection form of V :

0 0 ;
Vag = 257 © 10
Then the connection form H; is of the form HJ’: => H;k (z,y)dz*, where ij are local functions
satisfying
;ﬁk = ]]]ij (4.11)

from (4.8). Furthermore (4.4) implies

o H
<M> Gij— Y Grjll} =Y GipITjy = 0.

Therefore (4.11) implies

.1 ol 0\ o \" o \"
=307 | (5) Gt (55) G () G

The assumption (4.5) means that

(4.12)

> I, = Nj (4.13)
for the coeflicients N JZ of the Berwald non-linear connection 6.

From (4.3), the tensor field Py# is given by

0 0 0 0 i/vH ivH
P (ay> = Vg5 = Dxngs = 55 X —wj(x™)].
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Therefore, if we define a horizontal 1-form PJZ by P]? = Z(Hj’k - ;k)dxk, then Pyn is given by

) D
P <ayﬂ‘>zzpj(X oy

4.2 Curvature and torsion of Rund connection

We shall show an expression of the curvature Ry = V? of the Rund connection V in local
coordinates. Since V is also relatively flat in the vertical direction, the curvature Ry is also
decomposed as Ry = RgH + Rgv, where

R (X Y) VXHVYHZ *VYHVXHZ *V[XH YH]

and
for all vector fields X,Y and Z on M. The curvature form 2y = dIl + II A II with respect to
68 ={0/0y', - ,0/0y"} is also defined by

Yy

0 0 0

Ry —=—0®0y=—o Q4"+ 08"

where we put

QR —gHr+ AT and 08V =dV1I

By direct calculations we have

0 9 | |
Ry = 22 5y © (aty + 3 i, AT

Then
dIT) + Y I, AT
H i
= Z [Z <6xl> ijda:l n Z 6£Jlk gl] Adik 1 Z <Z Ufnkdxk) A (Z U}?daﬁ)
-5 (o) = () e b = X |
+ Z ( ) dz® A 6.
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Therefore Ry is given by

0 0
R ow = 2oy

k<l

where the coefficients Ré-kl and P;kl of {2y are given by

H H
et [ O 4 B . , ,
o () () e S - a1
and oI
. 11t
def k
P, = — ay]l (4.16)
respectively.

Proposition 4.6. A Finsler manifold (M, L) is a Berwald space if and only if Rgv vanishes
identically.

By the assumption (4.8) the projection dr is always parallel with respect to V. Then we
define the torsion tensor field Ty of V similarly to the one Tp of D.

Definition 4.2. The V-valued 2-form Ty defined by

Ty ' ve (4.17)

is called the torsion of V.

Since V is also flat in the vertical direction and V' is integrable, we obtain Ty (Xy,Yy) =0
for all vector fields X,Y on T'M. Therefore Ty splits as Ty = Tg H Tg v,

First, we have

TEN(X,Y) = To (X, Y1)
= Vxn0(YT) = Vyu(X™) —0(X", Y1)
= —0(x", v
=do(xH, yH)
=Tp(X7 v,

that is,
THH — THH, (4.18)
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Second, we have

TEV(X,Y) = Ty(X", YY)
= Vyu(YV) = Vyr O(XH) —9([ X7, YY)
=VyuYV —0(LxunY")
=VynYV = DynYV

= PXH (YV)’
therefore we obtain
TEV(X,Y) = Pyu(YV). (4.19)
0
With respect to the local frame field § —,---, —— ¢ the torsion Ty is given by
Ay oyr

To = 4 o’ N 4.20
P= X o (e ). (120

The torsion form T% is given by
C=d0'+ > Wi AT+ PING =ThH+ > PiAG.
Consequently, from (3.15), the torsion Ty of V is given by
V_Zaz <RZ :cj/\dack) 81 ( a:]/\9k>

where the coefficients R;-k are given by (3.16) and P;k are defined by

P;k = =1 (4.21)

respectively.

Proposition 4.7. A Finsler manifold (M, L) is a Landsberg space if and only if Tgv vanishes
identically.

4.3 Some identities

We list up some identities concerning Ry and Ty. The definition of Ty and the Ricci identity
imply Ty = Ry& = RgHS + Rgvg. Thus we have
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Proposition 4.8. The curvature Ry and the torsion Ty satisfies the relation Ty = Ry &:
RBHg — THH (4.22)

and
REVE =TIV, (4.23)

The second identity and Proposition 4.7 implies the following proposition.

Proposition 4.9. Fvery Berwald space is a Landsberg space.

The symmetry assumption (4.8) and Ricci identity V2(dr) = Ry A dr imply Ry A dr = 0.
The LHS of this identity implies

(Ry Adr)(XH Y 70y = Ro(XH, Y )drn(ZH) + Ry (YH, Z2H)dn(XH)
+ Ry(z1, XH)dn(YH)
= REH(X Y)ZV + REH (v, 2)XV + REH (7, X)YV

and

(Ry Adr) (X2, YV, 2H) = Ro(XH  YV)dr(Z7) + Re(YY, ZH)dr(XH)
+ Ry (ZH, xM)dr(Y")
= REV(X,Y)ZV - REV(Z, V)XV

Therefore we obtain the following.

Proposition 4.10. (Bianchi identities) The horizontal part REH and the mized part RV

satisfy the following:
REH(x vZV + REH (Y, 2)XV + REH (Z, X)YV =0 (4.24)

and
RV(X,Y)zV — REV(Z, V)XV =0. (4.25)
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The G-compatibility assumption (4.4) gives rise to

X" yH|GzV,wY)

= XTyHqzV w")) - vH(XHGzV, W)

= XHG(VyuZV W)+ G(ZY , VyuW")) = YH GV u ZV W)+ G2V, VxuW"))
= G((VxnVyn = VynVxm) 2V WY) + G(Z",(VxuVyn = VynVxm)W")

and

X7 YHGzY WY = (Vixuyu)(ZY WY) + GV ixuymZ¥ ,WY) + G(ZY VY xu ymW")
= 20(T¢M"(X,Y), 2", WY) + G(Vxu ymZ"' ,WV)
+G(Z2Y Yy ymWY).

Therefore we obtain the following.

Proposition 4.11. The curvature Ry and the torsion Ty satisfy the following:

GRIN(X,Y) 2V, W) + GRIT(X, V)WY, Z2V) +20(TF™ (X, Y), 2", W) =0 (4.26)

GREV (X, V)2V, WY) +G(Z", RV (X, Y)WV) +2(VxuO) YV, 2V, W)
+20(T8YV (X, ), ZzV, WV) =0 (4.27)

Proof. The second identity is obtained by direct computations using the almost G-compatibility
assumption (4.4). O

We suppose that RgH = 0. The identity (4.22) implies TgH = 0 and the horizontal sub-
bundle H is integrable. Then Proposition 4.2 guarantees the existence of a parallel vector field

(:U — TM]|y. Since ( is parallel, we have
d¢(X) = X" € Hey (4.28)
at each ((x) for all X € I'(TM). Then we define a local metric g¢ on the open set U by

95 (Y, 2) := Ge)(E0Y,E0Z) = Gy (YV, Z2Y)
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for all Y, Z € I'(T M), where the superscript ”V” denotes the vertical lift along ¢, e.g., YV (z) =
(€ 0Y)¢(). We define a linear connection V¢ on TM |y by

(V&Y)Y == Vi)YV = VynYV

for all X,Y € I'(TM). Then V¢ is flat. In fact, since [X Y] = [X, Y] because of the
integrability of H, we obtain

(Vo vezZ(X, V) = (ViVy2)  — (V3 V5 2) — (Vi

2
=VxuVynZ" = VyuVyuZ" =V ixyu 2"
=VxuVynZ" = VyuVynZ" = VixnymZ"
= REH (X, v)7ZV

=0
for all X,Y,Z € I'(TM). Therefore V¢ is a flat connection on TM|;. Furthermore

(Vg Z2) = XY, Z2) — 64 (VY, Z2) — 6 (Y, V& Z)
= d((X)G(YY,ZV) = G(Vaex) Y. Z2V) = G(YY Va2V
= XIqwV,Zz") - G(VxuY"V,ZV) -GV, VuZ")
= (VxuG)(YY, Z")
=0

implies that the metric ¢¢ is a flat Riemannian metric on U, since V¢ is torsion-free. Therefore

M is locally Euclidean.

Theorem 4.1. If a smooth manifold M admits a Finsler metric satisfying RgH =0, then M

18 locally Fuclidean.

The curvature Rp and the torsion Tp satisfy some important identities. For later conve-

nience, we are concerned with the following identity.

REV(X, )2V = REV(X, V)2V + (VxuTHV)(Y, 2). (4.29)

4.4 Variational formulae in Finsler manifolds

The contains of this section refer from [Ai-Ko|. Let (M, L) be a Finsler manifold with the Rund

connection V. The canonical lift ¢ : I — T'M of a regular oriented curve ¢ = ¢(t) in M is defined
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by ¢(t) = (c(t),¢é(t)). The velocity field of ¢ is given by

de (de\" de\ g de
% = <dt> + V(dc/dt)H <(€ o Clt) =c + v(dc/dt)H <5 o) dt)

where ¢ and ¢ are vertical and horizontal lifts of the velocity field ¢ = dc/dt along ¢ respec-

tively. Here the second term in RHD of the above is given by

d?x da? dx 0
.V_
Ve _Z[dtQ 2 Tl )5 dt}ayi'

Definition 4.3. A regular oriented curve c¢: I — M is called a path if

dc
d—j = ¢H (4.30)
or equivalently
d*x’ ded dak
= 4.31
gz 2Tl ®) g =0 (4.31)

is satisfied. In particular, if the parameter ¢ is a normal parameter of ¢ with respect to L, then
¢ = c(t) is called a geodesic in (M, L).

Let ¢ = ¢(t) be a smooth curve in M.

Definition 4.4. A section Z € I'(V) is said to be parallel along its natural lifts ¢ if Z satisfies
¢*VZ = 0. Especially the vertical lift XV of s vector field X on M is parallel along ¢ if

F(vxY)y=o (4.32)

is satisfied.

Since XV is the vertical lift of X € I'(T M), the covariant derivative of X" in the vertical

direction vanishes identically. Thus we have

&(VXY) <5t> vxV <Z§> = VXV (H 4+ V") =V XV,

Hence the vertical lift XV along ¢ is parallel if and only if

dX’ da*
véHXV:Z{ + > X My d) 0 _y,
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namely

dXZ da*
+y o kxa:X%zO (4.33)

is satisfied.

Remark 4.2. The parallelism along a curve ¢ in M and the one along the natural lift ¢ in T'M
must be distinguished strictly. A vector field X on M is parallel along a curve ¢ in M if ¢5.0 = 0
is satisfied, where cx is the lift of ¢ defined by ¢x (¢) = (¢(t), (X o ¢)(t)). Since V satisfies (4.5),

this definition can be written as

(¢ 0) <jt> =6 (%) =0(cH + Lo (E0X))=Vu(EoX)=0.

Therefore X is parallel along ¢ if and only if X satisfies

Xm . da*
+ZHJ,€ 2, X)XI—- =0, (4.34)

If V is induced from a linear connection on T'M, e.g., if (M, L) is a Berwald space, the vertical

lift XV is parallel along ¢ if and only if X is so along c.

In the sequel, we use the notation V; X" instead of ¢*(VXV) for any X € I'(TM) and its
vertical lift X" along ¢ :
VXV =V XV,

Let X and Y be vector fields along a path ¢ in (M, L). Then, if ¢ is a path in (M, L), then we
have p
%G(XV YV =G(v: XV, YV + G XV, VYY), (4.35)

since dc/dt is horizontal. Hence we have

Proposition 4.12. Let ¢ be a path in a Finsler manifold (M,L). If XV and YV are parallel

along ¢, then the inner product G(XV,YV) is constant along ¢.

A regular oriented curve y(t) = (2%(t)) with normal parameter ¢ is a geodesic if and only if
(4.31) is satisfied. Proposition 4.12 shows that, if v is a geodesic, the tangent vector 4 has a
constant norm and - has constant speed. In the sequel, we always assume that the parameter
of a geodesic is normal unless otherwise stated.

Let vx : I — M be a geodesic with initial point z = 7x(0) and the initial direction
X = 4x(0), where the parameter ¢ is, of course, normal. We shall define the ezponential map exp
by exp(z, X) = yx(1) if X # 0 and exp(z,0) = x. The restriction of exp to DN T, M is denoted
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by exp,. The restricted exponential map exp,, maps the rays through the origin 0 € 7; M to the
unique geodesics through the point x in a sufficiently small ball B,(r) = {X € T, M|||lv|| < r}.

The exponential map exp is defined on an open neighborhood D of the zero section o(M)
of TM, and exp is C*°-class away from o(M). Furthermore exp is Cl-class at o(M), and its
derivative at o(M) is the identity map. By a result due to Akbar-Zaedah, the map exp is
C?-class at o(M) if and only if (M, L) is a Berwald space (see [Ba-Ch-Sh]).

For each X € T, M, the radial geodesic yx is given by vx (t) = exp,(tX) for all ¢ € I such that
either side is defined. This geodesic segment ~yx has the tangent vector field 4x with yx(0) = X.

Since V(¥x)" = 0, the identity (4.35) implies that || ¥x|> = G((¥x)", (¥x)") is constant along
1

7x, thus [4x (8)]] = [Fix (0)]] = [[X]|. Consequently we have /0 I (8t = 1 X

4.4.1 The first variation of arc length and geodesics

We shall show the first variation formula in Finsler manifolds. For this end we introduce some
definitions.

Let ¢ = ¢(t) € I'(p,q) be a regular oriented curve with unit speed, that is, ||¢(¢)| = 1.
Then a variation of ¢ is a family {cs} of oriented curve c4(t) parameterized by s € (—¢,¢) such
that co(t) = c(t) for all ¢ € I. A variation I is said to be proper if it fixes the end points,
that is, ¢5(0) = p and ¢4(1) = ¢. We suppose that the map I, : (—e,&) x I — M defined by
I'.(s,t) = cs(t) is smooth. For the variational problem of arc length, it is enough to assume that
I'. is piecewise differentiable with respect to the parameter t (cf. [Ma], Chapter VIII). However,
we shall assume the smoothness of I for the sake of simplicity of discussions.

By the assumption the map I satisfies 1,(0,¢) = ¢(t),p = I¢(s,0) and ¢ = I.(s,1). Setting
s =constant for each s € (—¢,¢), the parameterized curve ¢s : I — M defined by cs(t) =
I'.(s,t) is called a s-curve, while the parameterized curve c;(s) = I(s,t) is a t-curve which is a
transversal curve to c. In local coordinates, we set I,(s,t) = (z!(s,t),---,2"(s,t)). We denote

by & = 0c¢;/0s and T = Jcg /0t the tangent vector fields of t-curve and s-curve respectively:

ozt 0 ozt 0
S=2 % a2l o

In particular, the vector field ©(t) along ¢ defined by

o(t) = (88(;'*)(0775) = 5(0, 1)

is called the variational field induced from I,. If I, satisfies ¢5(0) = ¢(0) = pand ¢5(1) = ¢(1) = ¢
for all s € (—¢,¢), then the variational field © is proper, that is, © satisfies @(0) = ©(1) = 0.



56 CHAPTER 4. RUND CONNECTIONS

We are always concerned with the variation I, whose variational field @ is independent of
the tangent vector ¢ at least one point on c¢. Let © = ©O(t) be any vector field along a regular
oriented curve ¢ = ¢(t). Then there exists a variation I, which induces © as its variational field.
In fact, if we take I,(s,t) = exp(sO(t)), then I} : (—e,e) x I — M is a variation of ¢ with

variational field ©.

Lemma 4.1. Let © be any vector field along c. Then © is a variational field of some variation
I, of c. If @ is proper, then O is the variational field induced from a certain proper variation
I..

Let SV and TV be the vertical lifts of S and 7 along the canonical lift ¢, of s-curve cg

respectively:

S =5 () T =% ()

Lemma 4.2. Let I, : (—e,e) x I — M be a variation. Then we have
VeuTV =VuSY (4.36)

along ¢s = (cs(t), ¢s(t))).

Proof. Along the curve ¢; we have

[ 0%z dzd 0zF) [ 0
Vo _ -~ - 7
VsnT" =3 | 950t k&) 5 s <8yi>~

[ 022! oz OxF 0
vV _
VruS' =) | as 2 T &) 5| <ayi>

Then (4.36) is obtained from (4.11). O

and

Let I'. be a proper variation of a regular oriented curve ¢ € I'(p,q). We compute the first
variation of the length functional Fz (cs). Since G(TY,TV) = L(cs(t), ¢s(t))? = Fr(cs)?, we have

d L1 aG(Tv,TY)

T =5 | T e

Furthermore, (4.35) and (4.36) imply

1 0G(TV,TV) 2
171l s 171l

2
1171

G(VeuT", TV) = —G(VuSY,T") (4.37)
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along ¢s. Consequently we have

1 oG(TV,TV) 2 [d

_ a4 oV VY Vv TV
T os ) laf@ T ) meE VT )]’

which gives us

d _ ! 1 d 1% Vv 1% Vv
L F(en) = /D 7 [dtG(S TV = G(SY VT )] dt.

Evaluating s = 0, || 7 ||s=0 = ||¢(¢)|| = 1 derives the following:

Proposition 4.13. (First Variation Formula) Let ¢ : I — M be a regular oriented curve and

I, a proper variation of c. Then

Fr(cs) = — /01 GOV, VeV )dt, (4.38)

a
ds|,_

where @ is the variational field of I.

A regular oriented curve c is said to be a stationary point of the functional Fy, if
(de(Cs)/dS)s:() =0

for any proper variation [,. If a regular oriented curve ¢ : I — M is a geodesic, then c¢ satisfies
(2.3), thus c is a stationary point of Fy, from (2.6).

Conversely we suppose that ¢ is a stationary point of the functional /7. Since the condition

is satisfied for any variational field © along ¢, we take O(t) = p(t)V,¢é for a smooth function ¢
satisfying ¢(0) = ¢(1) = 0 and ¢ > 0 elsewhere. Then, since © is proper and from (4.38), we
have

d ! :
G Fued == [ eI
s 0

s=0

which implies V;¢¥ = 0 on 1.

Proposition 4.14. A reqular oriented curve v in a Finsler manifold (M, L) is a stationary

point of the functional Fy, if and only if v is a geodesic from p to q.

From Proposition 2.2 we have
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Theorem 4.2. Every Fr-minimizing curve vy in (M, L) is a geodesic if v is reqular.

The converse of this theorem is also true.
Theorem 4.3. Every geodesic v in a Finsler manifold (M, L) is locally Fr-minimizing.

This theorem is proved by using the Gauss lemma. We define the geodesic ball B, (r) centered
at © € M of radius r by B, (r) = exp(B(r)) for the tangential ball B, (r) = {X € T, M||| X || < r}.
Let Si(r) = {X € T,M|||X|| = r} be the tangent sphere. Then the set S,(r) = exp(Sy(r)) is

called the geodesic sphere at x of radius r. Then the Gauss lemma is stated as follows.

Lemma 4.3. (The Gauss lemma) The radial geodesic yx is orthogonal to the geodesic sphere
S (r) at xz € M.

For a proof of Theorem 4.3, we need more technical preliminaries, but we omit them here.
For the complete proof, see [Ba-Ch-Sh]| or [Ch-Ch-La).

4.4.2 The Jacobi fields and conjugate points

A variation I’y = I'y(s,t) of a geodesic v is said to be a geodesic variation if each s-curve vy is
also a geodesic. Since each s-curve v, is a geodesic, we have Vr# TV =0.
Let X be a vector field along vs. Then, since [S,7] = 0, we have

VsaVyu XY —VraVen XV = REH(S, )XV (4.39)
along 5. From this equation, we get the so-called the Jacobi equation.

Proposition 4.15. (The Jacobi Equation) Let v be a geodesic and © the variational field of a
geodesic variation I’y of v in a Finsler manifold (M, L). Then © satisfies

V,V:0V + R (9,4)3V = 0. (4.40)

Proof. Since each curve v, is a geodesic, we have V; 7V = 0, and this yields V,V;7" = 0. On
the other hand the symmetric property (4.36) and the equation (4.39) imply

VSHVTHTV - VTHVSHTV + RHH(S, T)TV — VTHVTHSV + RHH(S, T)TV

along 7s. Since §(0,t) = V(¢) and 7(0,t) = ¥, we obtain (4.40). O
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Definition 4.5. Let (M, L) be a Finsler manifold. The differential equation (4.40) is called the
Jacobi equation. A vector field J along a geodesic v satisfying (4.40):

ViV JV + RIH (] 4)4V =0 (4.41)
is called a Jacobi field in (M, L).

By definition the variational field © of a geodesic variation of a geodesic v is a Jacobi
field. Conversely every Jacobi field along a geodesic v is the variational field of some geodesic
variation of . The differential equation (4.41) is linear and of second order, we have 2n linearly
independent solutions. Therefore, along any geodesic -y, the set of Jacobi field is a 2n-dimensional

vector space.

Definition 4.6. Let v € I'(p, q) be a geodesic segment in M. Then ¢ is said to be conjugate
along ~ if there exists a Jacobi field J(5# 0) along v such that J vanishes at p and q.

For X € T),M, we set ¢ = exp, X. For an arbitrary Y € T, M, we shall compute the differential
(exp,)«Y at X:

d
(expp)*Y = % (epr>(X + SY)
s=0

To compute (exp,,)«, we define a geodesic variation I’y of yx by I'y(s,t) = exp,t(X + sY). The
variational field J = OI’,/0s is a Jacobi field along 7x, and we have J(1) = (exp,).Y. The

conjugate points are the image of the singularities by the exponential mapping.

Proposition 4.16. Let yx(t) = exp,(tX) (¢t € I) be the radial geodesic for X € T, M. Then

exp,, s a local diffeomorphism if and only if ¢ = exp, X is not conjugate to p along vx .

4.4.3 The second variational formula and index form

Let v be a geodesic with unit speed. We shall compute the second variation of the length

functional F7,. We shall compute

1o G(VruSY, TV
7 L(%)_/o [a I

d2
ds?

Differentiating this with respect to s, we have

1 0

9GSV, TY) 1 9T 19
171 0s

— G SV 1%
s |7l T gs CVTHSL T+

G(VruSY, TY).
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From (2.2) and (2.4), we get

Tl _ 1
os Tl

G(VruSY, TY).

Furthermore

0

%G(VTHSV, TV) = G(VsuVruSY, TV) + G(VruSY ,VeuT")

= G(VruVenSY + REE(S, TSV, TV) + G(V7uSY,VruSY).

Consequently we have

deL('Ys)
ds?
1 V V2
- [G(vTHvSHsV + REH(S,T)SY, TV) + |WpusV | - SV T ) | g
o T 171l
along 7s. Since V72TV = 0 and ©(0) = O(1) = 0 imply
1
/ (G(VruVgaSY, TV smodt = / [ G(VsrSY, TV)| dt
0 s=0
=G(VeuO" 4" )izt — G(Ver 0,4V )0
we have
d !
S Letn) = [1G@RIT©.9)6Y.4Y) + ViV [P - 670V AV Pl (142
s=0 0

Let 8¥ = G(0Y,5Y)4" be the tangential part of ©V. We also denote by QV the normal part
of OV, that is, O = OV —OY. Then V44" = 0 implies V,0¥ = V,(G(OV,4V)4V) = (V,0V)T
and Vt@K =Vv,0V — Vt9¥- Hence we obtain

IV:0Y |2 = |V:OF|* + |V |? = G(Vi0" ,5")? + | VO |
Then, since G(R"H(%,4)e,8) =0 and C(7, e, ®) = 0 along ~, we have

G(RMH (e, 0)%" 4V) = 0.
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Hence we get

G(Rr"(6,7)6",4") = G(R"(6.,9)61,4").
Consequently we obtain the second variation formula of Lp.

Proposition 4.17. (Second Variation Formula) Let v : I — M be any geodesic with unit speed,

I’ a proper variation of v and © its variation field. Then

d2

1
| prn = [ 6@ ©L 8L 5) + VY| (4.43)

s=0

where @ is the normal part of ©.
The Bianchi identity implies
GRM(0.,7)6Y,4") = —G(R"(61,4)7",6Y)
along v, and since @, is normal to 7, we obtain
G(r (61, 9)e1,5") = —|eY|PK(6Y)

for the flag curvature K. Hence the second variation formula has the form

d2

1
| prtw = [ (VeI - el PR e ar (4.44)

s=0

Proposition 4.18. Let (M, F) be a Finsler manifold with a non-positive flag curvature K.

Then the second variation of any geodesic satisfies

d2

s=0

Proof. The assumption K < 0 induces
Iv:0Y1* — leY|*K(©Y) > o.

Hence (d?Lp(vs)/ds?)s—o > 0.if (dLp(vs)/ds?)s=o = 0, then we have || V0! ||? = 0,50 V;:0} =
0. Then, since V is proper, we have @ = 0, implies that the variational field ©" has the form
OV = 0Y = ¢(t)4V (t) for some function ¢ on each point of v. However, this is a contradiction

to the assumption that © is independent of 4 at least one point on ~. O
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We define the index form on a Finsler manifold (M, F'). Let v be a unit speed geodesic in
(M, F). We set

I(X,)Y) = /O 1[G(RHH (X, YV, 3Y)+ GV XV, v, YY) dt, (4.45)

for normal proper vector fields X,Y along v. The index form [ is a symmetric bi-linear form

on the space of normal proper vector fields. In fact, the Bianchi identity implies
GRINX, )YV A7)+ GRM (1, Y)XY,47) + GRM (Y, X)3V,4") = 0.
Since the last term on the left hand side vanishes, we have
GRM(X,A)YY,4Y) = ~G(RM(3,Y)X" 4Y) =GR (V,4)X 7 4)

along . Thus I is a symmetric bi-linear form: I(X,Y) = I(Y, X).
Since G(RH (X, )YV 4V) = ~G(RHH (X, %)%V, YV) along v, if X and Y are proper, we
have

/ GV XV, v, YY) = / G(V:V: XV YY),

which implies

I(X,)Y)=— /0 1[G(vtthV — REE (X )3V, YV)at. (4.46)

By the definition of I and (2.13), the second variation of Lz of the unit speed geodesic is given
by I(X,X), and it can be thought as the Hessian of the length functional Lr. Thus, if 7 is
minimizing, then I(X,X) > 0 for any proper normal vector field X along ~. The following
is a generalization of the well-known theorem in Riemannian geometry which shows that no

geodesics is minimizing, passing its first conjugate point.

Theorem 4.4. If v € I'(p,q) is a geodesic segment in a Finsler manifold (M, F') such that
has an interior conjugate point to p, then there exists a proper normal vector field X along

such that I(X, X) < 0. In particular, v is not minimizing.
We also consider the completeness of Finsler manifolds.

Definition 4.7. A Finsler manifold (M, F') is said to be geodesically complete if the exponential
mapping exp,, is defined on the whole of T, M for every point x € M.

We denote by E(p,d) the subset of the closure B(p,d) consisting of the points joined by a

minimal geodesic to p. Then, if (M, F') is geodesically complete, the following three conditions
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are mutually equivalent.
(1) E(p,d) is compact,
(2) E(p,d) = B(p,d) for all § > 0,
(3) any ordered two points in M are joined by a minimal geodesic.

We shall introduce another completeness of Finsler manifolds.

Definition 4.8. A sequence {p,,} of points in (M, F) is called a Cauchy sequence, if for any
€ > 0 there exists an integer N such that dp(p;,p;) <e (4,5 > N). Then (M, F) is said to be

metrically complete if any Cauchy sequence in M converges.
The following theorem is a natural generalization in Riemannian geometry.

Theorem 4.5. (Hopf-Rinow Theorem) Let (M, F') be a connected Finsler manifold. Then the

following three conditions are mutually equivalent.
(1) (M, F) is geodesically complete,
(2) (M, F) is metrically complete with respect to the distance dy,

(3) Any bounded closed subset of M is compact.
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Chapter 5

Geometry of conformal Finsler

manifolds

5.1 Conformal class of Finsler metrics

Let M be an n-dimensional smooth connected manifold with a Riemannian metric g. In this
section, a linear connection V is said to be conformal if the parallel transport with respect to V
preserves angles but not the metric g. Thus V is conformal if and only if there exists a one-form
w(g) such that

Vg =2w(g)®g. (5.1)

Let § = €??g denote a conformal deformation of g by any smooth function o € C(M). If V is

also conformal with respect to g, the relation Vg = 2w(g) ® g implies
w(g) = w(g) + do. (5.2)

In the sequel we shall denote by ¢ the conformal class of g, that is, ¢ = {e“glc € C*(M)}.
Denoting by A'(M) the C*°(M)-module of one-forms on M, a Weyl structure on (M,c) is a
map w : ¢ — AL (M) satisfying (5.2). The triplet (M, c,w) is called a Weyl manifold.

Theorem 5.1. [Fo] Let (M, c,w) be a Weyl manifold. Then there exists a unique torsion free
linear connection V satisfying (5.1).

Definition 5.1. The linear connection V is called the Weyl connection of (M, ¢, w).

The form wy := w(g) in (5.1) depends on g € ¢, however the exterior derivative dw, is
independent of the choice of g € c¢. Thus we define W € A%2(M) by W = dwy for any g € c.

65
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Then we say that the Weyl structure w is closed if W = 0. If wy is closed, then we may write
wy = doy for alocal function oy = oy(x) defined on an open subset U C M. Thus, from (5.1),

we have

Vx(e 2V g) = 2{—doy(X) +wy(X)}e 2Vg = 0. (5.3)

Therefore the Weyl connection V is the Levi-Civita connection of a local Riemannian metric
e 2Ugif W =0.

Let L(M) be the frame bundle over M with the structure group GL(n,R), and L = L(M)x,R
the density line bundle over (M, g), where p is the representation of GL(n,R) defined by p :
GL(n,R) 5 gyy — |det gy | € GL(1,R). Then L is a trivial line bundle even if M is orientable.
We can define an inner product ;1, on L by the determinant det g, and any inner product g on
L is written as i = fu, for a positive f € C®(M). If we set f = e*"? for 0 € C*®(M), i is

2no

written as p = "7y = gz for the conformal deformation g = e?7g of g.

By taking the trace of connection forms, the Levi-Civita connection VY of (M, g) induces a
flat connection V™9 on L such that V9 ftg = 0. Since connections on L form an affine space

modeled on A'(M), any connection V¥ on L. may be written in the form
Vi = V7 + By(X)id, (5.4)

where id is the identity morphism of L and 8, € A*(M) is determined by V%, = B4(X)pg-

For a conformal deformation § = €2?¢ of ¢, the corresponding one Bg is given by
Bg = By + ndo. (5.5)

Hence, defining w, € ALY(M) by w(g) = wy := B,/n, we obtain a Weyl structure w on (M, c).
Conversely, any Weyl structure w on (M, c) determines a connection V on L by V& =
\ARUSE nwy ® td for any g € c. Since the curvature of V& is given by ndwg @ id, the Weyl
structure w is closed if and only if the corresponding connection V¥ on L is flat.
Because of V' = m*T'M, the vertical sub-bundle V' is associated with the pull-back 7*L(M)
of the frame bundle L(M) over M. We denote by L := 7*L the pull-back of the density bundle
L over M. We can define an inner product pug on L by

o 0
Ha <ay ay> = det G,
0

where — = — A--- A i denotes the natural local frame field for L.

dy oyt dy"
The Rund connection (H,V) induces a Finsler connection (H, V) on L by the trace of
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connection coefficients, namely,
0 0
R _ m
v(a/axk)H dy - ank aya

where

o H
:gk = <8xk> log\/ det G

By definition (H, VF) is flat in the vertical direction. Then

9 0 o \" 9 0 ) 0
R _ o R o R
(v(a/axk)HMG> <8y’ 8y> = (83:’6) det G — pg <V(8/8xk)H ay’ ay) 7€ <ayyv(a/8xk)}1 ay)

(((z,c)HdetG -2 (Z n";‘k) det G

0.

Hence V¥ is always compatible with the metric pg in the horizontal direction H :

Further the covariant derivative of pug in the vertical direction, i.e.,

J(det G

and Deicke’s theorem [De] shows that VZug = 0 if and only if (M, L) is a Riemannian manifold.

Theorem 5.2. The connection (H, V) is compatible with the metric ug if and only if (M, L)

is a Riemannian manifold.

This theorem is also true for the connection (H, VZ) on L induced from (H, D). We suppose
that VP is compatible wih the metric g in the horizontal direction H, namely, we assume that
(H,VP) satisfies

B —
v(3/3$k)H,uG =0.

By easy computations, this assumption is equivalent to

oxk

S = (8>H1°gm=2 e (5.7)

If (M, L) is a Landsberg space, then this condition is satisfied, but not vise-versa in general.
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Definition 5.2. ([Mo]) A Finsler manifold (M, L) is said to be a weak Landsberg space if
vE =vH

Let dup = VdetGdy' A --- A dy” denotes the volume form on each Riemannian space
(T, M,G;). We may consider du as a section of the dual IE*, namely, the Riemannian den-
sity of (Ty M, G,) (see [La]). If we use the same notation V2 for the induced connection on L*,
the condition (5.7) is equivalent to Vf}Hd,u = 0. Thus (M, L) is weak Landsberg space if and
only if

Lyndp =0 (5.8)

is satisfied.

Remark 5.1. In a complex Finsler manifold there exists a non-linear connection H satisfying
(5.8) (see [Ha-Ai]).

Theorem 5.3. A Finsler manifold is a weak Landsberg space if and only if its the Berwald
non-linear connection H preserves the density du. In o weak Landsberg space, the volume of any

compact subset in each fibre is preserved by the Berwald non-linear connection H.

Since (H, D) satisfies the metrical condition (3.4), the indicatrix I, defined by L is preserved
by the Berwald non-linear connection H. Hence, in a weak Landsberg space, the volume of

indicatrix is constant. Such a space plays an important role in [Ba-Ch].

5.2 Finsler-Weyl connections and Wagner connections

In this section we shall extend the notion of Weyl structures to the category of Finsler geometry.
Suppose that the Berwald connection (H, D) of (M, L) is conformal, namely, we suppose
that (H, D) satisfies
DxuG =2a(X)G,

for any vector field X on M and for some o € A(M). Then, since the deflection of (H, D)
vanishes, i.e., Dxu& = 0, the identity (3.1) concludes Lx#L = «(X)L. Hence (3.4) implies
a = 0, that is, (M, L) is a Landsberg space. Due to [Ma2] and [Ki], a Randers metric L is a
Landsberg metric if and only if L is a Berwald metric. These facts are also true if we use the
the Rund connection (H,V) in stead of (H, D)

Proposition 5.1. If the Berwald connection (H, D) or the Rund connection (H, V) is conformal,
then (M, L) is a Landsberg space. In particular, for any Randers space (M, L), if its Berwald

connection (H, D) or its Rund connection (H,V) is conformal, then (M, L) is a Berwald space.
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We shall show that for any Finsler manifold (M, L) there exists a conformal Finsler connec-
tion (H, D).

Proposition 5.2. Let (M, L) be a Finsler manifold. For any o € A'(M) there exists a unique
non-linear connection H and a Finsler connection (H,D) satisfying the following conditions for
any vector fields X, Y on M :

(1) (H,D) is conformal, i.e.,
DxG = 2a(X)G. (5.9)

(2) (H,D) is symmetric, i.e.,
DynYV —Dyn XV — [X, Y]V = 0. (5.10)
(3) The deflection (H,D) vanishes, i.e.,

Dyné = 0. (5.11)

Let NV} be the coefficient of H, i.e.,
a\"* o )
(o) =0~ gy
and let IC;k be the coefficients of (#H,D):
0 ;0
D(a/axk)ﬂaiyj = Z K]k@

If we put o = 3 agda®, the connection coefficients IC;,C of (H,D) is given by

H H H
0 0
() 6+ (a5) e~ (5r)

where we put o/ = Y Gy, and the coefficients N lz are given by

Ni==> N™'G"Crom + Z{zik}yl - <Z O‘lyl) 3, — ary’ + (Z leyl) @

— a;6}, — apdl + o' Gy, (5.12)

jk _ ZGW

with

>N l:Z{k } Yy +2<Zazy>ym—L20¢m
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and Criy = (0Gx/0y™) /2.

In the case of @ = 0, the Finsler connection (H,D) in Proposition 5.2 is just the Rund
connection (H, V) of (M, L). If o is closed, the assumption (5.9) is written as Dy (e*VG) = 0
for some oy € C*°(U). Hence (H,D) is the Rund connection of a local Finsler metric eV L.

From [Br] two Finsler metrics L and L are said to be conformally equivalent if there exists
a smooth function o € C°(M) such that L = ¢° L. We denote by C the conformal equivalence
class of Finsler metrics on M. The pair (M,C) is called a conformal Finsler manifold. Any
conformal deformation L — L = ¢° L induces the conformal deformation G — G = €2°G of the
metric on V. Suppose that the Finsler connection (H,D) obtained by Proposition 5.2 is also
conformal with respect to G = €2°G. Then DynG = 26(X)G implies & = o + do. Thus it is
reasonable to call amap a: C > L — a(L) € AY(M) a Finsler-Weyl structure if o satisfies

a(L) = a(L) + do. (5.13)

We call the triplet (M,C, «) a Finsler-Weyl manifold.

Definition 5.3. [Ail] The connection (H, D) is called the Finsler-Weyl connection of (M,C, «).

Remark 5.2. In [Ko] a Finsler-Weyl structure is also defined by assuming that A is conformal

with respect to the function L, i.e.,
LynL =a(X)L, (5.14)

for any vector field X on M. Using (3.1) and (5.11), we can easily show that (5.9) implies (5.13).

Thus our notion of Finsler-Weyl structure is stronger than that in [Ko].

Denoting by oz, = Y ajda’ the one-form ay, := a(L), (5.9) is written as

837’“] a Z'N}i 8le - Z Gljlcék - Z Gillcé'k = 204G, (5.15)

and the assumption (5.10) and (5.11) are described as IC;k, = 2]‘ and N} = Yo7 IC;k respectively.

Since G;; are homogeneous of degree zero with respect to the variables yt -,y (5.9) implies
el 1 0G,: — —
- SR S 6 - Yo~ 510

where we put Ny, = N} + axy! and lC;-k = Kjj, + agdj. These functions define a non-linear
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connection H and a Finsler connection (#, D) which is semi-symmetric, i.e.,

DyxYV —DyrX" — [X, Y]V = ar(X)YV —ar(V)X". (5.17)

7G =0, (5.18)
and

D,%&=0. (5.19)

Definition 5.4. ([Ha-Ic]) The Finsler connection (H,D) is called the Wagner connection of
(M,C,a).

Therefore the Finsler-Weyl connection (#, D) of (M, C, ) determines the Wagner connection

(H,D) and vise-versa.

Remark 5.3. A Finsler manifold (M, L) is called a Wagner space if its Wagner connection
(H,D) is induced from a linear connection V on TM, i.e., Dy YV = (VxY)V. If (M,L) is a

Wagner space and «y, is closed, then (M, L) is locally conformal to a Berwald space [Ha-Ic].
5.3 Averaged Riemannian metrics and connections
Let I, be the indicatrix at * € M with the volume form dy; defined by (3.26). The volume

v (x) of I is defined by
vp(z) = / dug.
Iy

The averaged Riemannian metric of L is a Riemannian metric g in M defined by (3.29):

1

vr(z) Ji,

g(X,Y) = G(XV,YVdu; (5.20)

for any vector fields X,Y on M.

Let L = €° L be a conformal deformation of a Finsler metric L. The indicatrix .796 at r e M

with respect to L is given by ZK = e 71, and the volume form du; on ZK is given by
dpy = 2:(—1)’;1 Vdet Guwidw! A+ Adw' A--- A duw™

at w= (w', -+ ,w") € I,, where G = ¢2?G is the metric on V defined by L. For the diffeomor-
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phism ¢ : I, 5 (z,y) — ¢Y(x,y) = (z,e %y) € I, we obtain

Y (dpg) = Z(—l)i_le"”\/det Got(e ™y )dyt A--- A cfyi A ANdy"
= Z(—l)i_lvdetGyi dyt A+ A (fyi A Ady™

=dpur,

which implies

@) = [ dup= [ vt = [ s = (o)

Thus, in the sequel we use the notation v(z) instead of vz (z) for the volume of the indicatrix

I, of any L € C. The averaged Riemannian metric g of Lis given by

! - G(XY, YY)z
(z) Ji,
1
(x)

620

:U(x)/l G(XV,YVYdus

=27 g(X,Y).

g(Xv Y) =

<

Il
>4
—

i e (G o) (XY, YY) (¢ dps)

Hence g is given by the conformal deformation
~ _ 20
g=1¢€"“g (5.21)

of the averaged Riemannian metric g of L.

Theorem 5.4. Let C be a conformal class of Finsler metrics on M, and let G be the metric on
V' determined by any L € C. Then, by averaging each metric G by (3.29), the class C determines

a conformal class ¢ of Riemannian metrics on M.

C>L conf. LecC

av O av

=] geEc

conf.

Let (H,D) be the Wagner connection of a Finsler-Weyl manifold (M,C, «). Then the aver-
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aged connection of (#,D) is a linear connection V on TM defined by

9(VxY,2Z) = GD Y, 2" )dus (5.22)

U() I,

for any vector fields X,Y and Z on M, where g is the averaged Riemannian metric of L.

The properties (5.18) and (5.19) of (H, D) lead us to
Lzl =0, (5.23)

Hence the parallel displacement with respect to Wagner non-linear connection H preserves every

indicatrix, i.e.,

where ¢; and H denote the flows generated by X and its horizontal lift XH respectively.
¥ Pt

X < /I r fduz) - /I X+ L (5.24)

Therefore we have

for any f € C>(M).

Now we suppose that Wagner non-linear connection H preserves the density dpu :
L mdp = 0. (5.25)

This assumption and £ 7€ = 0 lead us to £, 5dur = 0, and thus (5.24) implies that the volume
function v(z) is constant. If we normalize C so that v(z) = 1, then (5.18) and (5.25) lead us to

(Vxg)(Y, )

=Xg(Y,2) - g(VxY,Z) — g(Y,Vx Z)

:X< Gy, z") dm) / GDywY", 2 )dpr — | GV, DywZ" )dus
I, I

YV, Z2V)dpr + | GV, ZY) Loz (dur)
Iz I

0,
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which shows that V is compatible with g. Furthermore, from (5.17),

g(VxY -VyX - [X,Y],Z) = i GDywYV —DyrX" - [X, Y]V, ZV)du,

= [ Glar(X)YV —a,(WMXY - [X,Y]V, Z2V)du;
I

= g(a(X)Y —ar(Y)X, 2),

leads us to
VxY - VyX - [X,Y] = ar(X)Y —ar(Y)X. (5.26)

Hence V is semi-symmetric, that is, V is the so-called Lyra connection of (M, ¢). Furthermore
the connection V defined by
VxY =VxY —ap(X)Y (5.27)

is symmetric, and V satisfies
Vxg=2ar(X)g. (5.28)

Consequently the Finsler-Weyl structure « of (M, C) is a Weyl structure of (M, c), and V is the
Weyl connection of (M, ¢, «).

Theorem 5.5. Let (M,C,«) be a Finsler-Weyl manifold and let (M,c,c) be the Weyl man-
ifold determined by (M,C, ). Suppose that the Wagner non-linear connection H of (M,C, )
preserves the density du. Then the averaged connection N of the Wagner connection (H, D) is
the Lyra connection of (M,c,a) and the deformed connection V defined by (5.27) is the Weyl

connection of (M, ¢, ).

5.4 Conformal flatness of Finsler metrics

A Finsler manifold (M, L) is said to be flat or locally Minkowski if there exists a coordinate
system {U, (z%)}1<i<n on M such that L is independent of z € M.

Definition 5.5. A Finsler manifold (M, L) is said to be conformally flat if, for each point € M,
there exists a neighborhood U of z and a function oy on U such that Ly = e?V@ L(z, y) is a

flat Finsler metric in U.

Let (H,D) be the Finsler-Weyl connection of (M,C,«) and let wj- = ElC;k dz* be the

connections form of (#, D). The curvature forms !2; = dw§ + Y wiA wé- are given by

00 =" Riy dak Adat +3 Pl dat A6
k<l
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where 0! = dy' + > N} da*. The sets {dx!,--- ,d2"} and {6',---,0"} form the dual basis for

H* and V* respectively. The curvature tensors Ré-kl and P! k1 are given by

ékl = Z <3axl>H ’Cj'k: - Z <6k> l + E’C ZK Jk’ (5.29)

and )

ki = R (5.30)

respectively. We say that (H, D) is flat if [Zi =

Suppose that the Finsler-Weyl connection (7—[ D) is closed and flat. Then P! i =0 shows
that the coefficients IC;-k given by (5.12) are independent of the fiber coordinates y',--- ,y™.
Therefore (H, D) is induced from a linear connection V on TM, that is, DynY" = (VxY)V.
Then the Wagner connection (H, D) is also induced from a linear connection V on T'M. Theorem

5.5 shows that V is the Lyra connection and V the Weyl connection of (M, ¢, ) :
K ={ %} — 0k — awd} + o'gjn,

where o’ = 3" g™, for the inverse (') of g € ¢, and { jik} are Christoffel symbols of g. Since
V is also flat and V is symmetric, there exists a coordinate system {U, (z*)}1<;<, on M such
that K%, and N} = >~ K y* vanish on each U. Thus

8 n
Z{mk} 8 klog\/det = 26 klog(detg)l/

and the equation (5.15) is written as

3 (> gi5)

o~ =0, ou=—log(det g)/m. (5.31)

Thus eV L is independent of = € M.

Theorem 5.6. The conformal class C admits a conformally flat Finsler metric if and only if
its Finsler-Weyl connection (H,D) is closed and flat.

5.5 Conformally flat Randers metrics

From the discussion in the previous section, if a Finsler metric L is conformally flat, then the
averaged Riemannian metric g is also conformally flat. Conversely in this section, we shall show

that there exists a conformally flat Finsler metric if M is a hyperbolic space.
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A vector field E on a Riemannian manifold (M, g) is said to be semi-parallel if
V4E =p(X +eB(X)E) (5.32)

for a constant p and e = 41, where (3 is the dual of E with respect g, that is, 5(X) = g(X, E).

The integrability condition V4 VY, E — VY, V4 E — VfX’Y]E = RI(X,Y) for the existence of E

satisfying (5.32) is given by
RI(X,Y)E = —ep” [9(X, E)Y — g(Y,E)X].

Hence the sectional curvature K (X A E) of the 2-plane X A E is given by

I(X,EYE, X
g(R(>)7 ) _5[)2-

K(XANE) = =
X171 X[* = (X, E)?

Thus, if (M, g) is of constant curvature K (X AY) = gp?, the integrability condition is satisfied

thus there exists a local semi-parallel vector field around every point of M.

Since VY is compatible with g, this assumption (5.32) is equivalent to
(V%B) (Y) = plg(X.Y) +B(X)B(Y)].
Using this, we know that ( is closed. Indeed,

Y
Y

AX))
A(X))

B
B

[(X.Y])
VY - VIX)

_( —
_( —

(
(

Lemma 5.1. Let E be a semi-parallel vector field on a Riemannian manifold (M, g). Then its

dual B with respect to g is closed.

The condition (5.32) implies V% || E||* = 2p8(X)(1+¢ || E||*). Thus if E has constant length,
E must be a unit vector field and e = —1. Thus we replace the assumption (5.32) by

VI E =p[X — B(X)E]. (5.33)
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Then we define a linear connection V by

VxY =V%Y 4+ plg(X,Y)E — B(Y)X]. (5.34)
Then, by direct computation, we can show that V is compatible with g, i.e., Vg = 0 and

VxY = VyX — [X,Y] = p[B(X)Y - B(Y)X].

Lemma 5.2. Let E be a vector unit vector field satisfying (5.34) on a Riemannian manifold
(M, g), and let B be the dual of E with respect to g. The linear connection V defined by (5.34)

is a Lyra connection in (M, g).

Furthermore

VxE=V%E +plg(X,E)E - B(E)X]
— V%E + plB(X)E — X]
= p[X — B(X)E] + plB(X)E — X]
= 0.
Since V is compatible with g, this means that the one-form 3 is also parallel with respect to V,
i.e., ﬁxﬁ =0.

Proposition 5.3. Let E be a semi-parallel vector field satisfying (5.33), and let B be the dual
of E with respect to g. Then the Randers metric

LX) =g(X,X)+kB(X) (0<k<1) (5.35)

is preserved by the parallel translation with respect to ¥V, that is, (M, L) is a Wagner space.

By direct calculations, the curvature R of the Lyra connection V is computed as
R(X,Y)Z = RI(X,Y)Z + p? Y, 2)X —g(X,2)Y]. (5.36)

Lemma 5.3. If (M, g) is of negative curvature K = —p?, then V is flat, i.e., R = 0.

Furthermore the connection V defined by
VXY = VY — pB(X)Y = VLY + plg(X,Y)E - B(X)Y — BV)X]  (5.37)

is the Weyl connection with the Lee form w, = p3, and since f3 is closed, the curvature R of
V coincides with R. Especially, if (M, g) is of negative curvature K = —p?, then the Weyl

connection V is also flat. Hence the Randers metric L given by (5.35) is conformally flat.
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Example 5.1. ([Ai3]) Let H = {(z!,--- ,2") € R*|2™ > 0} be the upper half plane with the

Poincaré metric

1 . 4
gp = 7@“)2 Z dx' ® dx'.

The Christoffel symbols { jik} are given by

. 1 i i ]
{jzk} — _E (5]71512 + 5kn5; - 5]“%1) ’

and (H, gp) is negative constant curvature K = —1. The vector field
0
E=2"—
ox™

1
is a unit semi-parallel vector filed on (H, gp). For the dual 8 = —dz" = dlogz™ of E, we define
x

L(X) = Vgp(X,X) + kB(X) = xin, /> (X0)2 + kf—: (0 <k<1). (5.38)

This Randers metric on H is conformally flat.
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