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Preface

The conformal theory in Finsler geometry has been discussed by many author and many results

have been obtained. M. Hashiguchi ([Ha]) treated the conformal theory of Finsler metrics and

obtained respective conditions under which a Finsler space is conformal to a Berwald space

and to a locally Minkowskian space. M. Hashiguchi and Y. Ichijyō ([Ha-Ic]) treated conformal

transformations of generalized Berwald space, especially Wagner space.

T. Aikou ([Ai1], [Ai2]) has introduced the notion of locally conformal Berwald manifold,

which is also called a Wagner manifold, and investigated the class of Finsler manifolds which

are locally conformal to a Berwald manifold using the so-called average Riemannian metric and

averaged connection defined in [Ma-Ra-Tr-Ze] and [To-Et], respectively.

The purpose of this thesis is to study the conformal theory in Finsler geometry using the

Finsler-Weyl structure which is a natural extension of Weyl structures in Riemannian geometry.

In the last chapter we shall characterize conformal flatness of Finsler metrics and Randers

metrics.

Chapter 1 is about the preliminaries. First we shall explain Ehresmann connections and

non-linear connections on tangent bundles, then we shall introduce a connection usually defined

to be a covariant derivation which satisfies the Leibniz rule. In the last section we will discuss

conformal classes, Weyl connections and Lyra connections.

Chapter 2 discusses some basic concepts of Finsler manifolds, such as Minkowski norms and

Finsler metrics. There are many examples of Finsler manifolds, such as smooth manifold with

Riemannian metrics and smooth manifold with Randers metrics, where a Randers metric is a

typical non-Riemannian Finsler metric.

Chapter 3 discusses Berwald connections on Finsler manifolds. By a clever observation of Z.

I. Szabó , if a Finsler manifold is a Berwald manifold, then its Berwald connection is induced

from the Levi-Civita connection on a smooth manifold with a Riemannian metric, and such

a Riemannian metric is given by the so-called averaged Riemannian metric obtained from the

given Finsler function [Ma-Ra-Tr-Ze]. Landsberg manifolds also form a special class of Finsler

manifolds, which includes Berwalds manifolds. Following [To-Et], we shall define the averaged
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connection obtained from the Berwald connection.

Chapter 4 introduces another Finsler connection which satisfies the so-called almost G-

compatibility, which is called the Rund connection. Curvature and torsion of Rund connection

is also defined in the next section. We list up some identities concerning curvature and torsion

as well.

Chapter 5 investigates geometry of conformal Finsler manifolds. We shall extend the notion

of Weyl structures to the category of Finsler geometry, specifically the Finsler-Weyl connec-

tion and Wagner connection in Riemannian geometry. In the last section we shall discuss the

conformal flatness of Finsler metrics and conformal flatness of Randers metrics.
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Chapter 1

Connections for tangent bundle

1.1 Ehresmann connections in tangent bundles

Let π : TM −→ M be the tangent bundle over a smooth manifold M of dim M = n and

dπ : TTM −→ TM its derivative . Let y ∈ TxM be a tangent vector at x ∈ M , where

TxM = π−1(x) is the tangent space at x ∈M . Then the pair v = (x, y) denotes a point in TM .

We denote by T̃M the pull-back of tangent bundle TM by π : TM −→M :

T̃M = {(v, y) ∈ TM × TM |y ∈ Tπ(v)M} =
∐

v∈TM
Tπ(v)M.

The following diagram is commutative.

T̃M TM

MTM

-

-
? ?

π

π̃

π�

The fiber (T̃M)v over v ∈ TM is isomorphic to the fiber Tπ(v)M over π(v).

A tangent vector Zv ∈ TvTM at v ∈ TM is said to be vertical if dπv(Zv) = 0 is satisfied.

Any integral curve of vertical vector fields lies entirely in the fiber Tπ(v)M . We denote by Vv

the tangent space of all vertical tangent vector at v ∈ TM which is identified with the tangent

space Tv(Tπ(v)M) at v in the fiber Tπ(v)M . Since π is a submersion, the tangent space TvTM

at v ∈ TM is mapped onto the tangent space Tπ(v)M at π(v) ∈M by the derivative dπv:

Vv = Tv(Tπ(v)M) = ker{dπv : TvTM −→ Tπ(v)M}.
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10 CHAPTER 1. CONNECTIONS FOR TANGENT BUNDLE

Then we define a space V by

V
def
=

∐
v∈TM

Vv =
∐

v∈TM
Tv(Tπ(v)M) = ker{d̃π : TTM −→ T̃M}

and a map p : V → TM by p(Vv) = v. Then p : V → TM has a bundle structure over TM of

rank(V )=n. The bundle V is called the vertical sub-bundle of TTM . The bundle V is always

integrable, that is, the space of sections of V is a Lie algebra under the usual Lie bracket of

tangent bundle. Since the quotient bundle TTM/V is isomorphic to the pull-back bundle T̃M,

we obtain the following short exact sequence of tangent bundle over TM :

O V TTM T̃M O,- - - -ι d̃π
(1.1)

where ι : V ↪→ TTM is the inclusion and d̃π = (π, dπ), which implies the natural identification

TTM ∼= V ⊕ T̃M.

Since any point (π(v), Z) ∈ Tπ(v)M is naturally identified with the velocity vector

dc

dt

∣∣∣∣
t=0

∈ Tv(Tπ(v)M)

of a curve c(t) = v + (π(v), tZ) in the fiber Tπ(v)M. Therefore the induced bundle T̃M is

isomorphic to the sub-bundle V :

T̃M ∼= V (1.2)

We shall denote by m• : R+ × TM −→ TM the natural action of the multiplier group R+

by scalar multiplication: mλ(v) = λ · v for any v ∈ TM and λ ∈ R+. This action m of R+ on

TM induces a vector field E along the fibers by

Ev(f) :=
d

dλ

∣∣∣∣
λ=0

f(eλ · v) (1.3)

for all f ∈ C∞(TM), that is, Ev = (v, v). This field E is called the Liouville vector field in TM ,

or as a section of V , called the tautological section of V .

Since every subspace of TvTM complementary to Vv is mapped isomorphically onto the

tangent space Tπ(v)M, there is no canonical subspace complementary to Vv. Thus we shall fix a

selection of complementary subspace at each point v ∈ TM .

Definition 1.1. Let π : TM −→M be the tangent bundle over M . An Ehresmann connection

on π is a collection H = {Hv|v ∈ TM} of subspace Hv ⊂ TvTM such that
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1. The assignment TM 3 v 7−→ Hv ⊂ TvTM depends on v ∈ TM smoothly,

2. dπv : Hv −→ Tπ(v)M is a linear isomorphism for all v ∈ TM and Hv is complementary to

Vv:

TvTM = Vv ⊕Hv. (1.4)

The subspace Hv is called a horizontal subspace at v ∈ TM .

An alternative method to specify an Ehresmann connection is to give a splitting θ : TTM −→
V of the exact sequence (1.1)

O V TTM T̃M O,- -
� - -

ι

θ

d̃π

namely θ : TTM −→ V is a bundle morphism satisfying θ ◦ ι = IdV for the identity morphism

IdV of V . Therefore θ is a projection from TTM onto V . We set

Hv
def
= ker(θv) (1.5)

at each point v ∈ TM . Then TvTM/ker(θv) ∼= im(θv) = Vv. Therefore we obtain the splitting

(1.4). Defining

H
def
=

∐
v∈TM

Hv, (1.6)

we obtain a bundle p : H → TM by p(Hv) = v, which is also isomorphic to the induced bundle

T̃M. Then we have the direct-sum decomposition

TTM = V ⊕H (1.7)

Definition 1.2. The bundle H = ker(θ) is called the horizontal sub-bundle defined by θ. A

section of H is called a horizontal vector field on TM

An Ehresmann connection for TM is a subbundle H ⊂ TTM complementary to V .

Definition 1.3. An Ehresmann connection θ of a tangent bundle π : TM 7→ M is called a

non-linear connection for TM if it satisfies the following conditions:

(N-1) The distribution H : TM 3 v 7−→ Hv ⊂ TvTM is smooth on TM \{0M} and is continuous

on the whole of TM , where 0M is the zero section of TM .

(N-2) The distribution H is invariant under the action m of R+ on TM , i.e.,

dmλ(Hv) = Hmλ(v) (1.8)
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for any λ ∈ R+ and v = (x, y) ∈ TM.

Remark 1.1. If H is smooth on the whole of TM , then it is called linear.

Usually an Ehresmann connection θ of a tangent bundle is assumed to be smooth on the

whole total space TM . However, we assume the smoothness of θ only on the outside of the

zero-section for application to Finsler geometry.

Let θ be a non-linear connection for TM . A vector field X in M is parallel along a regular

curve c : [a, b]→M with respect to θ if it satisfies the ordinary differential equation

(X ◦ c)∗θ = 0, (1.9)

or, equivalently, its velocity vector field (X ◦ c)′ is always horizontal, i.e., (X ◦ c)′(t) ∈ H(X◦c)(t)

for all t ∈ [a, b]. Equation (1.9) has a unique solution Xv for each initial value v ∈ Tc(a)M, on

which it depends smoothly. The parallel transport Pc(t) : Tc(a)M → Tc(t)M defined by

Pc(t)(v) = Xv(t) (1.10)

has the homogeneity property

Pc(t)(λ · v) = λ · Pc(t)(v) (1.11)

for any v ∈ Tc(a)M and λ ∈ R+, where we write λ · v := mλ(v) for simplicity.

Proposition 1.1. An Ehresmann connection θ is a linear connection if and only if the parallel

translation Pc along any curve c = c(t) in M is a linear isomorphism between the fibers.

1.2 Connections associated with non-linear connection

Let Ak be the space of smooth k-form, in particular A0 is the space of smooth function, Γ (F )

be the space of smooth sections of a vector bundle F and Ak(F ) is the space of smooth k-forms

with values in F . Then A0(F ) = Γ (F ).

If a non-linear connection θ is specified in TM , then there exists a partial connection δ :

Γ (V ) → Γ (V ⊗ H∗) along H = ker(θ) in the bundle V , where H∗ is the dual bundle of

H. Moreover, any partial connection δ can be extended to a connection D : Γ (V ) → Γ (V ⊗
T ∗TM) = A1(V ) so that the following diagram is commutative ([Ba-Bo]):
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Γ (V ) Γ (V ⊗ T ∗TM)

Γ (V ⊗H∗)

@
@
@
@
@@R ?

-

δ

D

1⊗p
�

where p : T ∗TM → H∗ is the natural projection and T ∗TM is the dual bundle of TTM .

Suppose that a non-linear connection θ is given in TM . Since we do not assume the differen-

tiability of θ at the zero-section, the parallel translation Pc along any curve c in M is compatible

only with scalar multiplication. Therefore we cannot define a connection ∇ on TM from any

non-linear connection θ in general. However, we shall show that any θ induces a connection D

on the vertical subbundle V as the extension of a partial connection δ.

A connection in the bundle V is usually defined to be a covariant derivation in V , i.e., as a

homomorphism D : Γ (V )→ A1(V ) satisfying the Leibniz rule. We shall introduce a connection

D associated with a non-linear connection θ.

Since the vertical sub-bundle V is isomorphic to the induced bundle T̃M , any vector field

X in M is naturally lifted to a section XV ∈ Γ (V ). The section XV is defined as a vector

field which is tangent to the curve c(t) = (x, y + tX(x)) in the fiber TxM at t = 0. The

map TxM 3 X(x) 7−→ XV (v) ∈ Vv is an isomorphism. Thus the vector field XV is uniquely

determined by X. So the vector field XV is called the vertical lift of X. In the sequel we use

the superscript V for the vertical lifts of vector fields on M .

On the other hand, for any vector field X in M , there exists a unique section XH of H such

that dπv(X
H) = Xπ(v) at any point v ∈ TM . The vector field XH on the total space TM is

called the horizontal lift of X. In the sequel we use the superscript H for the horizontal lifts of

vector fields on M

In this thesis we use extensively the coordinate system {π−1(U), (xi, yi)1≤i≤n} in TM induced

from a coordinate system {U, (xi)}1≤i≤n in M , where y1, · · · , yn are the fibre coordinates in each

TxM, x ∈ U. Then the vertical lift XV of X =
∑
Xi(∂/∂xi) is given by

XV =
∑

Xi ∂

∂yi
, (1.12)

and the horizontal lift XH of X is given by

XH =
∑

Xi

(
∂

∂xi
−
∑

N l
i

∂

∂yl

)
, (1.13)

for some functions N i
j defined in π−1(U). These local function N i

j are called the coefficients of
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H. The coefficients N i
j are smooth away from the zero-section. The assumption (N-2) means

that the coefficients N i
j are homogeneous of degree one with respect to the variables y1, · · · , yn.

Thus, by Euler’s theorem, ∑ ∂N i
j

∂yl
yl = N i

j . (1.14)

The Liouville vector field is given by

E =
∑

yl
∂

∂yl
. (1.15)

From the homogeneity condition (N-2), the coefficientsN i
j are linear in the variables y1, · · · , yn

if H is linear. Thus, if H is linear, the coefficients N i
j are written as

N i
k =

∑
yjΓ ijk,

where Γ ijk = Γ ijk(x) are coefficients of affine connection in TM .

Since any vector field Y on M is a smooth map Y : M → TM such that π ◦ Y = id, its

derivative dYx : TxM → TY (x)TM satisfies

dπ

(
dY

(
dc

dt

)
−
(
dc

dt

)H)
= 0

for any reguler curve c in M . Then the equation

dY

(
dc

dt

)
= L(dc/dt)HY V +

(
dc

dt

)H
holds, where LXH denotes the Lie derivative by XH . Since H = ker(θ), we obtain

(Y ◦ c)∗θ
(
d

dt

)
= θ

(
L(dc/dt)HY V +

(
dc

dt

)H)
= θ(L(dc/dt)HY V ),

and Y is parallel with respect to θ if and only if

θ(LXHY V ) = 0

for all X ∈ Γ (TM). Thus it is natural to define D : Γ (V )→ Γ (V ⊗H∗) by

DXHY V := θ(LXHY V ) = [XH , Y V ]. (1.16)
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Let {U} be an open cover of M . A vector bundle is said to be relatively flat if the transition

maps GUV of V depend only on base point x ∈M . The family GUV is given by GUV = π∗gUV

where {gUV } are transition maps. Since the vertical sub-bundle V is relatively flat, we can

define D so that D is flat in the vertical direction, i.e.,

DXV Y V = 0. (1.17)

Definition 1.4. The connection D : Γ (V ) → Γ (V ⊗ T ∗TM) := A1(V ) defined by (1.16) and

(1.17) is called the canonical connection on V associated with the given non-linear connection

θ.

From (1.15) and (1.17), we have DXV E = XV , and the homogeneity condition (1.8) implies

DXHE = LXHE = 0. Therefore the given non-linear connection θ is recovered by D.

Proposition 1.2. The canonical connection D associated with θ satisfies

DE = θ (1.18)

for the tautological section E of V .

1.3 Levi-Civita connection of Riemannian manifolds

A Riemannian metric g on a smooth manifold M is a smooth assignment g : M 3 x 7→ gx, of an

inner product gx : TxM × TxM → R on TxM . Any Riemannian metric g induces a Riemannian

metric g̃ on V by defining

g̃(XV , Y V ) = g(X,Y ). (1.19)

Definition 1.5. A linear connection ∇ is said to be metrical if its parallel transport Pc : TM →
TM with respect to ∇ along any curve c = c(t) in M preserves the metric g̃.

Let H be the linear Ehresmann connection defined by ∇. Let X be a vector field in M ,

and let {ϕt} be the one-parameter group of local transformations generated by X. Denoting by

{ϕHt } the horizontal lift of {ϕt} with respect to ∇, we obtain

ϕH∗t g̃ = g̃

or equivalently

LXH g̃ = 0
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where XH is the horizontal lift of X with respect to ∇. The Lie derivative LXH g̃ is given by

(LXH g̃)(Y V , ZV ) = XH g̃(Y V , ZV )− g̃(LXHY V , ZV )− g̃(Y V ,LXHZV )

= XH g̃(Y V , ZV )− g̃((∇XY )V , ZV )− g̃(Y V , (∇XZ)V )

= Xg(Y, Z)− g(∇XY,Z)− g(Y,∇XZ)

:= (∇Xg)(Y, Z).

Then we have

Proposition 1.3. In a Riemannian manifold (M, g) there exists a unique linear connection ∇g

of TM such that

(1) ∇g is metrical:

∇gg = 0 (1.20)

(2) ∇g is torsion free:

∇gXY −∇
g
YX − [X,Y ] = 0 (1.21)

for all X,Y ∈ Γ (TM).

Definition 1.6. The linear connection ∇g is called the Levi-Civita connection of (M, g).

We suppose that the curvature R∇
g

= ∇g ◦ ∇g of the Levi-Civita connection ∇g vanishes

identically. Then R∇
g

= 0 is an integrability condition for the system of differential equations

dA = −ωgA,

where ωg is the connection form of ∇g with respect to the natural frame field

{
∂

∂x1
, · · · , ∂

∂xn

}
on U and A = (Aij) is a GL(n,R)-valued smooth function on U . Since ∇g is torsion-free, we

have ωg ∧ dx = 0 and
∂Aij
∂xk

=
∂Aik
∂xj

in local coordinates. Therefore there exist some local functions f i(x1, · · · , xn) such that Aij =

∂f i

∂xj
. Then, if we take a change of local coordinate as xi = f i(x1, · · · , xn), the connection form

ωg of R∇
g

with respect to (x, y) vanishes on U . Hence the components gij of g with respect

to

{
∂

∂x1
, · · · , ∂

∂xn

}
are constans. Since (gij) is a positive-definite matrix, we may assume that

gij = δij in such a local coordinate system (x1, · · · , xn), namely (M, g) is locally Euclidean.

Theorem 1.1. The Levi-Civita connections ∇g is flat if and only if (M, g) is locally Euclidean.
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1.4 Conformal class, Weyl connections and Lyra connections

Let ∇ be a linear connection on TM of a Riemannian manifold (M, g). We suppose that parallel

translation Pc along any curve c = c(t) in M is always a conformal map between tangent spaces,

namely, Pc preserves the angle of two vector fields on M .

Let H be the linear Ehresmann connection determined by the given ∇, and let g̃ be the

metric on V induced from the given g. Then the assumption above means that the induced

metric g̃ on V is preserved up to a conformal factor by the parallel translations with respect

to H. For any vector field X on M and the one parameter group ϕt of local transformations

generated by X, this assumption is given by

ϕHt
∗
g̃ = exp

(
2

∫
ϕt

wg

)
g̃ (1.22)

for some one-form wg ∈ A1(M) := Γ (T ∗M), where ϕHt
∗

is the horizontal lift of ϕt with respect

to H. Thus the Lie derivative LXH g̃ is given by

LXH g̃ = 2wg(X)g̃, (1.23)

where the horizontal lift XH of X ∈ Γ (TM) is defined with respect to H.

We have

LXHY V = (∇XY )V (1.24)

and this implies

(LXH g̃)(Y V , ZV ) = (∇Xg)(Y,Z)

for all X,Y ∈ Γ (TM). Consequently the assumption (1.23) can be written as

∇g = 2wg ⊗ g (1.25)

Two Riemannian metrics g and g on M are said to be conformally equivalent if there exists

a smooth function σ on M such that g = e2σ(x)g. This definition induces an equivalence relation

on Riemannian metrics on M and the equivalence class of g is called the conformal class of g

and denoted by C:
C =

{
e2σ(x)g

∣∣∣σ ∈ A0 := C∞(M)
}
.

For any metric g = e2σ(x)g in the class C, we have

∇g = 2e2σ(x)(dσ + wg)⊗ g = 2(dσ + wg)g.
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Thus, setting

wg = wg + dσ, (1.26)

we obtain ∇g = 2wg ⊗ g, and thus the parallel displacement Pc with respect to ∇ is also a

conformal map with respect to the metric g ∈ C. This shows that ∇ preserves the conformal

class C if and only if there exists a map w : C 3 g 7−→ wg ∈ A1 satisfying (1.25) and (1.26).

Definition 1.7. The pair (C, w) of a conformal class C and a map w : C 3 g 7−→ wg satisfying

(1.26) is called a Weyl structure on M . A symmetric linear connection ∇ on M is called a Weyl

connection of (C, w) if ∇ preserves the conformal class C, that is, ∇ satisfies (1.25) for all g ∈ C.
The 1-form wg corresponding to g ∈ C is called a Lee form of (C, w).

The Weyl connection of (C, w) is thus torsion free but not metric preserving. On the other

hand, there exists a unique connection ∇ such that ∇ is metrical with respect to g:

∇g = 0

and ∇ is semi-symmetric:

∇XY −∇YX − [X,Y ] = wg(Y )X − wg(X)Y.

Such a connection ∇ is called the Lyra connection of (C, w)([Se-Va]). The relation between ∇
and ∇ is given by

∇XY = ∇XY − wg(X)Y.



Chapter 2

Finsler manifolds

2.1 Minkowski norms in vector space

Let V be a vector space of dim V = n

Definition 2.1. A function L : V −→ R is called a Minkowski norm if the following conditions

are satisfied.

(1) For every v ∈ V, L(v) > 0 and the equality holds if and only if v = 0

(2) For every v ∈ V and every λ > 0, the homogeneity condition

L(λv) = λL(v) (2.1)

is satisfied.

(3) For all v, w ∈ V, the triangle inequality

L(v + w) 6 L(v) + L(w) (2.2)

is satisfied.

For every v ∈ V, we set ‖v‖ = L(v), and we call it the Minkowski norm of v. Notice that

we do not assume the reversibility condition ‖v‖ = ‖ − v‖, thus ‖ • ‖ is not a norm in the usual

sense. Therefore the indicatrix I defined by

I = {v ∈ V|‖v‖ = 1} (2.3)

19
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is a hypersurface in V which is not symmetric around the origin in general. The pair (V, L) or

(V, ‖ • ‖) is called a Minkowski space.

Definition 2.2. Let (V1, L1) and (V2, L2) be two Minkowski spaces. A map P : V1 −→ V2 is

called a norm-preserving map if it satisfies L1(v) = L2(P (v)), that is,

‖v‖1 = ‖P (v)‖2 (2.4)

for every v ∈ V1. We also call a map P : V1 −→ V2 an isometry if P satisfies

‖v − w‖1 = ‖P (v)− P (w)‖2 (2.5)

for every v, w ∈ V1. If there exists an isometry P : V1 −→ V2, we say that (V1, L1) is isometric

or congruent to (V2, L2).

If an isometry P : V1 −→ V2 satisfies P (0) = 0, then by substituting w = 0 in (2.5), we

obtain (2.4). Therefore any isometry is a norm-preserving map.

Any norm-preserving map P : V1 −→ V2 satisfies P (0) = 0, but not an isometry in general.

If a norm-preserving map P : V1 −→ V2 is linear, then it is trivial that P is an isometry.

Let V be a vector space with a Minkowski norm ‖ • ‖. We set

‖v‖0 =
1

2
(‖v‖+ ‖ − v‖) =

1

2
[L(v) + L(−v)]

for every v ∈ V. Then ‖ • ‖0 is a norm in the usual sense, that is, the following condition are

satisfied.

(1) For every v ∈ V, ‖v‖0 > 0 is satisfied, and the equality holds if and only if v = 0.

(2) For every v ∈ V and every λ ∈ R

‖λv‖0 =| λ | ‖v‖0 (2.6)

is satisfied.

(3) For any v, w ∈ V, the triangle inequality

‖v − w‖0 ≤ ‖v‖0 + ‖ − w‖0 (2.7)

is satisfied.
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Assume that P : V1 −→ V2 is an isometry. Then using the symmetrized norm we have

‖P (v)− P (w)‖0 =
1

2
(‖P (v)− P (w)‖2 + ‖ − P (v) + P (w)‖2)

=
1

2
(‖v − w‖1 + ‖ − v + w‖1)

= ‖v − w‖0

Therefore, if P is an isometry between Minkowski spaces, then P is also an isometry with respect

to the usual norm ‖ • ‖0. Consequently, the Mazur-Ulam theorem, we have following

Theorem 2.1. (Mazur-Ulam). If V1 and V2 are Minkowski spaces and if P is an isometry

from V1 onto V2 with P (0) = 0, then P is linear.

2.2 Finsler metrics

Let M be a smooth connected manifold of dim M = n, and π : TM −→ M its tangent bundle

over M . We use the chart (π−1(U), (xi, yi)(1≤i≤n) on TM induced by a chart (U, xi)(1≤i≤n) on

M , where y1, · · · , yn are the fibre coordinates in each TxM,x ∈ U.

Definition 2.3. A function L : TM → R is called a Finsler metric or length function on M if

L satisfies the following conditions.

(1) L satisfies L(x, y) ≥ 0 for every y ∈ TxM , and the equality holds if and only if y = 0.

(2) For every y ∈ TxM and λ ∈ R+, the homogeneity condition L(x, λy) = λL(x, y) holds at

each point x ∈M .

(3) L is continuous on TM , and L is smooth on the slit tangent bundle TM \ {0M}.

(4) For any y1, y2 ∈ TxM , the triangle inequality

L(x, y1 + y2) ≤ L(x, y1) + L(x, y2) (2.8)

holds at each point x ∈M .

The pair (M,L) is called a Finsler space.

For every tangent vector y ∈ TxM , we set

‖y‖L
def
= L(x, y). (2.9)
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Then each tangent space TxM at x ∈M is regarded as a Minkowski space with the Minkowski

norm ‖ • ‖L = L(x, •), where x is fixed.

Definition 2.4. The hypersurface Ix = {y ∈ TxM |L(x, y) = 1} in each tangent space TxM is

called the indicatrix at x ∈M of (M,L).

Definition 2.5. A Finsler metric L on M is said to be strongly-convex if the n×n-matrix (Gij)

defined by the Hessian

Gij(x, y) =
1

2

∂2L2

∂yi∂yj
(2.10)

is positive-definite at each point of π−1(U)

If L is strongly-convex, then the Hessian (Gij) defined by (2.10) induces an inner product

G(x,y) on the fiber V(x,y) = Ty(TxM) of the vertical sub-bundle V ⊂ TTM by

G(x,y)

(
∂

∂yi
,
∂

∂yj

)
= Gij(x, y). (2.11)

Let c : I = [0, 1] → M be a smoot curve with the starting point p = c(0) and the terminal

point q = c(1). A smooth curve c = c(t) is said to be regular if ċ(t) := dc/dt 6= 0 for every t ∈ I.

The length l(c) of a curve c = c(t) is defined by

l(c) =

∫ 1

0
‖ċ(t)‖dt =

∫ 1

0
L(c(t), ċ(t))dt (2.12)

Since L satisfies the homogeneity condition, this definition is well-defined, that is, the length of

a curve c is invariant by any change of parameter t which preserves the orientation of c.

For the set Γ (p, q) of all regular oriented curves from the starting point p to the terminal

point q, we define a functional FL : Γ (p, q)→ R by

FL(c) =

∫ 1

0
‖ċ(t)‖Ldt =

∫ 1

0
L(c(t), ċ(t))dt (2.13)

For an ordered pair (p, q) ∈M ×M , we define a function

dL(p, q) = inf
c∈Γ (p,q)

FL(c).

The function dL satisfies the following conditions:

(1) dL(p, q) ≥ 0,
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(2) dL(p, q) = 0 if and only if p = q,

(3) dL(p, q) ≤ dL(p, r) + dL(r, q).

Since the reversibility condition L(x, y) = L(x,−y) is not assumed, the reversibility condition

dL(p, q) = dL(q, p) is not satisfied in general. Thus dL is a pseudo-distance on M .

2.3 Geodesics in Finsler manifolds

Let c(t) = (x1(t), · · · , xn(t)) be an oriented regular curve on a smooth manifold of dim M = n.

If a strongly-convex Finsler metric L is given on M , the length of c is defined by (2.12). A

curve in (M,L) is called a geodesic if it is locally a distance-minimizing curve. For any curve

c = c(t) ∈ Γ (p, q), with the starting point p = c(0) and the terminal point q = c(1), and for a

sufficiently small ε(−ε < s < ε), we take a variation Γc : cs(t) = c(t) + sX of c, where X = X(t)

is any smooth vector field defined along the curve c satisfying X(p) = X(q) = 0. Then, since

c0(t) = c(t), we have

‖ċs(t)‖L − ‖ċ(t)‖L = s

(∑ ∂L

∂xi
Xi +

∑ ∂L

∂yi
Ẋi

)
+
s2

2
(· · · ) + · · · .

Therefore we obtain

d

ds

∣∣∣∣
s=0

FL(cs) =

∫ 1

0

(∑ ∂L

∂xi
Xi +

∑ ∂L

∂yi
Ẋi

)
dt.

On the other hand
d

dt

(∑ ∂L

∂yi
Xi

)
=
∑ ∂L

∂yi
Ẋi +

d

dt

∂L

∂yi
Xi

implies

d

ds

∣∣∣∣
s=0

FL(cs) =

∫ 1

0

[∑ ∂L

∂xi
Xi +

d

dt

(∑ ∂L

∂yi
Xi

)
− d

dt

(∑ ∂L

∂yi

)
Xi

]
dt

=

[∑ ∂L

∂yi
Xi

]1
0

+

∫ 1

0

∑[
∂L

∂xi
− d

dt

(
∂L

∂yi

)]
Xidt

=

∫ 1

0

∑[
∂L

∂xi
− d

dt

(
∂L

∂yi

)]
Xidt = 0.

Consequently a curve c = c(t) ∈ Γ (p, q) is a critical point of the functional FL if and only if

∂L

∂xi
− d

dt

(
∂L

∂yi

)
= 0 (2.14)
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is satisfied along c. This differential equation is called the Euler-Lagrange equation of the

functional FL.

Definition 2.6. A smooth curve c = c(t) is called a geodesic if (2.14) is satisfied along c.

Suppose that γ = γ(t) ∈ Γ (p, q) is minimizing the functional FL, that is, γ satisfies FL(c) ≥
FL(γ) for all c ∈ Γ (p, q). Therefore we have

dL(p, q) = FL(γ). (2.15)

Then γ is a critical point of the variation FL(cs), and the Euler-Lagrange equation (2.14) is

satisfied along γ. Consequently γ is a geodesic in (M,L).

Proposition 2.1. If γ ∈ Γ (p, q) is an FL-minimizing curve, then γ is a geodesic.

In the sequel, we set F = L2 =
∑
Gij(x, y)yiyj and we treat the energy functional FG

depends on the parametrization unlike the functional FL,

FG(c) =
1

2

∫ b

a
c̃∗ċG(E , E)dt, (0 ≤ a ≤ b ≤ 1)

where c̃∗ċG(E , E) is given by

c̃∗ċG(E , E) = G(c(t),ċ(t))(ċ(t)
V , ċ(t)V ) = L(c(t), ċ(t))2 (2.16)

and ċ(t)V = (E ◦ ċ)(t) is the vertical lift of ċ along the canonical lift of c̃ċ = (c(t), ċ(t)).

I

V

TM
�
�
�
�
���

?
-

E ◦ ċ

ċ

p

Since c̃∗ċG(E , E) = L(c(t), ċ(t))2, the Cauchy-Schwarz inequality

(∫ b

a
L(c(t), ċ(t))dt

)2

≤
∫ b

a
L(c(t), ċ(t))2dt ·

∫ b

a
12dt

yields

FL(c)2 ≤ 2(b− a)FG(c), (2.17)
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where the equality holds if and only if ‖ċ(t)‖L = L(c(t), ċ(t)) is constant, that is, the parameter

t is normal, since

L(c(t), ċ(t)) = L

(
c(s),

dc

ds

ds

dt

)
=
ds

dt
.

Suppose that a curve γ = γ(t) with normal parameter t is FG-minimizing, then we have

FL(c) = {2(b− a)FG(c)}1/2

≥ {2(b− a)FG(γ)}1/2

= FL(γ)

for all c ∈ Γ (p, q).

Proposition 2.2. If a regular curve γ in M is FG-minimizing, then γ is a geodesic in (M,L).

Therefore it is enough to investigate curves minimizing the energy functional FG. The

Euler-Lagrange equation of the functional FG is given by

∂F

∂xi
− d

dt

(
∂F

∂yi

)
= 2L

[
∂L

∂xi
− d

dt

(
∂L

∂yi

)]
− 2

∂L

∂yi
∂L

dt
. (2.18)

If we change the parameter t to the arc-length s, that is, if we assume

L

(
x,
dx

ds

)
≡ 1,

then equation (2.14) is written as

∂F

∂xi
− d

ds

(
∂F

∂yi

)
= 0. (2.19)

This equation is computed as follows:

d

ds

(
∂F

∂yi

)
− ∂F

∂xi
=

d

ds

(∑
Gijy

j
)
− 1

2

∑ ∂Gjk
∂xi

yjyk

=
∑ ∂Gij

∂xk
yjyk +

∑
Gij

d2xj

ds2
− 1

2

∑ ∂Gjk
∂xi

yjyk

=
∑

Gij
d2xj

ds2
+

1

2

(
∂Gij
∂xk

+
∂Gik
∂xj

−
∂Gjk
∂xi

)
dxj

ds

dxk

ds
.

Therefore we have
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Proposition 2.3. The differential equation of geodesics is given by

d2xi

ds2
+
∑{

i
j k

}
(γ(s), γ′(s))

dxj

ds

dxk

ds
= 0, (2.20)

where s is the arc-length with respect to the Finsler metric L and{
i
j k

}
(x, y) =

1

2

∑
Gir

(
∂Grj
∂xk

+
∂Grk
∂xj

−
∂Gjk
∂xr

)
, (2.21)

are the Christoffel symbols of the metric tensor G = (Gij) and (Gij) is the inverse matrix of

(Gij).

If we define a local function Gi by

Gi(x, y) =
1

2

∑{
i
j k

}
(x, y)yjyk, (2.22)

then (2.20) is written as follows

d2xi

ds2
+ 2Gi

(
x,
dx

ds

)
= 0. (2.23)

Let γ = γ(s) be a geodesic in a Finsler manifold (M,L) and γ̃(s) = (γ(s), γ′(s)) the natural

lift of γ to the total space TM , where the parameter s is the arc-length with respect to the

metric L.

I

TM

M
�
�
�
�
���

?
-

γ̃

γ

π
�

The velocity vector field of the natural lift of a geodesic γ(s) is given by

dγ̃

ds
=
∑(

dxi

ds

∂

∂xi
+
d2xi

ds2
∂

∂yi

)
=
∑ dxj

ds

∂

∂xj
−
∑

2Gi
(
x,
dx

ds

)
∂

∂yi
.

The functions Gi defined by (2.22) are homogeneous of degree two, that is, 2Gi =
∑ ∂Gi

∂yj
yj

holds, and thus

2Gi
(
x,
dx

ds

)
=
∑ ∂Gi

∂yj

(
x,
dx

ds

)
dxj

ds
.
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Consequently we have

dγ̃

ds
=
∑ dxj

ds

[
∂

∂xj
−
∑ ∂Gi

∂yj

(
x,
dx

ds

)
∂

∂yi

]
.

Since dπ

(
dγ̃

ds

)
=
dγ

ds
6= 0, this shows that

dγ̃

ds
∈ TTM/V (2.24)

at each point in γ̃(s) ∈ TM. Therefore we determine the horizontal sub-bundle H ⊂ TTM so

that the velocity vector field of γ̃(s) always lies in the horizontal space at each point γ̃(s):

dγ̃

ds
∈ Hγ̃(s).

For the function Gi(x, y) given by (2.22), we define

N i
j(x, y)

def
=
∂Gi

∂yj
(2.25)

and θ ∈ A1(V ) by

θ =
∑ ∂

∂yi
⊗ θi def

=
∑ ∂

∂yi
⊗
(
dyi +

∑
N i
j(x, y)dxj

)
. (2.26)

Then θ defines a non-linear connection on the tangent bundle TM of (M,L).

Definition 2.7. The non-linear connection θ defined by (2.26) is called the Berwald non-linear

connection of (M,L).

2.4 Examples of Finsler manifolds

Let M be a smooth manifold with a Riemannian metric g =
∑
gij(x)dxi ⊗ dxj .

2.4.1 Riemannian metrics

For every y ∈ TxM, if we define a function L : TM −→ R by

L(x, y) :=
√∑

gij(x)yiyj . (2.27)
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The norm ‖X‖ of any vector filed X in M is measured by

‖X‖ =
√
g(X,X).

Then L is a Finsler metric on M , and therefore any Riemannian manifold belongs to the class

of Finsler spaces.

Each indicatrix Ix = {y ∈ TxM |
√
g(y, y) = 1} at x ∈ M is considered as the unit sphere

with the center y = 0 in TxM , since around each x ∈M we may choose a local orthonormal frame

field. As stated in the previous chapter, the parallel transport Pγ along any curve γ : [a, b]→M

with respect to the Levi-Civita connection ∇g is a linear isometric map from the Euclidean space

(Tγ(a)M, gγ(a)) to the one (Tγ(b)M, gγ(b)). Thus the unit sphere Iγ(a) is also linear isometric to

Iγ(b). A Riemannian manifold (M, g) is a space modeled on a unique inner product space.

2.4.2 Randers metrics

A simplest modification of a Riemannian metric g =
∑
gij(x)dxi ⊗ dxj was introduced by

Randers from the physical view point. Let β =
∑
βi(x)dxi be a differential one-form on M

whose norm ‖β‖g with respect to g satisfies ‖β‖g < 1. We define a function L : TM −→ R by

L(x, y) =
√∑

gij(x)yiyj +
∑

βi(x)yi. (2.28)

Such a non-Riemannian Finsler metric L on M is called a Randers metric (cf. [Ma1]). The

norm ‖X‖ of any vector filed X in M is measured by

‖X‖ =
√
g(X,X) + β(X).

A Randers metric is an asymmetrical modification of g because of L(x, y) 6= L(x,−y). Such a

metric is characterized as a metric such that each indicatrix Ix is a quadratic hypersurface in

each tangent space TxM whose center is not the origin y = 0 of TxM ([Ha-Ic]).



Chapter 3

Berwarld connections

3.1 Inner product on V

Let L be a strongly-convex Finsler metric on a smooth manifold M . Since the smoothness of L

at the zero-section is not assumed, every quantity obtained from L is not smooth on the whole

total space TM . In this section we shall show that a natural Ehresmann connection θ can be

introduced on TM from the given Finsler metric L.

Let T̃M be the pullback of TM by π : TM −→M

T̃M TM

MTM

-

-
? ?

π

π̃

π�

Since the induced bundle T̃M is isomorphic to both the horizontal sub-bundle H and the vertical

sub-bundle V of T 2M := TTM , we shall consider both an Ehresmann connection θ and the

derivative dπ as projections from T 2M onto V, and we use the notations introduced in the first

chapter.

Let (x1, · · · , xn) be a local coordinate in an open subset U in M . With respect to the natural

local frame field
∂

∂x
=

{
∂

∂x1
, · · · , ∂

∂xn

}
over U , any tangent vector y ∈ TxM is written as

y =
∑

yi
(
∂

∂xi

)
x

.

Then (x1, · · · , xn, y1, · · · , yn) induces a local coordinate on π−1(U) ⊂ TM . Then the projections

29



30 CHAPTER 3. BERWARLD CONNECTIONS

θ and dπ are expressed as

θ =
∑ ∂

∂yi
⊗ θi and dπ =

∑ ∂

∂yi
⊗ dxi

respectively.

If a strongly-convex Finsler metric L is given on M , there exists an inner product G on

the vertical sub-bundle V defined by (2.11). By the homogeneity condition of L the following

identity holds:

L(x, y)2 =
∑

Gij(x, y)yiyj = G(E , E), (3.1)

for the tautological section E of V . Since we do not assume the smoothness of L at the zero-

section y = 0 in TM , the Hessian Gij is not smooth at y = 0.

Since each fibre V(x,y) of V over (x, y) ∈ TM is identified with the tangent space Ty(TxM),

the inner product G(x,y) on V(x,y) may be considered as a Riemannian metric on the tangent

space TxM . Thus we call the tangent spaces with such a Riemannian metric G the tangential

Riemannian spaces of (M,L)

3.2 Berwald connection

Let θ be the Berwald non-linear connection of a Finsler manifold (M,L), namely, θ is defined

by (2.26) for the coefficients N i
j(x, y) given by (2.25).

Definition 3.1. The canonical connection D : Γ (V )→ A1(V ) in V associated with the Berwald

non-linear connection θ is called the Berwald connection on (M,L).

In the sequel, on a Finsler manifold (M,L), we always take the Berwald non-linear connection

θ, especially unless otherwise stated. The coefficients of a connection form ωij =
∑
Γ ijk(x, y)dxk

are given by

Γ ijk(x, y) =
∂N i

j

∂yk
=

∂2Gi

∂yj∂yk
,

and the equation (2.20) of geodesics is written as follows:

d2xi

ds2
+
∑

Γ ijk

(
x,
dx

ds

)
dxj

ds

dxk

ds
= 0. (3.2)

Since the connection coefficients Γ ijk satisfy the symmetry condition Γ ijk = Γ ikj , the projection

dπ is parallel with respect to D :

Ddπ = 0. (3.3)
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Proposition 3.1. The Berwald connection D is symmetric.

Since the Berwald connection D is the canonical connection associated with θ, we have

DXHE = 0

for any vector field X in M . The homogeneity of N i
j implies N i

k =
∑
yjΓ ijk and thus

XH(L2) = XH(G(E , E))

= XH(
∑

Gij
(
x, y)yiyj

)
=
∑

Xk

[(
∂Gij
∂xk

−
∑

N l
k

∂Gij
∂yl

)
yiyj − 2

∑
Gijy

iN j
k

]
=
∑

Xk

(
∂Gij
∂xk

− 2
∑

Glj

{
l
i k

})
yiyj

= 0.

Consequently we obtain

LXHL = XH(L) ≡ 0. (3.4)

Proposition 3.2. The Berwald connection D on a Finsler manifold (M,L) is almost L-metrical.

Let c : I → M be a smooth curve in M . It may be assumed without loss of generality that

c is a regular curve. Suppose that a vector field X on M is parallel along c with respect to the

Berwald non-linear connection θ. Then, X is parallel along c if and only if

c∗(X∗θ)

(
d

dt

)
= 0.

This equation is written as

dXi

dt
+
∑

N i
j(c(t), X(t))

dxj

dt
= 0. (3.5)

Since the norm ‖X(t)‖L of X(t) is given by ‖X(t)‖L = L(c(t), X(t)), if X is parallel along c,

then (3.4) implies
d

dt
‖X(t)‖L =

d

dt
L(c(t), X(t)) = 0

Therefore we have
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Proposition 3.3. Let c be any smooth curve with initial point p in a Finsler manifold (M,L).

Then the parallel translation Pc along c is a norm-preserving map, i.e., for any Y ∈ TpM we

have

‖Y ‖L = ‖Pc(Y )‖L. (3.6)

In particular Pc satisfies Pc(0) = 0.

The indicatrix Ix is a compact hypersurface in TxM given by the set of tangent vectors of

unit norm. Since Pc preserves the norm, we have ‖Pc(y)‖L = ‖y‖L = 1 for any y ∈ Ix. Therefore

we obtain

Proposition 3.4. In a Finsler manifold (M,L), the parallel translation Pc along any smooth

curve c preserves the indicatrix, i.e.,

Iϕt(x) = ϕHt (Ix).

3.3 Curvature and torsion of Berwald connection

The curvature RD of the Berwald connection D on a Finsler manifold (M,L) is defined by

RD = D2. Since D is a canonical connection associated with θ, the curvature RD is decomposed

into the sum RD = RHHD +RHVD , where RHHD and RHVD are defined by

RHHD (X,Y )ZV := RD(XH , Y H)ZV = DXHDY HZ
V −DY HDXHZV −D[XH ,Y H ]Z

V

and

RHVD (X,Y )ZV := RD(XH , Y V )ZV = DXHDY V Z
V −DY VDXHZV −D[XH ,Y V ]Z

V

for all vector fields X,Y and Z in M. The components Rijkl of ΩHH
D are given by

Rijkl =

(
∂

∂xk

)H
Γ ijl −

(
∂

∂xl

)H
Γ ijk +

∑
Γ imkΓ

m
jl −

∑
Γ imlΓ

m
jk , (3.7)

and, furthermore the components P ijkl of ΩHV
D are given by

P ijkl = −
∂Γ ijk
∂yl

= −
∂2N i

j

∂yk∂yl
= − ∂3Gi

∂yj∂yk∂yl
. (3.8)
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Therefore the curvature form ΩD = (Ωi
j) of D is given by

Ωi
j =

∑
k<l

Rijkl(x, y)dxk ∧ dxl +
∑

P ijkl(x, y)dxk ∧ θl. (3.9)

From (3.7) and (3.8), these coefficients satisfy Rijkl ≡ Rijlk and P ijkl = P ijlk, or equivalently

RHH(X,Y ) = −RHH(Y,X), RHV (X,Y ) = RHV (Y,X) (3.10)

for all vector fields X,Y in M .

First we shall consider the case where the curvature RD vanishes identically.

Definition 3.2. A Finsler manifold (M,L) is said to be locally Minkowski or flat if there exists

an open covering of M with respect to which the metric L is independent of the base point

x ∈M.

The aim of this section is to characterize locally Minkowski spaces in terms of curvature

RD of the Berwald connection D. Before proving the main theorem, we shall show the trans-

formation laws of curvature forms with respect to a coordinate change in the base space M .

Let U and U be two coordinate neighborhoods in M with local coordinate (x1, · · · , xn) and

(x1, · · · , xn) respectively such that U ∩ U 6= 0. The relations between the respective fibre co-

ordinates (y1, · · · , yn) and (y1, · · · , yn) relative to (x1, · · · , xn) and (x1, · · · , xn) are given by

yi =
∑ ∂xi

∂xl
yl. Considering y = t(y1, · · · , yn) and y = t(y1, · · · , yn) as column vectors, we write

this relations as y = Ay, where we set A =

(
∂xi

∂xl

)
. Then, using matrix notations, the natu-

ral local frame fields e =

{
∂

∂y1
, · · · , ∂

∂yn

}
and e =

{
∂

∂y1
, · · · , ∂

∂yn

}
of V are related to the

following equation

eU = eA. (3.11)

Therefore the respective connection forms ω and ω of D relative to e and e are related as

ω = A−1(dA+ ωA). (3.12)

We express the curvature RD as

RD = e⊗Ω = e⊗Ω
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for the respective curvature forms Ω and Ω of D relative to c and c. Then (3.12) implies

Ω = A−1ΩA.

Suppose that (M,L) is locally Minkowski. Then the metric L is independent of local coordi-

nate x = (x1, · · · , xn) in M . Then the components Gij of the metric tensor G in V with respect

to this local coordinate (x, y) are also independent of x. This fact implies
{
i
lm

}
= 0. Therefore

we have

Γ
i
jk =

1

2

∂2

∂yjyk

[∑{
i
lm

}
ylym

]
= 0,

that is, ω = 0 in U. This shows that RD ≡ 0.

Conversely we suppose RD ≡ 0. This assumption is the integrability condition for the system

of differential equations

dB = Bω, (3.13)

where B = (Bi
j) is a certain local function with values in GL(n,R). In fact,

0 = d(dB) = d(Bω) = dB ∧ ω +Bdω = B(dω + ω ∧ ω) = BΩD.

Furthermore ω∧dx = 0 is satisfied, since D is symmetric. Then, from (3.7) we have dB∧dx = 0,

namely
∂Bi

j

∂xk
=
∂Bi

k

∂xj

in local coordinates. Therefore there exist some local functions f i(x1, · · · , xn) such that Bi
j =

∂f i

∂xj
. Then, if we take a change of local coordinate as xi = f i(x1, · · · , xn), the connection form

ω of D with respect to (x, y) vanishes. Then, from (3.4), we have

0 =

(
∂

∂xi

)H
L =

∂L

∂xi
−
∑

ymΓ
l
mi

∂L

∂yl
=
∂L

∂xi
.

Therefore L is independent of the local coordinate (x1, · · · , xn) in M . Consequently we obtain

Theorem 3.1. A Finsler manifold (M,L) is locally Minkowski if and only if its Berwald con-

nection D is flat, that is, RHHD = RHVD ≡ 0.

Because of (3.3), the projection dπ from T 2M onto V is parallel with respect to D. The

torsion TD of the Berwald connection D is defined by :

TD = Dθ. (3.14)
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Since D is the canonical connection, the torsion TD is of the form TD = THHD , where THHD is

given by

THHD =
∑ ∂

∂yi
⊗

(∑
k<l

Rikl(x, y)dxk ∧ dxl
)
, (3.15)

where the coefficients Rikl are given by

Rikl =

(
∂

∂xk

)H
N i
l −

(
∂

∂xl

)H
N i
k. (3.16)

Since THVD ≡ 0, the Ricci identity D2E = RDE implies

Proposition 3.5. The curvature RD of D satisfies the following identities

RHHD E = THHD (3.17)

and

RHVD E = 0 (3.18)

for the tautological section E .

3.4 Berwald spaces

As stated in the previous chapter, if a strongly convex Finsler metric L is given on M , then each

tangent space TxM has two metrical structures. One is the normed space with the Minkowski

norm ‖X‖L = L(x,X) for any X ∈ TxM, and another one is the inner-product space with the

Riemannian metric G on TxM defined by (2.11). In this section we shall consider the case where

the parallel translation Pc with respect to the Berwald non-linear connection θ preserves these

structures.

First we shall consider the case where the parallel translation Pc is an isometry between the

tangential Minkowski spaces. By Definition 2.2 this condition is written as

‖X − Y ‖L = ‖Pc(X)− Pc(Y )‖L

for any X,Y ∈ TpM. Then, from Theorem 2.1 in the previous chapter, Pc is a linear isomorphism.

The converse is also true. Therefore we have

Proposition 3.6. The parallel translation Pc along any curve c is an isometry between the

tangential Minkowski spaces if and only if Pc is a linear isomorphism.
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Definition 3.3. A Finsler manifold (M,L) is called a Berwald space if the parallel translation

Pc along any curve c is a linear isomorphism.

Therefore, from Proposition 3.6 we have

Proposition 3.7. A Finsler manifold (M,L) is a Berwald space if and only if its Berwald

connection D is induced from a linear connection θ in TM .

A necessary and sufficient condition for the parallel translation Pc to be a linear isomorphism

is that the coefficients N i
j of θ defined in (2.25) are linear in fibre coordinate (y1, · · · , yn), that

is, the Berwald non-linear connection θ is reduced to a linear connection on TM . The Berwald

connection D is induced from a linear connection ∇M on TM . Thus, using the connection

coefficients γijk(x) of ∇M , the coefficients N i
j of θ is written as

N i
j(x, y) =

∑
γijk(x)yk, (3.19)

which implies Γ ijk = γijk(x). From (3.8) we obtain

Proposition 3.8. A Finsler manifold (M,L) is a Berwald space if and only if its Berwald

connection D satisfies RHV ≡ 0.

If (M,L) is a Berwald space, the connection coefficients Γ ijk of D are independent of the fibre

coordinate (y1, · · · , yn), but the metric L is not necessary induced from a Riemannian metric

on the bace space M . The following theorem is an epoch-making theorem in Finsler geometry.

Theorem 3.2. (Szabo[Sz]) If (M,L) is a Berwald space, then there exists a Riemannian metric

g =
∑
gij(x)dxi ⊗ dxj on M such that

D = ∇̃g (3.20)

for the Levi-Civita connection ∇g in (M, g).

3.5 Landsberg spaces

In this section we shall consider the case where the parallel translation Pc is an isometry between

the tangential Riemannian spaces. Since the fiber V(x,y) of the vertical bundle V at any point

(x, y) ∈ TM is identified with the tangent space Ty(TxM), the metric G on V given by (2.11)

defines a Riemannian metric Gx on the fiber TxM . We call such a Riemannian space (TxM,Gx)

a tangential Riemannian space.
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Definition 3.4. A Finsler manifold (M,L) is called a Landsberg space if the parallel translation

Pc with respect to the Berwald non-linear connection θ is an isometry between the tangential

Riemannian spaces.

From the definition, if c is closed curve with the base point p ∈M, then the parallel transla-

tion Pc : TpM → TpM is a isometric transformation in the Riemannian space (TpM,Gp). Thus

the holonomy group Hp at p in a Landsberg space is a Lie group.

By definition (M,L) is a Landsberg spaces if and only if

LXHG = 0 (3.21)

is satisfied for any vector field X on M . For any vector fields Y,Z on M and their vertical lifts

Y V , ZV , both of LXHY V and LXHZV are vertical vector fields. Then we have

(LXHG)(Y V , ZV ) = XHG(Y V , ZV )−G(LXHY V , ZV )−G(Y V ,LXHZV )

= XHG(Y V , ZV )−G(DXHY V , ZV )−G(Y V , DXHZV )

= (DXHG)(Y V , ZV ).

Therefore (3.21) is equivalent to

DXHG = 0 (3.22)

Proposition 3.9. A Finsler manifold (M,L) is a Landsberg space if and only if the Berwald

connection D is compatible with the metric G in horizontal direction.

The Berwald connection D satisfies (3.4) thus XH(L2) ≡ 0 for any vector field X on M :

∂L2

∂xi
−
∑

N l
i

∂L2

∂yl
= 0. (3.23)

Here we suppose that (M,L) is a Berwald space. Then the connection coefficients of D are given

by the coefficients Γ ijk(x) of a linear connection ∇ in TM . Differentiating (3.23) by yj and yk

continuously, we have

0 =

(
∂

∂xi

)H
Gjk −

∑
Γ lij(x)Glk −

∑
Γ lik(x)Gjl = D(∂/∂xi)HGjk.

This shows that if (M,L) is a Berwald space, then the Berwald connection D is compatible with

the metric G of V in horizontal direction. Therefore we have

Proposition 3.10. Any Berwald space (M,L) is a Landsberg space.
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Remark 3.1. As far as the another knows, there is no example of Landsberg space which is

not a Berwald space. Still finding an example of non-Berwald Landsberg space is an important

open problem in Finsler geometry. �

Let dµ be a differential n-form on TM defined by

dµ =
√

det G dy1 ∧ · · · ∧ dyn. (3.24)

The restriction of dµ to each fiber V(x,y) of the vertical bundle V defines a volume form on V(x,y).

For any vector field X on M , the Lie derivative LXHdµ by the horizontal lift XH is given by

LXHdµ

(
∂

∂y1
, · · · , ∂

∂yn

)
= XH

(
dµ

(
∂

∂y1
, · · · , ∂

∂yn

))
−
∑

dµ

(
∂

∂y1
, · · · ,

[
XH ,

∂

∂yk

]
, · · · , ∂

∂yn

)
=
∑

Xj(x)

[(
∂

∂xj

)H √
det G−

∑
dµ

(
∂

∂y1
, · · · ,

∑ ∂Nm
j

∂yk
∂

∂ym
, · · · , ∂

∂yn

)]

=
∑

Xj(x)

[(
∂

∂xj

)H √
det G−

∑
Γmjm
√

det G

]

=
∑

Xj(x)

[
1

2
(det G)−1/2.

(
∂

∂xj

)H
det G−

(∑
Γmjm

)√
det G

]
.

If (M,L) is a Landsberg space, then (3.22) implies(
∂

∂xj

)H √
det G = 2 det G

∑
Γmjm.

Therefore we obtain

Proposition 3.11. If (M,L) is a Landsberg space, then

LXHdµ = 0 (3.25)

for any vector field X on M .

Let {ϕHt } be the (local) flow of the horizontal lift XH . For any compact subset K0 ⊂ Tx0M,

we set Kt = ϕHt (K0). Then the volume vol(Kt) of Kt is given by

vol(Kt) =

∫
Kt

dµ =

∫
ϕHt (K0)

dµ =

∫
K0

ϕH
∗

t (dµ).
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If (M,L) is a Landsberg space, then (3.25) implies ϕH
∗

t (dµ) = dµ, thus vol(Kt) = vol(K0). In

particular, the volume of the indicatrix Ix is independent of the base point x ∈M.

Proposition 3.12. For a Landsberg space (M,L), the volume vol(Ix) of the indicatrix Ix is

constant.

3.6 Averaged metrics and connections

Let Ix = {y ∈ TxM |L(x, y) = 1} be the indicatrix at x ∈M. For any y ∈ Ix the identity

G(x,y)(E , E) = L(x, y)2 = 1

holds, thus the Liouville vector field E on E is a unit vector field at each point y ∈ Ix.

∑
Gim

∂L

∂ym

(
∂

∂yi

)
=

1

2L

∑
Gim

∂L2

∂ym

(
∂

∂yi

)
=

1

L

∑
GimGlmy

l

(
∂

∂yi

)
=

1

L
E(x, y)

also implies that E is the outward-standing unit normal field of Ix at each point y ∈ Ix. Therefore,

if we define dµI by

dµI = ι(E)dµ, (3.26)

we may consider the restriction of dµI to each fibre as the volume form of Ix.

For the horizontal lift XH of any vector field X on M , the fact

dπ(x,y)(LXHE) = dπ(x,y)[X
H , E ] = 0

implies the following.

Lemma 3.1. The Liouville vector field E is invariant by parallel translation, that is,

LXHE = 0 (3.27)

is satisfied for the horizontal lift XH of any vector field X on M . In particular, if (M,L) is a

Landsberg space,

LXHdµI = 0. (3.28)

Let X and Y be vector fields on the base space M . For the respective vertical lifts XV and

Y V , it is easy to see that the map gx : TxM ⊗ TxM → R defined by

gx(X,Y ) =
1

vol(Ix)

∫
Ix

G(XV , Y V )dµI (3.29)
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is an inner product on TxM . Therefore g = {gx} defines a Riemannian metric on the base space

M .

Definition 3.5. ([Ma-Ra-Tr-Ze]) The Riemannian metric g defined by (3.29) is called the av-

eraged Riemannian metric on the Finsler manifold (M,L).

Let g be the averaged Riemannian metric on a Finsler manifold (M,L) and X a vector field

on M. Then we define a map ∇X : TxM → TxM so that

g(∇XY,Z) =
1

vol(Ix)

∫
Ix

G(DXHY V , ZV )dµI (3.30)

is satisfied for any Y, Z ∈ TxM. We show that ∇ : TxM ⊗ TxM 3 (Y, Z) 7−→ ∇Y Z ∈ TxM is a

linear connection on TM . By definition it is enough to show that ∇ satisfies the Leibniz rule.

For an arbitrary function f ∈ C∞(M) we have

g(∇X(f · Y ), Z) =
1

vol(Ix)

∫
Ix

G(DXH (f.Y )V , ZV )dµI

=
1

vol(Ix)

∫
Ix

G(X(f)Y V + fDXHY V , ZV )dµI

=
X(f)

vol(Ix)

∫
Ix

G(Y V , ZV )dµI +
f

vol(Ix)

∫
Ix

G(DXHY V , ZV )dµI

= X(f)g(Y, Z) + fg(∇XY,Z)

= g(X(f) · Y + f · ∇XY,Z)

for any vector fields X,Y in M . Therefore we obtain

∇X(f · Y ) = X(f)Y + f · ∇XY,

thus ∇ defined by (3.30) is a linear connection on TM . Moreover we have

Lemma 3.2. The linear connection ∇ defined by (3.30) is symmetric.

Proof. The following identity holds:

(Ddπ)(XH , Y H) = DXHdπ(Y H)−DY Hdπ(XH)− dπ([XH , Y H ])

= DXHY V −DY HX
V − dπ([X,Y ]H)

= DXHY V −DY HX
V − [X,Y ]V .
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Thus, since the Berwald connection D is symmetric, the identity (3.3) implies

g(∇XY −∇YX − [X,Y ], Z) =
1

vol(Ix)

∫
Ix

G(DXHY V −DY HX
V − [X,Y ]V , ZV )dµI = 0

for any vector fields X,Y and Z on M . Consequently we have ∇XY −∇YX − [X,Y ] = 0.

Definition 3.6. (cf. [To-Et]) The symmetric linear connection ∇ defined by (3.30) is called the

averaged connection on the Finsler manifold (M,L).

Then, as a generalization of Theorem 3.2, we have

Theorem 3.3. [Ai3] If (M,L) is a Landsberg space, then the averaged connection ∇ is the

Levi-Civita connection of the averaged Riemannian metric g.

Proof. Let X be an arbitrary vector field on M . We denote by {ϕt} the 1-parameter family

of local transformation group generated by v, and by {ϕHt } the horizontal lift of {ϕt}. In

Proposition 3.4 we have proved the equation ϕHt (Ix) = Iϕt(x).

We assume that (M,L) is a Landsberg space. Then (3.28) shows

vol(Iϕt(x)) =

∫
ϕHt (Ix)

dµI =

∫
Ix

ϕH
∗

t dµI =

∫
Ix

dµI = vol(Ix)

therefore the volume vol(Ix) of indicatrix is constant. Then we have

X

(∫
Ix

f(x, y)dµI

)
=

d

dt

∣∣∣∣
t=0

[∫
Iϕt(x)

f(x, y)dµI

]

=
d

dt

∣∣∣∣
t=0

[∫
ϕHt (Ix)

f(x, y)dµI

]

=

∫
Ix

d

dt

∣∣∣∣
t=0

[ϕH∗t f ]dµI

=

∫
Ix

XH(f)dµI

for all X ∈ Γ (TM) and f ∈ C∞(TM), where ϕt and ϕHt denote the 1-parameter family of local

transformations generated by X and XH respectively. Thus we have

X(g(Y,Z)) =
1

vol(Ix)

∫
Ix

XH(G(Y V , ZV ))dµI .
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Therefore, from (3.22) we obtain

∇Xg(Y, Z) = X(g(Y,Z))− g(∇XY, Z)− g(Y,∇XZ)

=
1

vol(Ix)

∫
Ix

[XH(G(Y V , ZV ))−G(DXHY V , ZV )−G(Y V , DXHZV )]dµI

=
1

vol(Ix)

∫
Ix

(DXHG)(Y V , ZV )dµI

= 0.

Since ∇ is symmetric, ∇ is the Levi-Civita connection of the averaged Riemannian metric g.

Suppose that (M,L) is a Berwald space. Since the Berwald connection D is induced from a

symmetric linear connection ∇′ on TM , that is, DXHY V = (∇′XY )V , the averaged connection

∇ is given by

g(∇XY, Z) =
1

vol(Ix)

∫
Ix

G((∇′XY )V , ZV )dµI = g(∇′XY, Z),

thus ∇ = ∇′. Since every Berwald space is a Landsberg space, the averaged connection ∇ is the

Levi-Civita connection ∇g of the averaged Riemannian metric g. Consequently Theorem 3.2 is

rewritten as follows.

Theorem 3.4. The Berwald connection D of a Berwald space is induced from the Levi-Civita

connection ∇g of the averaged Riemannian metric g.



Chapter 4

Rund connections

4.1 Rund connections

The Berwald connection D on (M,L) is the canonical connection defined in Chapter 1, however,

D is not necessary metrical with respect to the metric G on V . In this sense the Berwald connec-

tion D is somewhat unfortunate. In this section we shall introduce another Finsler connection

∇ on V which satisfies the almost G-compatibility. Similarly to the case of D, we also assume

that ∇ is flat in the vertical direction.

For this purpose, for every X ∈ Γ (TM), we shall define PXH : Γ (V )→ Γ (V ) by

(DXHG)(Y V , ZV ) = 2G(PXH (Y V ), ZV ) (4.1)

for all vector fields Y, Z on M . Then it is easily shown that PXH is a tensor field, i.e.,

• PXH (Y V + ZV ) = PXH (Y V ) + PXH (ZV )

• PXH (f · Y V ) = fPXH (Y V ) for all f ∈ C∞(M),

i.e., PXH ∈ End(V ). Then we can easily show that PXH is symmetric:

G(PXH (Y V ), ZV ) = G(Y V , PXH (ZV )) (4.2)

for all Y, Z ∈ Γ (TM). Therefore (4.1) is written as follows:

XH(G(Y V , ZV ))−G(DXHY V + PXH (Y V ), ZV )−G(Y V , DXHZV + PXH (ZV )) = 0

43
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If we define ∇XH : Γ (V )→ Γ (V ) by

∇XHY V = DXHY V + PXH (Y V ). (4.3)

then ∇XH is a covariant derivation in V such that

∇XHG = 0. (4.4)

Since H = ker(θ) is defined by the Berwald non-linear connection θ, it is natural to as-

sume that ∇ recovers the Berwald non-linear connection θ similarly to the case of the Berwald

connection D, namely, we assume

∇E = θ (4.5)

Then, from (4.3) we have

Proposition 4.1. The connection ∇ satisfies (4.5) if and only if the tensor field P satisfies

PXH (E) = 0 (4.6)

for every XH ∈ Γ (H).

A vector field Y on M is parallel with respect to θ if and only if the vertical lift Y V along

Y is covariantly constant with respect to the Berwald connection D, that is, DXH (E ◦ Y ) = 0

for all vector field X on M . Furthermore, since (4.3) and (4.6) imply

∇XH (E ◦ Y ) = DXH (E ◦ Y ) + PXH (E ◦ Y ) = DXH (E ◦ Y ),

we have

Proposition 4.2. A vector field Y on a Finsler manifold (M,L) is parallel with respect to the

Berwald non-linear connection θ if and only if the vertical lift Y V along Y is covariantly constant

with respect to ∇, namely

∇XH (E ◦ Y ) = 0 (4.7)

for all X ∈ Γ (TM).

Lastly, since D satisfies the symmetry condition (3.3), it is natural to assume that ∇ also

satisfies the symmetry condition

∇dπ ≡ 0. (4.8)
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Definition 4.1. Let θ be the Berwald non-linear connection on a Finsler manifold (M,L). A

connection ∇ : Γ (V )→ A1(V ) is called a Rund connection if ∇ satisfies the following conditions.

(1) ∇ associates with θ, i.e., ∇ satisfies (4.5).

(2) ∇ is symmetric, i.e., ∇ satisfies (4.8).

(3) ∇ is almost G-compatible, i.e., ∇ satisfies (4.4).

(4) ∇ is flat in the vertical direction.

Proposition 4.3. The Rund connection ∇ on a Finsler manifold (M,L) is uniquely determined.

Since θ is the Berwald non-linear connection, (3.4) implies

∇XHL = XH(L) = 0

for any X ∈ Γ (TM). Therefore the Rund connection ∇ is also almost L− compatible.

Proposition 4.4. The connection ∇ satisfies (4.8) if and only if the tensor field P satisfies

PXH (Y V ) = PY H (XV ) (4.9)

for all vector fields X,Y in M .

Proof. Since (3.3) and (4.8) show that

(∇dπ)(XH , Y H) = ∇XHY V −∇Y HXV − [X,Y ]V = 0

and

(Ddπ)(XH , Y H) = DXHY V −DY HX
V − [X,Y ]V = 0

for all X,Y ∈ Γ (TM), we have

PXH (Y V )− PY H (XV ) = ∇XHY V −DXHY V − (∇Y HXV −DY HX
V )

= ∇XHY V −∇Y HXV − [X,Y ]V − (DXHY V −DY HX
V − [X,Y ]V )

= 0.

The identities (4.2) and (4.9) lead us to
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Proposition 4.5. The covariant derivative DXHG is totally symmetric, that is,

(DXHG)(Y V , ZV ) = (DY HG)(ZV , XV ) = (DZHG)(XV , Y V ) (4.10)

for all vector fields X,Y, and Z on M .

Remark 4.1. From (4.10), the covariant derivative DG of the metric G in the horizontal

direction is totally symmetric. Hence the pair (G,D) is called a Finsler-statistical structure in

[Na-Ai]. If we put

D(∂/∂xk)H

(
∂

∂yi
,
∂

∂yj

)
:= Gij;k,

then (4.10) is written as Gij;k = Gjk;i = Gki;j .

Let Π i
j be the connection form of ∇ :

∇ ∂

∂yj
=
∑ ∂

∂yi
⊗Π i

j

Then the connection form Π i
j is of the form Π i

j =
∑
Π i
jk(x, y)dxk, where Π i

jk are local functions

satisfying

Π i
jk = Π i

kj (4.11)

from (4.8). Furthermore (4.4) implies(
∂

∂xk

)H
Gij −

∑
GrjΠ

r
ik −

∑
GirΠ

r
jk = 0.

Therefore (4.11) implies

Π i
jk =

1

2

∑
Gim

[(
∂

∂xk

)H
Gjm +

(
∂

∂xj

)H
Gmk −

(
∂

∂xm

)H
Gjk

]
. (4.12)

The assumption (4.5) means that ∑
yjΠ i

jk = N i
k (4.13)

for the coefficients N i
j of the Berwald non-linear connection θ.

From (4.3), the tensor field PXH is given by

PXH

(
∂

∂yj

)
= ∇XH

∂

∂yj
−DXH

∂

∂yj
=
∑ ∂

∂yi
[
Π i
j(X

H)− ωij(XH)
]
.
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Therefore, if we define a horizontal 1-form P ij by P ij =
∑

(Π i
jk − Γ ijk)dxk, then PXH is given by

PXH

(
∂

∂yj

)
=
∑

P ij (X
H)

∂

∂yi
.

4.2 Curvature and torsion of Rund connection

We shall show an expression of the curvature R∇ = ∇2 of the Rund connection ∇ in local

coordinates. Since ∇ is also relatively flat in the vertical direction, the curvature R∇ is also

decomposed as R∇ = RHH∇ +RHV∇ , where

RHH∇ (X,Y )ZV = ∇XH∇Y HZV −∇Y H∇XHZV −∇[XH ,Y H ]Z
V

and

RHV∇ (X,Y )ZV = ∇XH∇Y V ZV −∇Y V∇XHZV −∇[XH ,Y V ]Z
V

for all vector fields X,Y and Z on M . The curvature form Ω∇ = dΠ +Π ∧Π with respect to
∂

∂y
= {∂/∂y1, · · · , ∂/∂yn} is also defined by

R∇
∂

∂y
=

∂

∂y
⊗Ω∇ =

∂

∂y
⊗ (ΩHH

∇ +ΩHV
∇ ),

where we put

ΩHH
∇ = dHΠ +Π ∧Π and ΩHV

∇ = dVΠ.

By direct calculations we have

R∇
∂

∂yj
=
∑ ∂

∂yi
⊗
(
dΠ i

j +
∑

Π i
m ∧Πm

j

)
.

Then

dΠ i
j +

∑
Π i
m ∧Πm

j

=
∑[∑(

∂

∂xl

)H
Π i
jkdx

l +
∑ ∂Π i

jk

∂yl
θl

]
∧ dxk +

∑(∑
Π i
mkdx

k
)
∧
(∑

Πm
jl dx

l
)

=
∑[(

∂

∂xl

)H
Π i
jk −

(
∂

∂xk

)H
Π i
jl +

∑
Π i
mkΠ

m
jl −

∑
Π i
mlΠ

m
jk

]
dxk ∧ dxl

+
∑(

−
∂Π i

jk

∂yl

)
dxk ∧ θl.
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Therefore R∇ is given by

R∇
∂

∂yj
=
∑ ∂

∂yi
⊗

[∑
k<l

Rijkldx
k ∧ dxl +

∑
P ijkldx

k ∧ θl
]
, (4.14)

where the coefficients Rijkl and P ijkl of Ω∇ are given by

Rijkl
def
=

(
∂

∂xl

)H
Π i
jk −

(
∂

∂xk

)H
Π i
jl +

∑
Π i
mkΠ

m
jl −

∑
Π i
mlΠ

m
jk (4.15)

and

P ijkl
def
= −

∂Π i
jk

∂yl
(4.16)

respectively.

Proposition 4.6. A Finsler manifold (M,L) is a Berwald space if and only if RHV∇ vanishes

identically.

By the assumption (4.8) the projection dπ is always parallel with respect to ∇. Then we

define the torsion tensor field T∇ of ∇ similarly to the one TD of D.

Definition 4.2. The V -valued 2-form T∇ defined by

T∇
def
= ∇θ (4.17)

is called the torsion of ∇.

Since ∇ is also flat in the vertical direction and V is integrable, we obtain T∇(XV , YV ) ≡ 0

for all vector fields X,Y on TM. Therefore T∇ splits as T∇ = THH∇ + THV∇ .

First, we have

THH∇ (X,Y ) := T∇(XH , Y H)

= ∇XHθ(Y H)−∇Y Hθ(XH)− θ([XH , Y H ])

= −θ([XH , Y H ])

= dθ(XH , Y H)

= TD(XH , Y H),

that is,

THH∇ = THHD . (4.18)
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Second, we have

THV∇ (X,Y ) := T∇(XH , Y V )

= ∇XHθ(Y V )−∇Y V θ(XH)− θ([XH , Y V ])

= ∇XHY V − θ(LXHY V )

= ∇XHY V −DXHY V

= PXH (Y V ),

therefore we obtain

THV∇ (X,Y ) = PXH (Y V ). (4.19)

With respect to the local frame field

{
∂

∂y1
, · · · , ∂

∂yn

}
the torsion T∇ is given by

T∇ =
∑ ∂

∂yi
⊗
(
dθi +

∑
Π i
j ∧ θj

)
. (4.20)

The torsion form T i∇ is given by

T i∇ = dθi +
∑

ωij ∧ θj +
∑

P ij ∧ θj = T iD +
∑

P ij ∧ θj .

Consequently, from (3.15), the torsion T∇ of ∇ is given by

T∇ =
∑ ∂

∂yi
⊗
(
Rijkdx

j ∧ dxk
)

+
∑ ∂

∂yi
⊗
(
P ijkdx

j ∧ θk
)
,

where the coefficients Rijk are given by (3.16) and P ijk are defined by

P ijk
def
= Π i

jk − Γ ijk (4.21)

respectively.

Proposition 4.7. A Finsler manifold (M,L) is a Landsberg space if and only if THV∇ vanishes

identically.

4.3 Some identities

We list up some identities concerning R∇ and T∇. The definition of T∇ and the Ricci identity

imply T∇ = R∇E = RHH∇ E +RHV∇ E . Thus we have
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Proposition 4.8. The curvature R∇ and the torsion T∇ satisfies the relation T∇ = R∇E:

RHH∇ E = THH∇ (4.22)

and

RHV∇ E = THV∇ . (4.23)

The second identity and Proposition 4.7 implies the following proposition.

Proposition 4.9. Every Berwald space is a Landsberg space.

The symmetry assumption (4.8) and Ricci identity ∇2(dπ) = R∇ ∧ dπ imply R∇ ∧ dπ = 0.

The LHS of this identity implies

(R∇ ∧ dπ)(XH , Y H , ZH) = R∇(XH , Y H)dπ(ZH) +R∇(Y H , ZH)dπ(XH)

+R∇(ZH , XH)dπ(Y H)

= RHH∇ (X,Y )ZV +RHH∇ (Y,Z)XV +RHH∇ (Z,X)Y V

and

(R∇ ∧ dπ)(XH , Y V , ZH) = R∇(XH , Y V )dπ(ZH) +R∇(Y V , ZH)dπ(XH)

+R∇(ZH , XH)dπ(Y V )

= RHV (X,Y )ZV −RHV∇ (Z, Y )XV .

Therefore we obtain the following.

Proposition 4.10. (Bianchi identities) The horizontal part RHH∇ and the mixed part RHV∇
satisfy the following:

RHH∇ (X,Y )ZV +RHH∇ (Y, Z)XV +RHH∇ (Z,X)Y V ≡ 0 (4.24)

and

RHV (X,Y )ZV −RHV∇ (Z, Y )XV ≡ 0. (4.25)
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The G-compatibility assumption (4.4) gives rise to

[XH , Y H ]G(ZV ,W V )

= XH(Y HG(ZV ,W V ))− Y H(XHG(ZV ,W V ))

= XH(G(∇Y HZV ,W V ) +G(ZV ,∇Y HW V ))− Y H(G(∇XHZV ,W V ) +G(ZV ,∇XHW V ))

= G((∇XH∇Y H −∇Y H∇XH )ZV ,W V ) +G(ZV , (∇XH∇Y H −∇Y H∇XH )W V )

and

[XH , Y H ]G(ZV ,W V ) = (∇[XH ,Y H ])(Z
V ,W V ) +G(∇[XH ,Y H ]Z

V ,W V ) +G(ZV ,∇[XH ,Y H ]W
V )

= −2C(THH∇ (X,Y ), ZV ,W V ) +G(∇[XH ,Y H ]Z
V ,W V )

+G(ZV ,∇[XH ,Y H ]W
V ).

Therefore we obtain the following.

Proposition 4.11. The curvature R∇ and the torsion T∇ satisfy the following:

G(RHH∇ (X,Y )ZV ,W V ) +G(RHH∇ (X,Y )W V , ZV ) + 2C(THH∇ (X,Y ), ZV ,W V ) = 0 (4.26)

G(RHV∇ (X,Y )ZV ,W V ) +G(ZV , RHV∇ (X,Y )W V ) + 2(∇XHC)(Y V , ZV ,W V )

+ 2C(THV∇ (X,Y ), ZV ,W V ) = 0 (4.27)

Proof. The second identity is obtained by direct computations using the almost G-compatibility

assumption (4.4).

We suppose that RHH∇ = 0. The identity (4.22) implies THH∇ = 0 and the horizontal sub-

bundle H is integrable. Then Proposition 4.2 guarantees the existence of a parallel vector field

ζ : U −→ TM |U . Since ζ is parallel, we have

dζ(X) = XH ∈ Hζ(x) (4.28)

at each ζ(x) for all X ∈ Γ (TM). Then we define a local metric gζ on the open set U by

gζx(Y, Z) := Gζ(x)(E ◦ Y, E ◦ Z) = Gζ(x)(Y
V , ZV )
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for all Y,Z ∈ Γ (TM), where the superscript ”V ” denotes the vertical lift along ζ, e.g., Y V (x) =

(E ◦ Y )ζ(x). We define a linear connection ∇ζ on TM |U by

(∇ζXY )V := ∇dζ(X)Y
V = ∇XHY V

for all X,Y ∈ Γ (TM). Then ∇ζ is flat. In fact, since [XH , Y H ] = [X,Y ]H because of the

integrability of H, we obtain

((∇ζ ◦ ∇ζZ(X,Y ))V = (∇ζX∇
ζ
Y Z)V − (∇ζY∇

ζ
XZ)V − (∇ζ[X,Y ]Z)V

= ∇XH∇Y HZV −∇Y H∇XHZV −∇[X,Y ]HZ
V

= ∇XH∇Y HZV −∇Y H∇XHZV −∇[XH ,Y H ]Z
V

= RHH∇ (X,Y )ZV

= 0

for all X,Y, Z ∈ Γ (TM). Therefore ∇ζ is a flat connection on TM |U . Furthermore

(∇ζXg
ζ)(Y,Z) = Xgζ(Y,Z)− gζ(∇ζXY,Z)− gζ(Y,∇ζXZ)

= dζ(X)G(Y V , ZV )−G(∇dζ(X)Y
V , ZV )−G(Y V ,∇dζ(X)Z

V )

= XHG(Y V , ZV )−G(∇XHY V , ZV )−G(Y V ,∇XHZV )

= (∇XHG)(Y V , ZV )

= 0

implies that the metric gζ is a flat Riemannian metric on U , since ∇ζ is torsion-free. Therefore

M is locally Euclidean.

Theorem 4.1. If a smooth manifold M admits a Finsler metric satisfying RHH∇ ≡ 0, then M

is locally Euclidean.

The curvature RD and the torsion TD satisfy some important identities. For later conve-

nience, we are concerned with the following identity.

RHVD (X,Y )ZV = RHV∇ (X,Y )ZV + (∇XHTHV∇ )(Y,Z). (4.29)

4.4 Variational formulae in Finsler manifolds

The contains of this section refer from [Ai-Ko]. Let (M,L) be a Finsler manifold with the Rund

connection ∇. The canonical lift c̃ : I → TM of a regular oriented curve c = c(t) in M is defined
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by c̃(t) = (c(t), ċ(t)). The velocity field of c̃ is given by

dc̃

dt
=

(
dc

dt

)H
+∇(dc/dt)H

(
E ◦ dc

dt

)
= ċH +∇(dc/dt)H

(
E ◦ dc

dt

)
,

where ċH and ċV are vertical and horizontal lifts of the velocity field ċ = dc/dt along c̃ respec-

tively. Here the second term in RHD of the above is given by

∇ċH ċV =
∑[

d2xi

dt2
+
∑

Π i
jk(x, ẋ)

dxj

dt

dxk

dt

]
∂

∂yi
.

Definition 4.3. A regular oriented curve c : I →M is called a path if

dc̃

dt
= ċH (4.30)

or equivalently
d2xi

dt2
+
∑

Π i
jk(x, ẋ)

dxj

dt

dxk

dt
= 0 (4.31)

is satisfied. In particular, if the parameter t is a normal parameter of c with respect to L, then

c = c(t) is called a geodesic in (M,L).

Let c = c(t) be a smooth curve in M .

Definition 4.4. A section Z ∈ Γ (V ) is said to be parallel along its natural lifts c̃ if Z satisfies

c̃∗∇Z = 0. Especially the vertical lift XV of s vector field X on M is parallel along c̃ if

c̃∗(∇XV ) = 0 (4.32)

is satisfied.

Since XV is the vertical lift of X ∈ Γ (TM), the covariant derivative of XV in the vertical

direction vanishes identically. Thus we have

c̃∗(∇XV )

(
d

dt

)
= ∇XV

(
dc̃

dt

)
= ∇XV (ċH +∇ċH ċV ) = ∇ċHXV .

Hence the vertical lift XV along c̃ is parallel if and only if

∇ċHXV =
∑[

dXi

dt
+
∑

XjΠ i
jk(x, ẋ)

dxk

dt

]
∂

∂xi
= 0,
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namely
dXi

dt
+
∑

Π i
jk(x, ẋ)Xj dx

k

dt
= 0 (4.33)

is satisfied.

Remark 4.2. The parallelism along a curve c in M and the one along the natural lift ċ in TM

must be distinguished strictly. A vector field X on M is parallel along a curve c in M if c̃∗Xθ = 0

is satisfied, where c̃X is the lift of c defined by c̃X(t) = (c(t), (X ◦ c)(t)). Since ∇ satisfies (4.5),

this definition can be written as

(c̃∗Xθ)

(
d

dt

)
= θ

(
dc̃X
dt

)
= θ(ċH + LċH (E ◦X)) = ∇ċH (E ◦X) = 0.

Therefore X is parallel along c if and only if X satisfies

dXi

dt
+
∑

Π i
jk(x,X)Xj dx

k

dt
= 0. (4.34)

If ∇ is induced from a linear connection on TM , e.g., if (M,L) is a Berwald space, the vertical

lift XV is parallel along c̃ if and only if X is so along c.

In the sequel, we use the notation ∇tXV instead of c̃∗(∇XV ) for any X ∈ Γ (TM) and its

vertical lift XV along c̃ :

∇tXV = ∇ċHXV .

Let X and Y be vector fields along a path c in (M,L). Then, if c is a path in (M,L), then we

have
d

dt
G(XV , Y V ) = G(∇tXV , Y V ) +G(XV ,∇tY V ), (4.35)

since dc̃/dt is horizontal. Hence we have

Proposition 4.12. Let c be a path in a Finsler manifold (M,L). If XV and Y V are parallel

along c̃, then the inner product G(XV , Y V ) is constant along c̃.

A regular oriented curve γ(t) = (xi(t)) with normal parameter t is a geodesic if and only if

(4.31) is satisfied. Proposition 4.12 shows that, if γ is a geodesic, the tangent vector γ̇ has a

constant norm and γ has constant speed. In the sequel, we always assume that the parameter

of a geodesic is normal unless otherwise stated.

Let γX : I → M be a geodesic with initial point x = γX(0) and the initial direction

X = γ̇X(0), where the parameter t is, of course, normal. We shall define the exponential map exp

by exp(x,X) = γX(1) if X 6= 0 and exp(x, 0) = x. The restriction of exp to D∩TxM is denoted
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by expx. The restricted exponential map expp maps the rays through the origin 0 ∈ TxM to the

unique geodesics through the point x in a sufficiently small ball Bx(r) = {X ∈ TxM |‖v‖ < r}.
The exponential map exp is defined on an open neighborhood D of the zero section o(M)

of TM , and exp is C∞-class away from o(M). Furthermore exp is C1-class at o(M), and its

derivative at o(M) is the identity map. By a result due to Akbar-Zaedah, the map exp is

C2-class at o(M) if and only if (M,L) is a Berwald space (see [Ba-Ch-Sh]).

For each X ∈ TxM, the radial geodesic γX is given by γX(t) = expx(tX) for all t ∈ I such that

either side is defined. This geodesic segment γX has the tangent vector field γ̇X with γ̇X(0) = X.

Since ∇t(γ̇X)V = 0, the identity (4.35) implies that ‖γ̇X‖2 = G((γ̇X)V , (γ̇X)V ) is constant along

γX , thus ‖γ̇X(t)‖ = ‖γ̇X(0)‖ = ‖X‖. Consequently we have

∫ 1

0
‖γ̇X(t)‖dt = ‖X‖.

4.4.1 The first variation of arc length and geodesics

We shall show the first variation formula in Finsler manifolds. For this end we introduce some

definitions.

Let c = c(t) ∈ Γ (p, q) be a regular oriented curve with unit speed, that is, ‖ċ(t)‖ = 1.

Then a variation of c is a family {cs} of oriented curve cs(t) parameterized by s ∈ (−ε, ε) such

that c0(t) = c(t) for all t ∈ I. A variation Γc is said to be proper if it fixes the end points,

that is, cs(0) = p and cs(1) = q. We suppose that the map Γc : (−ε, ε) × I → M defined by

Γc(s, t) = cs(t) is smooth. For the variational problem of arc length, it is enough to assume that

Γc is piecewise differentiable with respect to the parameter t (cf. [Ma], Chapter VIII). However,

we shall assume the smoothness of Γc for the sake of simplicity of discussions.

By the assumption the map Γc satisfies Γc(0, t) = c(t), p = Γc(s, 0) and q = Γc(s, 1). Setting

s =constant for each s ∈ (−ε, ε), the parameterized curve cs : I → M defined by cs(t) =

Γc(s, t) is called a s-curve, while the parameterized curve ct(s) = Γc(s, t) is a t-curve which is a

transversal curve to c. In local coordinates, we set Γc(s, t) = (x1(s, t), · · · , xn(s, t)). We denote

by S = ∂ct/∂s and T = ∂cs/∂t the tangent vector fields of t-curve and s-curve respectively:

S =
∑ ∂xi

∂s

∂

∂xi
, T =

∑ ∂xi

∂t

∂

∂xi
.

In particular, the vector field Θ(t) along c defined by

Θ(t) =

(
∂ct
∂s

)
(0,t)

= S(0, t)

is called the variational field induced from Γc. If Γc satisfies cs(0) = c(0) = p and cs(1) = c(1) = q

for all s ∈ (−ε, ε), then the variational field Θ is proper, that is, Θ satisfies Θ(0) = Θ(1) = 0.



56 CHAPTER 4. RUND CONNECTIONS

We are always concerned with the variation Γc whose variational field Θ is independent of

the tangent vector ċ at least one point on c. Let Θ = Θ(t) be any vector field along a regular

oriented curve c = c(t). Then there exists a variation Γc which induces Θ as its variational field.

In fact, if we take Γc(s, t) = exp(sΘ(t)), then Γc : (−ε, ε) × I → M is a variation of c with

variational field Θ.

Lemma 4.1. Let Θ be any vector field along c. Then Θ is a variational field of some variation

Γc of c. If Θ is proper, then Θ is the variational field induced from a certain proper variation

Γc.

Let SV and T V be the vertical lifts of S and T along the canonical lift c̃s of s-curve cs

respectively:

SV (c̃s(t)) =
∑ ∂xi

∂s

(
∂

∂yi

)
c̃s

, T V (c̃s(t)) =
∑ ∂xi

∂t

(
∂

∂yi

)
c̃s

.

Lemma 4.2. Let Γc : (−ε, ε)× I →M be a variation. Then we have

∇SHT V = ∇T HSV (4.36)

along c̃s = (cs(t), ċs(t))).

Proof. Along the curve c̃s we have

∇SHT V =
∑[

∂2xi

∂s∂t
+
∑

Π i
jk(c̃s(t))

∂xj

∂t

∂xk

∂s

](
∂

∂yi

)
c̃s

and

∇T HSV =
∑[

∂2xi

∂t∂s
+
∑

Π i
jk(c̃s(t))

∂xj

∂s

∂xk

∂t

](
∂

∂yi

)
c̃s

Then (4.36) is obtained from (4.11).

Let Γc be a proper variation of a regular oriented curve c ∈ Γ (p, q). We compute the first

variation of the length functional FL(cs). Since G(T V , T V ) = L(cs(t), ċs(t))
2 = FL(cs)

2, we have

d

ds
FL(cs) =

1

2

∫ 1

0

1

‖T ‖
∂G(T V , T V )

∂s
dt.

Furthermore, (4.35) and (4.36) imply

1

‖T ‖
∂G(T V , T V )

∂s
=

2

‖T ‖
G(∇SHT V , T V ) =

2

‖T ‖
G(∇T HSV , T V ) (4.37)
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along c̃s. Consequently we have

1

‖T ‖
∂G(T V , T V )

∂s
=

2

‖T ‖

[
d

dt
G(SV , T V )−G(SV ,∇T HT V )

]
,

which gives us

d

ds
FL(cs) =

∫ 1

0

1

‖T ‖

[
d

dt
G(SV , T V )−G(SV ,∇T HT V )

]
dt.

Evaluating s = 0, ‖T ‖s=0 = ‖ċ(t)‖ = 1 derives the following:

Proposition 4.13. (First Variation Formula) Let c : I → M be a regular oriented curve and

Γc a proper variation of c. Then

d

ds

∣∣∣∣
s=0

FL(cs) = −
∫ 1

0
G(ΘV ,∇tċV )dt, (4.38)

where Θ is the variational field of Γc.

A regular oriented curve c is said to be a stationary point of the functional FL if

(dFL(cs)/ds)s=0 = 0

for any proper variation Γc. If a regular oriented curve c : I →M is a geodesic, then c satisfies

(2.3), thus c is a stationary point of FL from (2.6).

Conversely we suppose that c is a stationary point of the functional FL. Since the condition(
FL(cs)

ds

)
s=0

= 0

is satisfied for any variational field Θ along c, we take Θ(t) = ϕ(t)∇tċ for a smooth function ϕ

satisfying ϕ(0) = ϕ(1) = 0 and ϕ > 0 elsewhere. Then, since Θ is proper and from (4.38), we

have
d

ds

∣∣∣∣
s=0

FL(cs) = −
∫ 1

0
ϕ(t)‖∇tċV ‖2dt,

which implies ∇tċV = 0 on I.

Proposition 4.14. A regular oriented curve γ in a Finsler manifold (M,L) is a stationary

point of the functional FL if and only if γ is a geodesic from p to q.

From Proposition 2.2 we have



58 CHAPTER 4. RUND CONNECTIONS

Theorem 4.2. Every FL-minimizing curve γ in (M,L) is a geodesic if γ is regular.

The converse of this theorem is also true.

Theorem 4.3. Every geodesic γ in a Finsler manifold (M,L) is locally FL-minimizing.

This theorem is proved by using the Gauss lemma. We define the geodesic ball Bx(r) centered

at x ∈M of radius r by Bx(r) = exp(B(r)) for the tangential ball Bx(r) = {X ∈ TxM |‖X‖ < r}.
Let Sx(r) = {X ∈ TxM |‖X‖ = r} be the tangent sphere. Then the set Sx(r) = exp(Sx(r)) is

called the geodesic sphere at x of radius r. Then the Gauss lemma is stated as follows.

Lemma 4.3. (The Gauss lemma) The radial geodesic γX is orthogonal to the geodesic sphere

Sx(r) at x ∈M.

For a proof of Theorem 4.3, we need more technical preliminaries, but we omit them here.

For the complete proof, see [Ba-Ch-Sh] or [Ch-Ch-La].

4.4.2 The Jacobi fields and conjugate points

A variation Γγ = Γγ(s, t) of a geodesic γ is said to be a geodesic variation if each s-curve γs is

also a geodesic. Since each s-curve γs is a geodesic, we have ∇T HT V = 0.

Let X be a vector field along γs. Then, since [S, T ] = 0, we have

∇SH∇T HXV −∇T H∇SHXV = RHH(S, T )XV (4.39)

along γs. From this equation, we get the so-called the Jacobi equation.

Proposition 4.15. (The Jacobi Equation) Let γ be a geodesic and Θ the variational field of a

geodesic variation Γγ of γ in a Finsler manifold (M,L). Then Θ satisfies

∇t∇tΘV +RHH(Θ, γ̇)γ̇V = 0. (4.40)

Proof. Since each curve γs is a geodesic, we have ∇tT V = 0, and this yields ∇s∇tT V = 0. On

the other hand the symmetric property (4.36) and the equation (4.39) imply

∇SH∇T HT V = ∇T H∇SHT V +RHH(S, T )T V = ∇T H∇T HSV +RHH(S, T )T V

along γs. Since S(0, t) = V (t) and T (0, t) = γ̇, we obtain (4.40).
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Definition 4.5. Let (M,L) be a Finsler manifold. The differential equation (4.40) is called the

Jacobi equation. A vector field J along a geodesic γ satisfying (4.40):

∇t∇tJV +RHH(J, γ̇)γ̇V = 0 (4.41)

is called a Jacobi field in (M,L).

By definition the variational field Θ of a geodesic variation of a geodesic γ is a Jacobi

field. Conversely every Jacobi field along a geodesic γ is the variational field of some geodesic

variation of γ. The differential equation (4.41) is linear and of second order, we have 2n linearly

independent solutions. Therefore, along any geodesic γ, the set of Jacobi field is a 2n-dimensional

vector space.

Definition 4.6. Let γ ∈ Γ (p, q) be a geodesic segment in M . Then q is said to be conjugate

along γ if there exists a Jacobi field J(6= 0) along γ such that J vanishes at p and q.

For X ∈ TpM, we set q = exppX. For an arbitrary Y ∈ TpM, we shall compute the differential

(expp)∗Y at X:

(expp)∗Y =
d

ds

∣∣∣∣
s=0

(expp)(X + sY ).

To compute (expp)∗, we define a geodesic variation Γγ of γX by Γγ(s, t) = exppt(X + sY ). The

variational field J = ∂Γγ/∂s is a Jacobi field along γX , and we have J(1) = (expp)∗Y. The

conjugate points are the image of the singularities by the exponential mapping.

Proposition 4.16. Let γX(t) = expp(tX) (t ∈ I) be the radial geodesic for X ∈ TxM. Then

expp is a local diffeomorphism if and only if q = exppX is not conjugate to p along γX .

4.4.3 The second variational formula and index form

Let γ be a geodesic with unit speed. We shall compute the second variation of the length

functional FL. We shall compute

d2

ds2

∣∣∣∣
s=0

FL(γs) =

∫ 1

0

[
∂

∂s

G(∇T HSV , T V

‖T ‖

]
s=0

dt.

Differentiating this with respect to s, we have

∂

∂s

G(∇T HSV , T V )

‖T ‖
= − 1

‖T ‖2
∂‖T ‖
∂s

G(∇T HSV , T V ) +
1

‖T ‖
∂

∂s
G(∇T HSV , T V ).
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From (2.2) and (2.4), we get

∂‖T ‖
∂s

=
1

‖T ‖
G(∇T HSV , T V ).

Furthermore

∂

∂s
G(∇T HSV , T V ) = G(∇SH∇T HSV , T V ) +G(∇T HSV ,∇SHT V )

= G(∇T H∇SHSV +RHH(S, T )SV , T V ) +G(∇T HSV ,∇T HSV ).

Consequently we have

d2FL(γs)

ds2

=

∫ 1

0

1

‖T ‖

[
G(∇T H∇SHSV +RHH(S, T )SV , T V ) + ‖∇T HSV ‖2 −

G(∇T HSV , T V )2

‖T ‖2

]
dt

along γs. Since ∇T HT V = 0 and Θ(0) = Θ(1) = 0 imply∫ 1

0
[G(∇T H∇SHSV , T V )]s=0dt =

∫ 1

0

[
∂

∂t
G(∇SHSV , T V )

]
s=0

dt

= G(∇ΘHΘV , γ̇V )t=1 −G(∇ΘHΘV , γ̇V )t=0

= 0,

we have

d2

ds2

∣∣∣∣
s=0

LF (γs) =

∫ 1

0
[G(RHH(Θ, γ̇)ΘV , γ̇V ) + ‖∇tΘV ‖2 −G(∇tΘV , γ̇V )2]dt. (4.42)

Let ΘV> = G(ΘV , γ̇V )γ̇V be the tangential part of ΘV . We also denote by ΘV⊥ the normal part

of ΘV , that is, ΘV⊥ = ΘV −ΘV> . Then ∇tγ̇V = 0 implies ∇tΘV> = ∇t(G(ΘV , γ̇V )γ̇V ) = (∇tΘV )>

and ∇tΘV⊥ = ∇tΘV −∇tΘV> . Hence we obtain

‖∇tΘV ‖2 = ‖∇tΘV>‖2 + ‖∇tΘV⊥‖2 = G(∇tΘV , γ̇V )2 + ‖∇tΘV⊥‖2.

Then, since G(RHH(γ̇, γ̇)•, •) = 0 and C(γ̇, •, •) = 0 along γ, we have

G(RHH(•, •)γ̇V , γ̇V ) = 0.
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Hence we get

G(RHH(Θ, γ̇)ΘV , γ̇V ) = G(RHH(Θ⊥, γ̇)ΘV⊥ , γ̇
V ).

Consequently we obtain the second variation formula of LF .

Proposition 4.17. (Second Variation Formula) Let γ : I →M be any geodesic with unit speed,

Γγ a proper variation of γ and Θ its variation field. Then

d2

ds2

∣∣∣∣
s=0

LF (γs) =

∫ 1

0
[G(RHH(Θ⊥, γ̇)ΘV⊥ , γ̇

V ) + ‖∇tΘV⊥‖2]dt, (4.43)

where Θ⊥ is the normal part of Θ.

The Bianchi identity implies

G(RHH(Θ⊥, γ̇)ΘV⊥ , γ̇
V ) = −G(RHH(Θ⊥, γ̇)γ̇V , ΘV⊥)

along γ, and since Θ⊥ is normal to γ̃, we obtain

G(RHH(ΘV⊥ , γ̇)ΘV⊥ , γ̇
V ) = −‖ΘV⊥‖2K(ΘV⊥)

for the flag curvature K. Hence the second variation formula has the form

d2

ds2

∣∣∣∣
s=0

LF (γs) =

∫ 1

0
[‖∇tΘV⊥‖2 − ‖ΘV⊥‖2K(ΘV⊥)]dt. (4.44)

Proposition 4.18. Let (M,F ) be a Finsler manifold with a non-positive flag curvature K.

Then the second variation of any geodesic satisfies

d2

ds2

∣∣∣∣
s=0

LF (γs) > 0.

Proof. The assumption K ≤ 0 induces

‖∇tΘV⊥‖2 − ‖ΘV⊥‖2K(ΘV⊥) ≥ 0.

Hence (d2LF (γs)/ds
2)s=0 ≥ 0. if (d2LF (γs)/ds

2)s=0 = 0, then we have ‖∇tΘV⊥‖2 = 0, so∇tΘV⊥ =

0. Then, since V is proper, we have Θ⊥ = 0, implies that the variational field ΘV has the form

ΘV = ΘV> = ϕ(t)γ̇V (t) for some function ϕ on each point of γ. However, this is a contradiction

to the assumption that Θ is independent of γ̇ at least one point on γ.
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We define the index form on a Finsler manifold (M,F ). Let γ be a unit speed geodesic in

(M,F ). We set

I(X,Y ) =

∫ 1

0
[G(RHH(X, γ̇)Y V , γ̇V ) +G(∇tXV ,∇tY V )]dt, (4.45)

for normal proper vector fields X,Y along γ. The index form I is a symmetric bi-linear form

on the space of normal proper vector fields. In fact, the Bianchi identity implies

G(RHH(X, γ̇)Y V , γ̇V ) +G(RHH(γ̇, Y )XV , γ̇V ) +G(RHH(Y,X)γ̇V , γ̇V ) = 0.

Since the last term on the left hand side vanishes, we have

G(RHH(X, γ̇)Y V , γ̇V ) = −G(RHH(γ̇, Y )XV , γ̇V ) = G(RHH(Y, γ̇)XV , γ̇V )

along γ. Thus I is a symmetric bi-linear form: I(X,Y ) = I(Y,X).

Since G(RHH(X, γ̇)Y V , γ̇V ) = −G(RHH(X, γ̇)γ̇V , Y V ) along γ, if X and Y are proper, we

have ∫ 1

0
G(∇tXV ,∇tY V ) = −

∫ 1

0
G(∇t∇tXV , Y V ),

which implies

I(X,Y ) = −
∫ 1

0
[G(∇t∇tXV −RHH(X, γ̇)γ̇V , Y V )]dt. (4.46)

By the definition of I and (2.13), the second variation of LF of the unit speed geodesic is given

by I(X,X), and it can be thought as the Hessian of the length functional LF . Thus, if γ is

minimizing, then I(X,X) ≥ 0 for any proper normal vector field X along γ. The following

is a generalization of the well-known theorem in Riemannian geometry which shows that no

geodesics is minimizing, passing its first conjugate point.

Theorem 4.4. If γ ∈ Γ (p, q) is a geodesic segment in a Finsler manifold (M,F ) such that γ

has an interior conjugate point to p, then there exists a proper normal vector field X along γ

such that I(X,X) < 0. In particular, γ is not minimizing.

We also consider the completeness of Finsler manifolds.

Definition 4.7. A Finsler manifold (M,F ) is said to be geodesically complete if the exponential

mapping expx is defined on the whole of TxM for every point x ∈M.

We denote by E(p, δ) the subset of the closure B(p, δ) consisting of the points joined by a

minimal geodesic to p. Then, if (M,F ) is geodesically complete, the following three conditions
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are mutually equivalent.

(1) E(p, δ) is compact,

(2) E(p, δ) = B(p, δ) for all δ > 0,

(3) any ordered two points in M are joined by a minimal geodesic.

We shall introduce another completeness of Finsler manifolds.

Definition 4.8. A sequence {pm} of points in (M,F ) is called a Cauchy sequence, if for any

ε > 0 there exists an integer N such that dF (pi, pj) < ε (i, j > N). Then (M,F ) is said to be

metrically complete if any Cauchy sequence in M converges.

The following theorem is a natural generalization in Riemannian geometry.

Theorem 4.5. (Hopf-Rinow Theorem) Let (M,F ) be a connected Finsler manifold. Then the

following three conditions are mutually equivalent.

(1) (M,F ) is geodesically complete,

(2) (M,F ) is metrically complete with respect to the distance df ,

(3) Any bounded closed subset of M is compact.
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Chapter 5

Geometry of conformal Finsler

manifolds

5.1 Conformal class of Finsler metrics

Let M be an n-dimensional smooth connected manifold with a Riemannian metric g. In this

section, a linear connection ∇ is said to be conformal if the parallel transport with respect to ∇
preserves angles but not the metric g. Thus ∇ is conformal if and only if there exists a one-form

w(g) such that

∇g = 2w(g)⊗ g. (5.1)

Let g̃ = e2σg denote a conformal deformation of g by any smooth function σ ∈ C∞(M). If ∇ is

also conformal with respect to g̃, the relation ∇g̃ = 2w(g̃)⊗ g̃ implies

w(g̃) = w(g) + dσ. (5.2)

In the sequel we shall denote by c the conformal class of g, that is, c = {eσg|σ ∈ C∞(M)}.
Denoting by Λ1(M) the C∞(M)-module of one-forms on M , a Weyl structure on (M, c) is a

map w : c→ Λ1(M) satisfying (5.2). The triplet (M, c,w) is called a Weyl manifold.

Theorem 5.1. [Fo] Let (M, c,w) be a Weyl manifold. Then there exists a unique torsion free

linear connection ∇ satisfying (5.1).

Definition 5.1. The linear connection ∇ is called the Weyl connection of (M, c,w).

The form wg := w(g) in (5.1) depends on g ∈ c, however the exterior derivative dwg is

independent of the choice of g ∈ c. Thus we define W ∈ Λ2(M) by W = dwg for any g ∈ c.

65
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Then we say that the Weyl structure w is closed if W = 0. If wg is closed, then we may write

wg = dσU for a local function σU = σU (x) defined on an open subset U ⊂M. Thus, from (5.1),

we have

∇X(e−2σU g) = 2{−dσU (X) + wg(X)}e−2σU g = 0. (5.3)

Therefore the Weyl connection ∇ is the Levi-Civita connection of a local Riemannian metric

e−2σU g if W = 0.

Let L(M) be the frame bundle overM with the structure groupGL(n,R), and L = L(M)×ρR
the density line bundle over (M, g), where ρ is the representation of GL(n,R) defined by ρ :

GL(n,R) 3 gUV 7−→ |det gUV | ∈ GL(1,R). Then L is a trivial line bundle even if M is orientable.

We can define an inner product µg on L by the determinant det g, and any inner product µ̃ on

L is written as µ̃ = fµg for a positive f ∈ C∞(M). If we set f = e2nσ for σ ∈ C∞(M), µ̃ is

written as µ̃ = e2nσµg = µg̃ for the conformal deformation g̃ = e2σg of g.

By taking the trace of connection forms, the Levi-Civita connection ∇g of (M, g) induces a

flat connection ∇L,g on L such that ∇L,gµg = 0. Since connections on L form an affine space

modeled on Λ1(M), any connection ∇L on L may be written in the form

∇L
X = ∇L,g

X + βg(X)id, (5.4)

where id is the identity morphism of L and βg ∈ Λ1(M) is determined by ∇L
Xµg = βg(X)µg.

For a conformal deformation g̃ = e2σg of g, the corresponding one βg̃ is given by

βg̃ = βg + ndσ. (5.5)

Hence, defining wg ∈ Λ1(M) by w(g) = wg := βg/n, we obtain a Weyl structure w on (M, c).

Conversely, any Weyl structure w on (M, c) determines a connection ∇L on L by ∇L =

∇L,g + nwg ⊗ id for any g ∈ c. Since the curvature of ∇L is given by ndwg ⊗ id, the Weyl

structure w is closed if and only if the corresponding connection ∇L on L is flat.

Because of V ∼= π∗TM , the vertical sub-bundle V is associated with the pull-back π∗L(M)

of the frame bundle L(M) over M . We denote by L̃ := π∗L the pull-back of the density bundle

L over M . We can define an inner product µG on L̃ by

µG

(
∂

∂y
,
∂

∂y

)
= detG,

where
∂

∂y
=

∂

∂y1
∧ · · · ∧ ∂

∂yn
denotes the natural local frame field for L̃.

The Rund connection (H,∇) induces a Finsler connection (H,∇R) on L̃ by the trace of
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connection coefficients, namely,

∇R(∂/∂xk)H
∂

∂y
=
∑

Πm
mk

∂

∂y
,

where

Πm
mk =

(
∂

∂xk

)H
log
√

detG.

By definition (H,∇R) is flat in the vertical direction. Then

(
∇R(∂/∂xk)HµG

)( ∂

∂y
,
∂

∂y

)
=

(
∂

∂xk

)H
detG− µG

(
∇R(∂/∂xk)H

∂

∂y
,
∂

∂y

)
− µG

(
∂

∂y
,∇R(∂/∂xk)H

∂

∂y

)
=

(
∂

∂xk

)H
detG− 2

(∑
Πm
mk

)
detG

= 0.

Hence ∇R is always compatible with the metric µG in the horizontal direction H :

∇R(∂/∂xk)HµG ≡ 0. (5.6)

Further the covariant derivative of µG in the vertical direction, i.e.,(
∇R∂/∂ykµG

)
(S, S) =

∂(detG)

∂yk

and Deicke’s theorem [De] shows that ∇RµG = 0 if and only if (M,L) is a Riemannian manifold.

Theorem 5.2. The connection (H,∇R) is compatible with the metric µG if and only if (M,L)

is a Riemannian manifold.

This theorem is also true for the connection (H,∇B) on L̃ induced from (H,D). We suppose

that ∇B is compatible wih the metric µG in the horizontal direction H, namely, we assume that

(H,∇B) satisfies

∇B(∂/∂xk)HµG = 0.

By easy computations, this assumption is equivalent to

∑
Γmmk =

(
∂

∂xk

)H
log
√

detG =
∑

Πm
mk. (5.7)

If (M,L) is a Landsberg space, then this condition is satisfied, but not vise-versa in general.



68 CHAPTER 5. GEOMETRY OF CONFORMAL FINSLER MANIFOLDS

Definition 5.2. ([Mo]) A Finsler manifold (M,L) is said to be a weak Landsberg space if

∇B = ∇R.

Let dµ =
√

detGdy1 ∧ · · · ∧ dyn denotes the volume form on each Riemannian space

(TxM,Gx). We may consider dµ as a section of the dual L̃∗, namely, the Riemannian den-

sity of (TxM,Gx) (see [La]). If we use the same notation ∇B for the induced connection on L̃∗,
the condition (5.7) is equivalent to ∇B

XHdµ = 0. Thus (M,L) is weak Landsberg space if and

only if

LXHdµ = 0 (5.8)

is satisfied.

Remark 5.1. In a complex Finsler manifold there exists a non-linear connection H satisfying

(5.8) (see [Ha-Ai]).

Theorem 5.3. A Finsler manifold is a weak Landsberg space if and only if its the Berwald

non-linear connection H preserves the density dµ. In a weak Landsberg space, the volume of any

compact subset in each fibre is preserved by the Berwald non-linear connection H.

Since (H,D) satisfies the metrical condition (3.4), the indicatrix Ix defined by L is preserved

by the Berwald non-linear connection H. Hence, in a weak Landsberg space, the volume of

indicatrix is constant. Such a space plays an important role in [Ba-Ch].

5.2 Finsler-Weyl connections and Wagner connections

In this section we shall extend the notion of Weyl structures to the category of Finsler geometry.

Suppose that the Berwald connection (H,D) of (M,L) is conformal, namely, we suppose

that (H,D) satisfies

DXHG = 2α(X)G,

for any vector field X on M and for some α ∈ Λ1(M). Then, since the deflection of (H,D)

vanishes, i.e., DXHE = 0, the identity (3.1) concludes LXHL = α(X)L. Hence (3.4) implies

α = 0, that is, (M,L) is a Landsberg space. Due to [Ma2] and [Ki], a Randers metric L is a

Landsberg metric if and only if L is a Berwald metric. These facts are also true if we use the

the Rund connection (H,∇) in stead of (H,D)

Proposition 5.1. If the Berwald connection (H,D) or the Rund connection (H,∇) is conformal,

then (M,L) is a Landsberg space. In particular, for any Randers space (M,L), if its Berwald

connection (H,D) or its Rund connection (H,∇) is conformal, then (M,L) is a Berwald space.
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We shall show that for any Finsler manifold (M,L) there exists a conformal Finsler connec-

tion (H,D).

Proposition 5.2. Let (M,L) be a Finsler manifold. For any α ∈ Λ1(M) there exists a unique

non-linear connection H and a Finsler connection (H,D) satisfying the following conditions for

any vector fields X,Y on M :

(1) (H,D) is conformal, i.e.,

DXHG = 2α(X)G. (5.9)

(2) (H,D) is symmetric, i.e.,

DXHY V −DYHXV − [X,Y ]V = 0. (5.10)

(3) The deflection (H,D) vanishes, i.e.,

DXHE = 0. (5.11)

Let N i
k be the coefficient of H, i.e.,(

∂

∂xk

)H
=

∂

∂xk
−
∑
N i
k

∂

∂yi
,

and let Kijk be the coefficients of (H,D):

D(∂/∂xk)H
∂

∂yj
=
∑
Kijk

∂

∂yi
.

If we put α =
∑
αkdx

k, the connection coefficients Kijk of (H,D) is given by

Kijk =
1

2

∑
Gir

[(
∂

∂xk

)H
Gjr +

(
∂

∂xj

)H
Grk −

(
∂

∂xr

)H
Gjk

]
− αjδik − αkδij + αiGjk, (5.12)

where we put αi =
∑
Gikαk, and the coefficients N i

k are given by

N i
k = −

∑
Nm
l y

lGirCrkm +
∑{

i
l k

}
yl −

(∑
αly

l
)
δik − αkyi +

(∑
Glky

l
)
αi

with ∑
Nm
l y

l =
∑{

m
k l

}
ykyl + 2

(∑
αly

l
)
ym − L2αm
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and Crkm = (∂Grk/∂y
m)/2.

In the case of α = 0, the Finsler connection (H,D) in Proposition 5.2 is just the Rund

connection (H,∇) of (M,L). If α is closed, the assumption (5.9) is written as DXH
(
e2σUG

)
= 0

for some σU ∈ C∞(U). Hence (H,D) is the Rund connection of a local Finsler metric eσUL.

From [Br] two Finsler metrics L and L̃ are said to be conformally equivalent if there exists

a smooth function σ ∈ C∞(M) such that L̃ = eσL. We denote by C the conformal equivalence

class of Finsler metrics on M . The pair (M, C) is called a conformal Finsler manifold. Any

conformal deformation L→ L̃ = eσL induces the conformal deformation G→ G̃ = e2σG of the

metric on V . Suppose that the Finsler connection (H,D) obtained by Proposition 5.2 is also

conformal with respect to G̃ = e2σG. Then DXHG̃ = 2α̃(X)G̃ implies α̃ = α + dσ. Thus it is

reasonable to call a map α : C 3 L→ α(L) ∈ Λ1(M) a Finsler-Weyl structure if α satisfies

α(L̃) = α(L) + dσ. (5.13)

We call the triplet (M, C, α) a Finsler-Weyl manifold.

Definition 5.3. [Ai1] The connection (H,D) is called the Finsler-Weyl connection of (M, C, α).

Remark 5.2. In [Ko] a Finsler-Weyl structure is also defined by assuming that H is conformal

with respect to the function L, i.e.,

LXHL = α(X)L, (5.14)

for any vector field X on M . Using (3.1) and (5.11), we can easily show that (5.9) implies (5.13).

Thus our notion of Finsler-Weyl structure is stronger than that in [Ko].

Denoting by αL =
∑
αjdx

j the one-form αL := α(L), (5.9) is written as

∂Gij
∂xk

−
∑
N l
k

∂Gij
∂yl

−
∑

GljKlik −
∑

GilKljk = 2αkGij , (5.15)

and the assumption (5.10) and (5.11) are described as Kijk = Kikj andN l
k =

∑
yjKijk respectively.

Since Gij are homogeneous of degree zero with respect to the variables y1, · · · , yn, (5.9) implies

∂Gij
∂xk

−
∑
N l
k

∂Gij
∂yl

−
∑

GljK
l
ik −

∑
GilK

l
jk = 0, (5.16)

where we put N l
k = N l

k + αky
l and Kijk = Kijk + αkδ

i
j . These functions define a non-linear
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connection H and a Finsler connection (H,D) which is semi-symmetric, i.e.,

D
XHY

V −D
YHX

V − [X,Y ]V = αL(X)Y V − αL(Y )XV . (5.17)

Furthermore, (H,D) satisfies

D
XH G = 0, (5.18)

and

D
XH E = 0. (5.19)

Definition 5.4. ([Ha-Ic]) The Finsler connection (H,D) is called the Wagner connection of

(M, C, α).

Therefore the Finsler-Weyl connection (H,D) of (M, C, α) determines the Wagner connection

(H,D) and vise-versa.

Remark 5.3. A Finsler manifold (M,L) is called a Wagner space if its Wagner connection

(H,D) is induced from a linear connection ∇ on TM , i.e., D
XH Y

V = (∇XY )V . If (M,L) is a

Wagner space and αL is closed, then (M,L) is locally conformal to a Berwald space [Ha-Ic].

5.3 Averaged Riemannian metrics and connections

Let Ix be the indicatrix at x ∈ M with the volume form dµI defined by (3.26). The volume

vL(x) of Ix is defined by

vL(x) :=

∫
Ix

dµI .

The averaged Riemannian metric of L is a Riemannian metric g in M defined by (3.29):

g(X,Y ) =
1

vL(x)

∫
Ix

G(XV , Y V )dµI (5.20)

for any vector fields X,Y on M .

Let L̃ = eσL be a conformal deformation of a Finsler metric L. The indicatrix Ĩx at x ∈M
with respect to L̃ is given by Ĩx = e−σIx, and the volume form dµ

Ĩ
on Ĩx is given by

dµ
Ĩ

=
∑

(−1)i−1
√

det G̃ widw1 ∧ · · · ∧ ďwi ∧ · · · ∧ dwn

at w = (w1, · · · , wn) ∈ Ĩx, where G̃ = e2σG is the metric on V defined by L̃. For the diffeomor-
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phism ψ : Ix 3 (x, y) 7−→ ψ(x, y) = (x, e−σy) ∈ Ĩx, we obtain

ψ∗(dµ
Ĩ
) =

∑
(−1)i−1enσ

√
detG ◦ ψ (e−nσyi) dy1 ∧ · · · ∧ ďyi ∧ · · · ∧ dyn

=
∑

(−1)i−1
√

detGyi dy1 ∧ · · · ∧ ďyi ∧ · · · ∧ dyn

= dµI ,

which implies

v
L̃

(x) =

∫
Ĩx

dµ
Ĩ

=

∫
Ix

ψ∗(dµ
Ĩ
) =

∫
Ix

dµI = vL(x).

Thus, in the sequel we use the notation v(x) instead of vL(x) for the volume of the indicatrix

Ix of any L ∈ C. The averaged Riemannian metric g̃ of L̃ is given by

g̃(X,Y ) =
1

v(x)

∫
Ĩx

G̃(XV , Y V )dµ
Ĩ

=
1

v(x)

∫
Ix

e2σ(G ◦ ψ)(XV , Y V )(ψ∗dµ
Ĩ
)

=
e2σ

v(x)

∫
Ix

G(XV , Y V )dµI

= e2σg(X,Y ).

Hence g̃ is given by the conformal deformation

g̃ = e2σg (5.21)

of the averaged Riemannian metric g of L.

Theorem 5.4. Let C be a conformal class of Finsler metrics on M , and let G be the metric on

V determined by any L ∈ C. Then, by averaging each metric G by (3.29), the class C determines

a conformal class c of Riemannian metrics on M .

C 3 L L̃ ∈ C

g̃ ∈ cc 3 g

-

-
? ?

conf.

conf.

avav �

Let (H,D) be the Wagner connection of a Finsler-Weyl manifold (M, C, α). Then the aver-
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aged connection of (H,D) is a linear connection ∇ on TM defined by

g(∇XY,Z) =
1

v(x)

∫
Ix

G(D
XHY

V , ZV )dµI (5.22)

for any vector fields X,Y and Z on M , where g is the averaged Riemannian metric of L.

The properties (5.18) and (5.19) of (H,D) lead us to

L
XHL = 0. (5.23)

Hence the parallel displacement with respect to Wagner non-linear connection H preserves every

indicatrix, i.e.,

Iϕt(x) = ϕHt (Ix),

where ϕt and ϕHt denote the flows generated by X and its horizontal lift XH respectively.

Therefore we have

X

(∫
Ix

fdµI

)
=

∫
Ix

{
XH(f)dµI + fL

XHdµI

}
(5.24)

for any f ∈ C∞(M).

Now we suppose that Wagner non-linear connection H preserves the density dµ :

L
XHdµ = 0. (5.25)

This assumption and L
XHE = 0 lead us to L

XHdµI = 0, and thus (5.24) implies that the volume

function v(x) is constant. If we normalize C so that v(x) = 1, then (5.18) and (5.25) lead us to

(∇Xg)(Y, Z)

= Xg(Y,Z)− g(∇XY,Z)− g(Y,∇XZ)

= X

(∫
Ix

G(Y V , ZV )dµI

)
−
∫
Ix

G(D
XHY

V , ZV )dµI −
∫
Ix

G(Y V ,D
XHZ

V )dµI

=

∫
Ix

(D
XHG)(Y V , ZV )dµI +

∫
Ix

G(Y V , ZV )L
XH(dµI)

= 0,
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which shows that ∇ is compatible with g. Furthermore, from (5.17),

g(∇XY −∇YX − [X,Y ], Z) =

∫
Ix

G(D
XHY

V −D
YHX

V − [X,Y ]V , ZV )dµI

=

∫
Ix

G(αL(X)Y V − αL(Y )XV − [X,Y ]V , ZV )dµI

= g(αL(X)Y − αL(Y )X,Z),

leads us to

∇XY −∇YX − [X,Y ] = αL(X)Y − αL(Y )X. (5.26)

Hence ∇ is semi-symmetric, that is, ∇ is the so-called Lyra connection of (M, c). Furthermore

the connection ∇ defined by

∇XY = ∇XY − αL(X)Y (5.27)

is symmetric, and ∇ satisfies

∇Xg = 2αL(X)g. (5.28)

Consequently the Finsler-Weyl structure α of (M, C) is a Weyl structure of (M, c), and ∇ is the

Weyl connection of (M, c, α).

Theorem 5.5. Let (M, C, α) be a Finsler-Weyl manifold and let (M, c, α) be the Weyl man-

ifold determined by (M, C, α). Suppose that the Wagner non-linear connection H of (M, C, α)

preserves the density dµ. Then the averaged connection ∇ of the Wagner connection (H,D) is

the Lyra connection of (M, c, α) and the deformed connection ∇ defined by (5.27) is the Weyl

connection of (M, c, α).

5.4 Conformal flatness of Finsler metrics

A Finsler manifold (M,L) is said to be flat or locally Minkowski if there exists a coordinate

system {U, (xi)}1≤i≤n on M such that L is independent of x ∈M.

Definition 5.5. A Finsler manifold (M,L) is said to be conformally flat if, for each point x ∈M ,

there exists a neighborhood U of x and a function σU on U such that LU = eσU (x)L(x, y) is a

flat Finsler metric in U .

Let (H,D) be the Finsler-Weyl connection of (M, C, α) and let ωij =
∑
Kijk dxk be the

connections form of (H,D). The curvature forms Ωi
j = dωij +

∑
ωil ∧ ωlj are given by

Ωi
j =

∑
k<l

Rijkl dxk ∧ dxl +
∑
P ijkl dxk ∧ θl,
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where θl = dyl +
∑
N l
k dx

k. The sets {dx1, · · · , dxn} and {θ1, · · · , θn} form the dual basis for

H∗ and V∗ respectively. The curvature tensors Rijkl and P ijkl are given by

Rijkl =
∑(

∂

∂xl

)H
Kijk −

∑(
∂

∂xk

)H
Kijl +

∑
KimkKmjl −

∑
KimlKmjk, (5.29)

and

P ijkl = −
∂Kijk
∂yl

, (5.30)

respectively. We say that (H,D) is flat if Ωi
j = 0.

Suppose that the Finsler-Weyl connection (H,D) is closed and flat. Then P ijkl = 0 shows

that the coefficients Kijk given by (5.12) are independent of the fiber coordinates y1, · · · , yn.
Therefore (H,D) is induced from a linear connection ∇ on TM , that is, DXHY V = (∇XY )V .

Then the Wagner connection (H,D) is also induced from a linear connection∇ on TM . Theorem

5.5 shows that ∇ is the Lyra connection and ∇ the Weyl connection of (M, c, α) :

Kijk =
{

i
j k

}
− αjδik − αkδij + αigjk,

where αi =
∑
girαr for the inverse (gir) of g ∈ c, and

{
i
j k

}
are Christoffel symbols of g. Since

∇ is also flat and ∇ is symmetric, there exists a coordinate system {U, (xi)}1≤i≤n on M such

that Kijk and N i
k =

∑
Kijkyk vanish on each U . Thus

αk =
1

n

∑{
m
m k

}
=

1

n

∂

∂xk
log
√

det g =
1

2

∂

∂xk
log(det g)1/n,

and the equation (5.15) is written as

∂
(
e2σU gij

)
∂xk

= 0, σU = −log(det g)1/n. (5.31)

Thus eσUL is independent of x ∈M .

Theorem 5.6. The conformal class C admits a conformally flat Finsler metric if and only if

its Finsler-Weyl connection (H,D) is closed and flat.

5.5 Conformally flat Randers metrics

From the discussion in the previous section, if a Finsler metric L is conformally flat, then the

averaged Riemannian metric g is also conformally flat. Conversely in this section, we shall show

that there exists a conformally flat Finsler metric if M is a hyperbolic space.
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A vector field E on a Riemannian manifold (M, g) is said to be semi-parallel if

∇gXE = ρ (X + εβ(X)E) (5.32)

for a constant ρ and ε = ±1, where β is the dual of E with respect g, that is, β(X) = g(X,E).

The integrability condition ∇gX∇
g
YE − ∇

g
Y∇

g
XE − ∇

g
[X,Y ]E = Rg(X,Y ) for the existence of E

satisfying (5.32) is given by

Rg(X,Y )E = −ερ2 [g(X,E)Y − g(Y,E)X] .

Hence the sectional curvature K(X ∧ E) of the 2-plane X ∧ E is given by

K(X ∧ E) =
g (Rg(X,E)E,X)

‖X‖2 ‖X‖2 − g(X,E)2
= ερ2.

Thus, if (M, g) is of constant curvature K(X ∧ Y ) = ερ2, the integrability condition is satisfied

thus there exists a local semi-parallel vector field around every point of M .

Since ∇g is compatible with g, this assumption (5.32) is equivalent to

(
∇gXβ

)
(Y ) = ρ [g(X,Y ) + εβ(X)β(Y )] .

Using this, we know that β is closed. Indeed,

(dβ)(X,Y ) = X(β(Y ))− Y (β(X))− β([X,Y ])

= X(β(Y ))− Y (β(X))− β(∇gXY −∇
g
YX)

= X(β(Y ))− β(∇gXY )−
[
Y (β(X))− β(∇gYX)

]
= (∇gXβ)(Y )− (∇gY β)(X)

= 0.

Lemma 5.1. Let E be a semi-parallel vector field on a Riemannian manifold (M, g). Then its

dual β with respect to g is closed.

The condition (5.32) implies ∇gX ‖E‖
2 = 2ρβ(X)(1+ε ‖E‖2). Thus if E has constant length,

E must be a unit vector field and ε = −1. Thus we replace the assumption (5.32) by

∇gXE = ρ [X − β(X)E] . (5.33)
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Then we define a linear connection ∇ by

∇XY = ∇gXY + ρ[g(X,Y )E − β(Y )X]. (5.34)

Then, by direct computation, we can show that ∇ is compatible with g, i.e., ∇g = 0 and

∇XY −∇YX − [X,Y ] = ρ[β(X)Y − β(Y )X].

Lemma 5.2. Let E be a vector unit vector field satisfying (5.34) on a Riemannian manifold

(M, g), and let β be the dual of E with respect to g. The linear connection ∇ defined by (5.34)

is a Lyra connection in (M, g).

Furthermore

∇XE = ∇gXE + ρ[g(X,E)E − β(E)X]

= ∇gXE + ρ[β(X)E −X]

= ρ[X − β(X)E] + ρ[β(X)E −X]

= 0.

Since ∇ is compatible with g, this means that the one-form β is also parallel with respect to ∇,

i.e., ∇Xβ = 0.

Proposition 5.3. Let E be a semi-parallel vector field satisfying (5.33), and let β be the dual

of E with respect to g. Then the Randers metric

L(X) =
√
g(X,X) + kβ(X) (0 < k < 1) (5.35)

is preserved by the parallel translation with respect to ∇, that is, (M,L) is a Wagner space.

By direct calculations, the curvature R of the Lyra connection ∇ is computed as

R(X,Y )Z = Rg(X,Y )Z + ρ2 [g(Y, Z)X − g(X,Z)Y ] . (5.36)

Lemma 5.3. If (M, g) is of negative curvature K = −ρ2, then ∇ is flat, i.e., R = 0.

Furthermore the connection ∇ defined by

∇XY := ∇XY − ρβ(X)Y = ∇gXY + ρ[g(X,Y )E − β(X)Y − β(Y )X] (5.37)

is the Weyl connection with the Lee form wg = ρβ, and since β is closed, the curvature R of

∇ coincides with R. Especially, if (M, g) is of negative curvature K = −ρ2, then the Weyl

connection ∇ is also flat. Hence the Randers metric L given by (5.35) is conformally flat.
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Example 5.1. ([Ai3]) Let H = {(x1, · · · , xn) ∈ Rn|xn > 0} be the upper half plane with the

Poincaré metric

gP =
1

(xn)2

∑
dxi ⊗ dxi.

The Christoffel symbols
{
i
jk

}
are given by

{
i
jk

}
= − 1

xn
(
δjnδ

i
k + δknδ

i
j − δjkδin

)
,

and (H, gP ) is negative constant curvature K = −1. The vector field

E = xn
∂

∂xn

is a unit semi-parallel vector filed on (H, gP ). For the dual β =
1

xn
dxn = d logxn of E, we define

L(X) =
√
gP (X,X) + kβ(X) =

1

xn

√∑
(Xi)2 + k

Xn

xn
(0 < k < 1). (5.38)

This Randers metric on H is conformally flat.
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