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1. INTRODUCTION AND PRELIMINARIES

Let Rn(n > 2) be the n-dimensional Euclidean space. The points of Rn are

ordered n-tuples x = (a?i, • • • , £n), where each Xj is a real number. The term

multi-index refers to an ordered n-tuple a = (<*i,- • • ,an) of nonnegative integers

ctj. The multi-index e, denotes the ordered n-tuple that has 1 in the jth spot

and 0 everywhere else (j = 1, • • •, n). The following abbrebiated notations will be

used: ax H h an = |a|, aj • • • an! = a! and x"1 • • • x°n = x". For a nonnegative

integer k, we denote Mk = {a : \a\ = k}. We use the notations Dj and dj

for the pointwise differentiation with respect to Xj and the differentiation in the

sense of distributions with respect to Xj, respectively. Moreover, for a multi-index

a = (c*i, • • • ,an) we set

Da = D?1 - • • D*an, da =

and



We introduce some function spaces. For a domain fi the space C°°(ft) denotes the

space of all infinitely difFerentiable functions on ft. The space S(Rn) is defined to

be the class of all C°°-functions <p on Rn such that

sup \x"D0<p(x)\ < oo
Rn

for all multi-indices a and /?. 5(i?n) contains the space V(Rn) of all C°°-functions

with compact support. We let the space S(Rn) be equipped with its usual topology

in distribution theory. The collection Sf(Rn) of all continuous linear functional

on S(Rn) is called the space of tempered distributions. The pairing between dis

tributions and test functions is denoted <•,•>. The Lebesgue spaces Ll(Rn) and

L2(Rn) are defined by

L\Rn) = {/ : H/lli = JRn \f(x)\dx < oo},

L\R2) = {/ : H/lh = (JRn \f(x)\2dx)1'2 < 00}.

For a positive number r we set

Qr(Rn) = {/ 6 C^iR71) : (1 + |a?|)r|0a/(*)l is bounded for each a}

and

Q(Rn) = Ur>0Q'(Rn).

The Fourier transform T\$ in the Li-sense of / G Ll(Rn) is defined by

where a: • y = .Tit/! H h ;cnyn. For / € V(Rn)

(1.1) f1(D

For / 6 L2(Rn), we denote by ,F2/ the Fourier transform of / in the L2-sense. Ts'

represents the Fourier transform in the sense of tempered distributions.

We denote by 27V the set of nonnegative even numbers. For a positive integer

m, the Riesz kernel Km(x) of order m is given by

_ _L( |x|m-n, rn-n$2N

Km{X) " 7m?n I (6n,n - log \x\)\xr-'\ m-ne 2N



with

f 7rn/22"r(m/2)/r((n - m)/2), m-n<£2N
lm'n \ (-l)(m-)/*2-»x»/»r(m/2)((m - n)/2)!, m - n € 2N

and

j. r'(m/2) 1. 1 i
* = llf + 2*1 + 2 + '' ■ + (^yl + C) - log*

where C is Euler's constant. We note (see [Sc:§10 in Chap. VII]) that

(1-2) AiK2e{x) = 0 fora?#0,

(1.3) A<*2< = (-l)'tf

where A* (resp. A') is I times iteration of A (resp. A) and 6 is the Dirac distribution.

A function u is said to be polyharmonic of degree £ on a domain Vt if Aeu(x) = 0

on ft. So the Riesz kernel ku is polyharmonic of degree £ on Rn - {0}. Further

the Fourier transform of Km is given by

(1.4) ^/cm(a:) = Pf.|a:|-m

where Pf. represents the pseudo function (see [Sc: §7 in Chap. VII ]).

A function k(x) on Rn is called a smooth Calderon-Zygmund kernel if k(x)

satisfies the following three conditions:

(1.5) k(x) e C™{Rn - {0}),

(1.6) k(x) is homogeneous of degree —n,

(1.7) fSlk(x)dSl(x) = 0

where S\ is the unit sphere {|a?| = 1} and dS\ is the surface element of Si. For a

smooth Calderon-Zygmund kernel k(x) we consider singular integral

Kf(x) = \im[ k(x-y)f(y)dy.
t^O J\x-y\><L

We use the symbol C for a generic positive constant whose value may be different

at each occurrence. By the L2-theory of singular integrals [Sad: §2 in Chap. 6]

we have

Lemma 1.1. For f e L2(Rn);

(i) Kf(x) exists for almost every x 6 Rn,



(ii)

(Hi) ?*(Kf){x) = *(x)T2f(x)

where a(x) is homogeneous of degree 0 and fSi cr(x)dSi(x) = 0.

Moreover by [Ku] we have

Lemma 1.2. /// e Q(Rn), then Kf(x) exists for every x £ RJ1 and Kf 6

Q(Rn).

It is clear that the functions ^ffiVffi ,,*„'+1 {j = 1, • • • ,n) are smooth Calderon

-Zygmund kernels. The singular integrals for the kernels ^"ff/ffi |a.p+1 (j =

1, • • •, n) are called the Riesz transforms and denoted by Rj. Namely

The Fourier transform of Rjf (/ G L2(Rn)) is given by

——'1 T '

) f^Tf{)(1-8)
\X\

([Sad: §2 in Chap. 6]).

In this article we are concerned with the higher Riesz transforms. We introduce

four kinds of the higher Riesz transforms. First, for a multi-index a = (ax, • • •, an)

we define Ra as follows:

(S.G.Samko [Sam:§4]). Secondly, we note that the kernels ^[itVJ? |a?p+1 are partial

derivatives of the Riesz kernel Ki(x). Namely

= ~DMX), X * 0.

We consider partial derivatives of order m of the Riesz kernel Km(x). For a multi-

index a, the partial derivative DaKm(x) has the following form (Lemma 2.1): for

DaKm(x) =

m — n £ 2iV or

i — ne 2N, \a\ > m - n + 1

m — n G 2/V, |a| < m — n



where Pm,a(x) is a homogeneous polynomial of degree |a|. Since Danm(x) is a

smooth Calderon-Zygmund kernel for \a\ = m (Section 3, See also [Mi]), we can

consider singular integral

S*/(.r) = lim / DaKm(x-y)f(y)dy, \a\ = m.

Thirdly, we note that ^rr^^i is a homogeneous harmonic polynomial of degree

1. For a homogeneous harmonic polynomial P(x) of degree m, it is clear that r^f^-

is a smooth Calderon-Zygmund kernel. Hence we can consider singular integral

(E.M.Stein [St: §3 in Chap. III]).

Finally, we note that P2ta(&) is a homogeneous harmonic polynomial of degree

\a\ for any a (Theorem 3.7). Hence j^+ffi is a smooth Calderon-Zygmund kernel.

So for any a we can consider singular integral

Naf(x)=\imf f2'a{X~j]f(y)dy.

In section 2 we give relations between pointwise derivatives and ditributional derivarives

of the Riesz kernels. In section 3 we study linear independence of {Pm,a '• <* € Mk}

and polyharmonicity of P2e,a- In section 4 we state relations among RQ, 5*, 7^ and

Na.

2. POINTWISE AND DITRIBUTIONAL DERIVATIVES OF THE

RIESZ KERNELS

About pointwise partial derivatives of the Riesz kernels we note the following

lemma, which is proved by induction and Leibniz's formula.

Lemma 2.1. For x ^ 0, we have

DaKm(x) =

m — n (ji 2N or

m - n e 2iV, \a\ > m - n + 1

m — n G 27V, |a| <m — n

where PmiOl(x) is a homogeneous polynomial of degree \a\.



The following lemma follows from Gauss's divergence theorem.

Lemma 2.2. Let SI be a bounded domain with C°°-boundary dCt. Let n(x) =

(tii(x),- «,nn(a;)) denote the outer unit normal to the boundary at the point x of

<9ft. We assume that g and h have continuous partial derivatives on a neighborhood

of the closure of fl. Then

[ g(x)Djh(x)dx = [ gMhixfaWdSix)- I Dj9(x)h(x)dx

where dS represents the surface element of dtt.

Lemma 2.3. Let X > 1 - n,g G C^iR" - {0}) be a homogeneous function of

degree X and <p G V(Rn).

(i) If X > 1 -n, then

(2.1) j' g(x)Djv(x)dx = - J Djg{x)V>(x)dx1

(2.2) J g(x)(log\z\)DMx)dx = - J Dj(g(x)log\x\)iP(x)dx.

(ii) If X = 1 - n, then \ime^of^^€Djg(x)ip(x)dx exists and

/ g(x)Djtp(x)dx = Cjtp(O) - lim / Djg(x)<p(x)dx
J Z-*0 J\x\>(L

inn 0'Y*& /■* • —-— — i /ii ■I* Vv .//C i ••>• i
WIlZil C Oi — — / c (J\ Js ]JL * (JbtD'x X I,

J •/ >j\ «^ \ / Jf * \ /

Proo/. (i) we give only a proof of (2.2) since the proof of (2.1) is similar. We

set S€ = {x : |a'| = e} and dSt represents the surface element of Se. Since <p has

compact support, by Lemma 2.2 we have

h = / g(x)(log\x\)Dj(p(x)dx

= - L 9^)0-og\x\)(p(x)nj(x)dS€{x) - [ Dj(g(x)log\x\)(p(x)dx

where n(x) is the outer unit normal at a; G S€. Since g(x) is homogeneous of

degree A, by the change of variables x = ez we get



<CJ \g{x)\\\og\x\\dSt{x)

= C f ke2)||loge|z||e»-1dS1(2)

^ll / b*) - 0(6 - 0)

because of A + n - 1 > 0. Since g(x)(log \x\)<p(x), Dj(g(x) log \x\)<p(x) 6 ^(iT1), we obtain

Jg(x)(log \x\)Dj<p(x)dx = lim/« = - / ^(^(a;) log |.T|)(^(x)Ja;.

(ii) Let A = 1 — n. By Lemma 2.2 we have

Je = /, 9{x)Dj<p{x)dx

= - L ^(x)^(.r)ni(x)rf5£(x) - / Djg(x)<p(x)dx

x) - / 9(x)tp(Q)nj(x)dSe(x) - f Djg(x)<p(x)dx

Since |^(x) - <p(0)| < C|x|, the homogeneity of degree 1 - n of # implies

(2.3) Ji,e-*0 (e->0).

Moreover, since nj(a?) = Xj/\x\ for x G 5C, by homogeneity of degree 1 - n of ^ we see that

(2.4) J2,e = -^(0) / g(x)xJdS\(x).

Since g(x)Dj<p(x) is integrable, lim£^0^ exists, and hence lim^o^e exists by (2.3) and (2.4).

So we obtain

Ig(x)Djif{x)dx = -v?(0) / g(x)XjdSl(x) - lim / Djg(x)ip(x)dx./

This proves the lemma.

Lemma 2.4. Lei &,ra 6e positive integers with k>m and <p 6 V(Rn). We assume that

for multi-indices (3 and 7 with \/3\ + \j\ = k,jj > 1 and \*y\ < k - m,

|X|^£ |«|<*-m-l



exists. Then

S3S3JL.^«-W^W.) JE^
exists, and

lim/ ^(x)ITMx)- £

Proof. First we note that the conditions |/3| + |-y| = k and |7| < k — m imply |/3| > m.

Hence by Lemma 2.1 D^Km(x) is homogeneous of degree in — |/?| — n. Moreover

exists by the condition |/?| + I7I = fc. So by Lemma 2.2 we have

The condition \/3\ + \*y\ = k implies

lim / DpKm{x)D1-^

Hence we have

\8\<k-m

8



-J C«.(.

-"(*(*)- E

Taylor's formula and homogeneity of degree m - |/?| - n of D13Km(x) give

= Ce/ |^/vm(.r)k51(x) ^ 0 (e -> 0).
./Si

Moreover, by the change of variables x = ez and homogeneity of degree m - |/i| - n of DpKm(x)

we have

\6\=k-m,S>y-ej

y DSvW f dpk
=k-m,S>i-ej \° V7 - t])y- Ji>i

This completes the proof of the lemma.

Lemma 2.5. Let k and m be positive integers.

(i) Ifk<m and £a€Wik caD°Km{x) = f(x) for x # 0, then Ea6A/fc cad*Km = f.

(ii) Ifk>m and T.a&Mk caDaKm(x) = 0 for x # 0, then Z*€Mk cadaKm is a lenear combi
nation of dp8 {/3 € Mk.m).

Proof. Let <p 6 V(Rn). We have

I = < J2 cadaKm,ip>=(-l)k 52 ca<Km,Da<p>
ot€Mk

a J Km(X)D°<p(x)dx = (-l)k

First, let k < m and E«eMk caDaKm(x) = f(x) for x ^ 0. Since m - (jfc - 1) - n > 1 - n, by

applying Lemma 2.3 (i) repeatedly we obtain

1= £ c* [DaKm(x)<p(x)dx=



Therefore, the assumption gives / =< /,<p >. This proves (i). Next, let k > m and

Ha€MkcotDaKm{x) = 0 for x ^ 0. We write a as follows: a = eh + • • • + ejk. Since

m — s — n > 1 — n for 5 < m — 1, by applying Lemma 2.3 (i) repeatedly we have

= J Km{x)De*+"

Since J9Cii+""+ej'm-i/ctIl(a:) is homogeneous of degree 1 — n, by applying Lemma 2.3 (ii) we see

that

lim

exists, and

-lim/ De^+-+e^Km(x)De^+^-
£-oy|a.|>e

Further, by applying Lemma 2.4 repeatedly we have

lim

DKm(x)D{ip(x) Y,

D*Km(x)(v(x)-

with suitable constants da£. Consequently, by the assumption for suitable constants dp we

obtain

/ = (-l)k £ cja

" HS£_.
= (-1)* "

This completes the proof of (ii).

We use the following properties of pseudo functions in the next section.

10



Lemma 2.6. Let £ be a real number and P(x) be a homogeneous function. Then

\x\

Lemma 2.7. djPf.\x\-n = ?{.Dj\x\~n + udjS where u = -L yUSAy) = - 2?"'a
J J$\*\ iV^y nF(n/2)'

3. HOMOGENEOUS POLYNOMIALS IN DERIVATIVES OF THE RIESZ

KERNELS

We let Vk{k > 1) be the set of all homogeneous polynomials of degree k. The dimension

of Vk is

We note that Pm,a G P* for a G Afjfe. We denote by VmjAr the set of all finite linear combinations

of elements belonging to the set {Pm,a : a G Mk).

Theorem 3.1. Let k,m be positive integers and k < m. If m - n £ 27V or ?n - n G

2Af, A: > m - n — 1. then the elements of the set {Pm>a : a G Mk] are linearly independent.

Proof Let EaeMk c*PmAx) = °- First, let m - n g 2W or m - n G 2JV, A: > m - n + 1.
By Lemma 2.1, for x ^ 0 we have

0 -

Lemma 2.5 (i) gives

By taking the Fourier transforms Ts1 of the both sides we get

and hence E«eMk caxa = 0. This implies that ca = 0 for all a G M^.

Next, let m - n G 27V and k = m-n. By Lemma 2.1, for a; ^ 0 we have

(___\™\ 1 I I
Ok' \ ■'■^-'o I *^ I

= 61og|a:|

11



where 6 is a constant. Hence Lemma 2.5 (i) gives

By taking the Fourier transforms Ts1 we obtain

£ ca(ixrPL\x\-m = bFs,(\og\x\)

= b(ClPi.\x\-n + c2S)

C T'(n/2)
cx = -2-1r(n/2)W2, c2 = (2x)»(-- + ^^^ - logx)

(see [Sc: §7 in Chap. VII]). Hence Lemma 2.6 gives

Therefore for ip e V with suppv? C R* - {0}, we have

0 = <(£ ca(zxr-c1b\x\m-n)Pi.\x\-m,tp>

The arbitrariness of <p implies

= 0 on

and hence

A^ts)* - clb\x\m'n = 0 on

This gives

and so

c2b8 = 0.

Hence we have

6 = 0,

12



and

This implies that ca = 0 for all a 6 M*. Finally we let m - n e 2iV and

By Lemma 2.1, for a; 5^ 0 we have

5; «./>■«.(*) = £wr:^
i

By taking the Fourier transforms Ts> of the both sides we obtain

.7= 1

where we used Lemma 2.7. Hence by Lemma 2.6 we have

Therefore, for <p € V and suppy? C Rn — {0}, we obtain

= < (E M

= y

Since y> is arbitrary, we see that

dji-nxAW""12***) on

13



and hence

52 ca{ix)a-ic1'£dj(-nxj)\x\m-n-2 = 0 on Rn.
<x€Mk j=l

This gives
n

( E C*{™Y - ici £ ^(-na^kp-^JPf.|.t|— = 0
a€Mfc j=l

and so

Since ciu; + c2 ^ 0 (ciu + c2 is an increasing function of n) , we have dj = 0 for j = 1, 2, • • •, n.
Therefore

C«(»a:)aPf.|x|-m = 0.

This implies that ca. = 0 for all a 6 Mk. This proves the theorem.

For a multi-index fi we set

Mk + 0= {a + 0:aeMk}.

Further, for a set E C Mk, Mk \ E means

Theorem 3.2. Let k > m.

(i) // m is an odd number, then the elements of the set {Pmja : a G Mk] are linearly
independent.

(ii) // m is an even number 21, then for each rj e Me, the elements of the set {P2^ot : a G

Mk \ (Mk-2t + 2?;)} are linearly independent.

Proof (i) Let £a€iV//t caPmi0((x) = 0. Since

0 y =

oteMk \x\

for x ^ 0 by Lemma 2.1 and k > m, Lemma 2.5 (ii) gives

By taking the Fourier transforms Ts< of the both sides we get

E Ca(w)aPf.|a:|-m = E ^{ixf.

14



Hence

(3-1) E c«{ixY =

Since m is an odd number, the equality (3.1) implies that the both sides of (3.1) are zero.

Hence ca = 0 for all a € Mk.

(ii) Let EaSMk\(Mk^2t+2V) caP*i,a{x) = 0 for n € Mt. Then for a; ^ 0

a€Mk\(Mk_2t+2v) 1^1 ceA'4\(A/|!_2<+2^)

by Lemma 2.1 and fc > 21. Since A; > 2^, Lemma 2.5 (ii) gives

By taking Fourier transforms ^5/ of both sides we obtain

E cQ(ixr?f.\x\-2'=
or€M<J\

Hence

E c

= E (-i)%^(ix-)/3+2" + E ^(^^ E 4*27-

Since the left side does not contain the term xp+2ti(0 e Mk-2t), we see that ^ = 0 for /3 G Afjfc_2/,

and hence the right side is zero. Consequently, Ea£%\(M,.2(+2,) caxa = 0 and hence ca = 0

for all a G Mk \ (Mk-2e + 2tj). This proves the theorem.

Let £ be a positive integer. By (1.2) the Riesz kernel k2,(x) is polyharmonic of order I on

Rn - {0}. Hence for a multi-index a,

DaK2t(x) = 2£ - n € 2N, \a\ >2£-n

Ino" •?• -4- ^I'toy i *yy <r> r-

is polyharmonic of order £ on i?" - {0}. Further we show that P2ttQ{x) is polyharmonic of

order £ on #n. We need some lemmas. The following lemma follows from straightforward

computation and Euler's formula for homogeneous functions.

Lemma 3.3. Let r,s be real numbers and u(x) € C°°(Rri - {0}) be homogeneous of degree
r. Then for x^O

a:|*ii(aO) = \x\sAu(x) + s(s + 2r + n - 2)\x\*-2u(x).

15



Let k,£ and m be positive integers with k < L For 0 < j < k, we set

^ ^ 2)... (n _ 2^ + 2m + 2(j - 1))

(*+l))-"(*-(* + (j -1))),

and

o —o

The coefficients C-'' %m have the following properties which are verified straightfor

wardly.

Lemma 3.4. Let k + 1 < L Then

(i) C^'m + C^2{n - 2£ + 2m + 2{j - l))(2k + 1 - I - (j - 1)) = C*+M'm.

(ii) CfAm2(n - 21 + 2m + 2k)(k

Lemma 3.5. Let k,£,m be positive integers with k < £ and u £ C^^R71 — {0})

be homogeneous of degree m. Then for x ^ 0

i I |n-2/+2m+2j '

Proo/. For k = 1, (3.2) follows from Lemma 3.3. We assume that (3.2) holds

for fc(< £ — 1) . By the assumption of induction, for x ^0 we have

j=0

Further, by Lemma 3.3 we see that for x ^ 0

Afc+1(

16



A

-m + C£SM2(n - 2/ + 2m + 2(; - 1))(2* + 1 - / - (j " 1))}0

(n -21 + 2m + 2k){k + 1 - £) [x|n.

Therefore Lemma 3.4 gives

^ V |r |n-2M-2m ' ^ 3

for x ^ 0, and hence we obtain (3.2) for k + 1.

Corollary 3.6. Let £,m be positive integers and u G C<x>(Rn - {0}) 6e /iomo-

geneous of degree m. T/ie?i /o?^ a; ^ 0

^ V |;rJ7

Proof This corollary follows from the fact that of"™ = 0 for j = 1, • • • ,L

Theorem 3.7. P2ta{x) is polyharmonic of degree I on Rn.

Proof Since P2^,a is a homogeneous polynomial of degree |a|, the theorem is

clear for \a\ < 21. Let \a\ > 21. By (1.2) and Lemma 2.1, for x ^ 0 we have

Moreover, since P2ta is a homogeneous of degree |a|, Corollary 3.6 gives

0 =

for x ^ 0. This implies that &lPu,a{x) = ° for x ^ °' ancl hence P2ta is polyhar

monic of degree £ on Rn.

We denote by At the set of all polyharmonic functions of degree £ on Rn. By

Theorem 3.7 we have V2Lk CVkn At. We show that Vu,k = P* n A, and give

17



a basis of the vector space V2e<l.. The following lemma is due to (E.M.Stein and

G.Weiss [SVV: §2 in Chap. IV]). For a real number r we denote by [r] the integral

part of r.

Lemma 3.8. // P eVk,then

P(x) = P0(x) + ixfP^x) + ■ • • + 1*1'*^ (*)

where ki = [k/2] and Pj is a homogeneous harmonic polynomial of degree k-2j,j =

0,1, -..,*!.

Lemma 3.9. Let j, s be positive integers with j > s and u be a homogeneous

harmonic function on Rn. Then

A'(|ar|2*u(x)) = 0.

Proof. Let the degree of homogeneity of u be r. By Lemma 3.3 we have

A*(\x\2°u(x)) = c(r,s)u(x)

2). Hence() )
for j > s we obtain Aj(\x\2au(x)) = 0.

Lemma 3.10. Let k,£ be positive integers, kx = [k/2] and P be a homogeneous

polynomial of degree k. Then P is polyharmonic of degree £ if and only if

P(x) = P0(x) + \x\2Pi{x) + ■■• + \x\2*Ps(x)

where s = min(^ — l,ki) and Pj is a homogeneous harmonic polynomial of degree

fc-2j,j = 0,1, ••-,*.

Proof. If k = 1, then the lemma is obvious. Let k > 2. If I - 1 >

ku then 21 > k. Hence the lemma follows from Lemma 3.8 and the fact that a

homogeneous polynomial of degree k is polyharmonic of degree £. Let £ - 1 < Arx.

If P(x) = P0(x) + |s|2Pi(a;) + • ■ • + \x\2°Ps(x), then &'P(x) = 0 by Lemma 3.9 since

5 = ^-1. Conversely, we assume that P is polyharmonic of degree £. Since P

is a homogeneous polynomial of degree k, by Lemma 3.8

P(x) = P0(x) + ixfP^x) + ■■■ + \x\2k*Pkl(x)

18



where Pj is a homogeneous harmonic polynomial of degree k — 2j, j = 0,1, • • •, kx.

By the assumption, AeP(x) = A'+\P(x) = • • • = AklP(x) = 0. By Lemma 3.9, we

see that 0 = AklP(x) = c(k-2kukl)Pkl(x). Since c(k-2kukx) ^ 0,This implies

that Pkl = 0. By repeating the above procedure we obtain that Pp = P^+1 = • • • =

Pin = 0. This proves the lemma.

Corollary 3.11. Let P be a homogeneous polynomial of degree 21. Then P

is polyharmonic of degree t if and only if

J P(x)dS1(x) = 0.

Proof By Lemma 3.8 we have

P(x) = Po(x) + \x\2Pl(x) + • •. + ixlW-VPt^x) + c,\x\u

where Pj is a homogeneous harmonic polynomial of degree 2£ — 2j, j = 0,1, • • •, £ — 1

and ct is a constant. By harmonicity of Pj and Pj(0) = 0,j = 0,1, • • • ,£ — 1, we

see that

/ P(x)dSl(x) = c,an.

where an = /5j dSx{x). Hence the corollary follows from Lemma 3.10.

Lemma 3.12. (E.M.Stein and G.Weiss [SW: §2 in Chap. IV])

dim(VknA1) = \ \ k J \ k-2 )' ~
n, k = 1,

Corollary 3.13. Let k and £ be positive integers. Then

. Jfe-1

dim(Pk D At) = I
[ n +

k

k J-[ l-n hk>-2(

Proof. This corollary follows from Lemmas 3.10 and 3.12.
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Now we have

Theorem 3.14. (I) Let k < m, Ifm-n $2N orm-n 6 2N, k>m-n-l,

then Vm>k = Vk and {PmtOt : a 6 Mk] is a basis ofVm>k.

(II) Let k>m.

(i) Ifm is an odd number, then Vm}k = Vk and {Pm!a : a G Mk} is a basis ofVm.k.

(ii) // m is an even number 11, then V2t<k = Vk D At and for each r/ £ Mg,

{Pu,a ■■ <*€ Mk\ (Mk_2/. + 2rf)} is a basis of V2tik.

Proof. (I) This follows from Theorem 3.1 and dim Vmik — dim Vk.

(II)(i) This follows from Theorem 3.2(i) and dim Vm>k =dim Vk.

(II)(ii) Vu,k C Vk n At follows from Theorem 3.7. Hence Theorem 3.2(ii) and

Corollary 3.13 implies that dim VM,k =dim (Vk n Ae). Therefore V2^k = Vk n At

and {P2e,a :aeMk\ (Mk.2e + 2r))} is a basis of V2iik.

4. HIGHER RIESZ TRANSFORMS

In this section we state relations among the four kinds of the higher Riesz trans

forms. As defined in section 1, for a multi-index a = (a1( • • • ,an) we set

By (1.8), for / € L2(Rn)

(4-1) ^|^

The Riesz potential U^ of order m of / G V(Rn) is defined by

M.Ohtsuka [Oh] proved that DjU{(x) = -Rjf(x). Moreover we have
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Lemma 4.1. Let f 6 V(Rn) and \a\ = m. Then

(4.2) R»f{x) = {-l)mU£af(x) = (-irD

for all x € Rn-

Proof. By (1.1), (1.4) and (4.1) we have

Since R*f <E C°°(Rn) by Lemma 1.2 and U%af,D"Ul G C00^), (4.2) holds for all

x E Rn.

We note that the equality Raf = (-l)mD"Ull is shown in the sense of weak

derivatives in [Saml: Theorem 7] and [Sam3: Theorem 7.25].

In case rn is an odd number, for |a| = m DaKm(x) = ^Jj&ffi is obviously a

smooth Calderon-Zygmund kernel. In case ra is an even number 2£, for |a| = 2£

DaK2t(x) = i^ffiS* is also a smooth Calderon-Zygmund kernel by Theorem 3.7 and

Corollary 3.11. We set

S^f(x) = lim^ ^ D"*m(x - y)f{y)dy, \a\ = m.

In case rn = 2, by Theorem 3.7 P2tOe is a homogeneous harmonic polynomial of degree

|a| for any a. Hence ^ff, is a smooth Calderon-Zygmund kernel. So for any
a we can consider singular integral

N*f(x) = lim

Theorem 4.2. Lei / G L2(Rn) and \a\ = m. T/ien

XadSl(x).

Proof. It suffices to show the theorem for / G V(Rn). We write a

eh + 1" ejm- We have

5- /(a-) = lim / D
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Since Da~ej™Km(y) is homogeneous of degree 1 — n, Lemma 2.3 (ii) gives

SU(x) = dm,af(x) + j D—**Km{y)Dimf{x - y)dy.

where dm>a is a suitable constant. Since Da~eim~eim-* /cm(y), DQ~ejm~e>™-i ~~ej™-2 *m(

• • •, Deji Km(y) are homogeneous functions of degree more than 1 — n or products of

homogeneous functions of degree more than 1 — n and log |o;|, by applying Lemma

2.3 (i) repeatedly we obtain

SZf(x) = dm,af(x) + / Km(y)Daf(x - y)dy = <«

Hence Lemma 4.1 implies

(4.3)

where cmiOt = (—l)m+1rfmtof By taking the Fourier transforms J^2 of the both sides,

and using (4.1) and Lemma 1.1 we obtain

where cra. is homogeneous of degree 0 and /5l <ja(x)dS\(x) = 0. Therefore

This gives

cm,, - ^-^ / xadSx(x).
an Jsi

This completes the proof of the theorem.

Y.Mizuta [Mi] and S.G.Samko [Sam2] give the value of the integral fSl xadSi(x).

Namely

/ x.dSl(x). ^.
Si H I

Hence

Lemma 4.3. Let a = (ax, • • • ,an) be a multi-index. Then fSi xadSi(x) = 0

if and only if there exists i such that aL is an odd number.

By Lemmas 4.L 4.3 and Therorem 4.2 we have
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Corollary 4.4. Let f e V(Rn) and a be a multi-index. Then DaUl = S*

if and only if there exists i such that a; is an odd number.

Since .^ffifc is a smooth Calderon-Zygmund kernel for a homogeneous harmonic

polynomial P(x) of degree k, we can consider singular integral

Theorem 4.5. Lei a 6e a multi-index with \a\ = ?n. 77&en

QQ' __ V"^ rpPj

°m — 2^, 1m-2j
i=o

xuhere £ = [(m — l)/2] a/irf Pj is a homogeneous harmonic polynomial of degree

m-2j, (;=0,l, ..-,£).

Proof. By Theorem 3.7 and Lemmas 3.8, 3.10, we have

PmM = Po{x) + \xfPrix) + ■■■ + \x\2iPfXx)

where I = [(m — l)/2] and P^ is a homogeneous harmonic polynomial of degree

m - 2j, (j = 0,1, • • •, £). Hence

2

This proves the theorem.

Finally we use Theorem 3.14 for m = 2. Then we have

Theorem 4.6. Let P be a homogeneous harmonic polynomial of degree k.

Then

I E CcN*, k>2.
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