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1. INTRODUCTION AND PRELIMINARIES

Let R*(n > 2) be the n-dimensional Euclidean space. The points of R™ are
ordered n-tuples * = (zy,-:-,2,), where each z; is a real number. = The term
multi-index refers to an ordered n-tuple @ = (e, -, @,) of nonnegative integers
a;.  The multi-index e; denotes the ordered n-tuple that has 1 in the jth spot
and 0 everywhere else (j = 1,---,n). The following abbrebiated notations will be
used: a1 + -+ an, = |af,a1! o, = al and ' - - 2% = 2%,  For a nonnegative
integer k, we denote My = {co : |a| = k}.  We use the notations D; and 9,
for the pointwise differentiation with respect to z; and the differentiation in the
sense of distributions with respect to z;, respectively. Moreover, for a multi-index
a=(ay, -,a,) we set

D* =D ...Do 9% =M ... 9%

and
A=D}+---+D}LA=0"+...+ 82



We introduce some function spaces.  For a domain  the space C*(£2) denotes the
space of all infinitely differentiable functions on Q.  The space S(R") is defined to
be the class of all C*°-functions ¢ on R™ such that

sup |z*DPp(z)| < oo
TER"

for all multi-indices a and 8.  S(R™) contains the space D(R") of all C*-functions
with compact support. ~ We let the space S(R") be equipped with its usual topology
in distribution theory.  The collection S’'(R™) of all continuous linear functionals
on S(R") is called the space of tempered distributions. The pairing between dis-
tributions and test functions is denoted < -,- >. The Lebesgue spaces L!(R") and
L%*(R") are defined by

LR = {f : lflls = [ 1f(@)lde < oo},

LB = {f : |Iflla = ([ 1/(2)Pde)? < oo}.
For a positive number r we set
Q'(R")={feC®(R"): (1+|z|)"|D%f(x)| is bounded for each «}
and
Q(R") = Urs0Q"(R™).
The Fourier transform F; f in the L;-sense of f € L'(R") is defined by
Fif@) = [ e fly)dy

where ¢ -y = 21y; + - - + Toyn. For f € D(R")
(1.1) Fi1(D*f)(z) = (iz)*F1 f().

For f € L*(R"), we denote by F, f the Fourier transform of f in the L?-sense. Fs:
represents the Fourier transform in the sense of tempered distributions.

We denote by 2V the set of nonnegative even numbers.  For a positive integer
m, the Riesz kernel «,,(z) of order m is given by

1 { |z|™™, m—n¢2N

() = Ymm | (6m.n — log |2|)|2z]™", m—n € 2N
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with

- { 72" D(m/2)/T((n = m)/2), m—n ¢ 2N
" (=1)m=m2m=1pn/2D (1m0 2)((m — n)/2)!, m —n € 2N
and Mm/2) 1
' "(m]: 1 1
m,n—m+§( §+~--+W+C)—log7r
where C is Euler’s constant. We note (see [Sc:§10 in Chap. VII]) that
(1.2) A'ky(z) =0 forz #0,
(1.3) Alky = (-1)%

where A’ (resp. A%) is € times iteration of A (resp. A) and § is the Dirac distribution.
A function u is said to be polyharmonic of degree £ on a domain  if Alu(z) =0
on ).  So the Riesz kernel ky, is polyharmonic of degree £ on R™ — {0}. Further
the Fourier transform of «,, is given by

(1.4) Fsikm(x) = Pf.j2|™™

where Pf. represents the pseudo function (see [Sc: §7 in Chap. VII )).

A function k(z) on R"™ is called a smooth Caldéron-Zygmund kernel if k()
satisfies the following three conditions:

(1.5)  k(z) € C=(R" - {0}),

(1.6) k(z) is homogeneous of degree —n,

(L) s, k(z)dS(z) = 0
where S is the unit sphere {|z| = 1} and dS; is the surface element of S;. For a
smooth Caldéron-Zygmund kernel k(z) we consider singular integral

Kﬂ@:hmA L K@= u)f(w)dy.
z—y|>e

e—0

We use the symbol C for a generic positive constant whose value may be different
at each occurrence. By the L?-theory of singular integrals [Sad: §2 in Chap. 6]
we have '

Lemma 1.1.  For f € L*(R"),
(i) K f(z) exists for almost every x € R™,
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(i) K fllz < Cl|f]l2,
(ii)  Fo(Kf)(z) = o(z) F f(z)

where o(z) is homogeneous of degree 0 and [s, o(x)dSy(z) = 0.
Moreover by [Ku] we have

LemMA 1.2. If f € Q(R"), then K f(z) exists for every 2 € R* and Kf €
Q(R").

It is clear that the functions %%aﬁfﬁ (=1, ,n) are smooth Caldéron

-Zygmund kernels. The singular integrals for the kernels %&ﬁ—i}ﬂlﬁlﬁ,ﬁ (y =
1,---,n) are called the Riesz transforms and denoted by R;. Namely

Rif(e) =g N [ B gy

e—0  gr(nt+1)/2 _y>e |z — y|nH

The Fourier transform of R; f (f € L%(R")) is given by

(18) FAB @) = T Faf ()
([Sad: §2 in Chap. 6]).

In this article we are concerned with the higher Riesz transforms. ~ We introduce
four kinds of the higher Riesz transforms. First, for a multi-index o = (cy, -+, )
we define R* as follows:

R*=R?"---R3"

(S.G.Samko [Sam:§4]). Secondly, we note that the kernels r’r(ﬁi’,l) 2 ﬁ,ﬂ—l are partial

derivatives of the Riesz kernel k;(z). Namely

F((n+1)/2) =z;
m(n+1)/2 I$|n+1

= —Djl{)l(ll'), T # 0.

We consider partial derivatives of order m of the Riesz kernel ,,(z). For a multi-
index c, the partial derivative D*k,,() has the following form (Lemma 2.1): for

T #0

—Pmalz) m—n ¢ 2N or

lzln—1n+2|a|1

D%k, (2) = » m—n€2N,la|>m—-n+1
%loglw[—{-#ﬂ%’h—,, m—n€2N,la|<m-n
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where Pro(z) is a homogeneous polynomial of degree |a|. Since D%km(z) is a
smooth Caldéron-Zygmund kernel for || = m (Section 3, See also [Mi]), we can
consider singular integral

e—0

S f(z) = lim /Ia:—y|>c D%km (2 — y) f(y)dy, || = m.

Thirdly, we note that %L(’%}%/:ﬁ’c] is a homogeneous harmonic polynomial of degree
1. For a homogeneous harmonic polynomial P(z) of degree m, it is clear that l;%%);

is a smooth Caldéron-Zygmund kernel. ~ Hence we can consider singular integral

P S
T,f: (z) = lim ___(g‘_y_)_
=0 Jlo—ylze |z — y|m+m

f(y)dy

(E.M.Stein [St: §3 in Chap. III)).
Finally, we note that P, () is a homogeneous harmonic polynomial of degree
|| for any o (Theorem 3.7). Hence %,%fi—)' is a smooth Caldéron-Zygmund kernel.
-So for any o we can consider singular integral

P. T —
N*f(z) = lim Brolz —y)
=0 Jjg—y|>e |& — y|rtlal

f(y)dy.

In section 2 we give relations between pointwise derivatives and ditributional derivarives
of the Riesz kernels.  In section 3 we study linear independence of {Pno:a€ M}
and polyharmonicity of Py .. In section 4 we state relations among R*, 5%, TF and

Ne.

2. POINTWISE AND DITRIBUTIONAL DERIVATIVES OF THE
RIESZ KERNELS

About pointwise partial derivatives of the Riesz kernels we note the following
lemma, which is proved by induction and Leibniz’s formula.

LeMMma 2.1. For x # 0, we have

Pm a(z
MT?%:?%E[, m—né2N or
D%km(2) = m-n€2N,la|>m—-n+1
DU o ) 4 Baalel € 2N, o] S

where P, () is a homogeneous polynomial of degree |c|.

)



The following lemma follows from Gauss’s divergence theorem.

LemMa 2.2. Let Q be a bounded domain with C*-boundary dQ.  Let n(z) =
(ni(z), -+, n,(x)) denote the outer unit normal to the boundary at the point z of
0Q. We assume that g and h have continuous partial derivatives on a neighborhood

of the closure of Q. Then

9@ Dik@de = [ g(@)hi@n(2)dS() - [ Dig(a
where dS represents the surface element of 9.

Lemma 2.3. Let A\>1—n,g € C*(R" — {0}) be a homogeneous function of
degree X and ¢ € D(R™).
(i) IfA>1-—n, then

(2.1) [ 9(@)Dsp(a)dz = - [ Digla)p(z)dz,

(22) [ 9(2)(tog |2} Dip(a)dz = — [ Dj(g(x) log |el)p(x)de.

(i) IfA=1—n, then lim._ Juize Dig(a)p(2)dz evists and

/g (2)dz = cjp(0) — lim Djg(z)p(z)dx

=0 Jjz|>e
where ¢; = — [5 g(z)z;dS ().

Proof. (i) we give only a proof of (2.2) since the proof of (2.1) is similar. We
set S¢ = {z : [2| = €} and dS, represents the surface element of S,. Since p has
compact support, by Lemma 2.2 we have

L = /'ﬂ?g(w)(log|w|)0j¢<w)dw

=~ [ o(x)loglel)e(@)n;(2)dS(z) = [ D;(g(x)loglel)e(x)ds

|z|>e

where n(z) is the outer unit normal at z € S,.  Since g(z) is homogeneous of
degree A, by the change of variables 2 = ez we get



| 9@ togele(@)n; (21451 < C [, 1g()lllog eljds.(z)
= O [ la(e)l|log ezlje~ds1(2)

= 0" loge| | lg(2)|dSi(2) — 0(e — 0)

because of A+n —1>0. Since g(z)(log|z|)¢(z), D;(g(z)log |z])e(z) € L'(R™), we obtain
[ 9@ tog lal) Dyp(@)de = liny . = - [ D;(g(z) log el (x)d:
(i) Let A=1-n. By Lemma 2.2 we have
e = )D;p(z)d
J, /ch(l) ip(z)de
- [ s@e(m;@dsz) - [ Dig(e)e(a)ds

= [ @) O ()a5) - [ o) Oms(2)dSi(2) - [ Dig(alp(eia
= Jl,c + ']2,5 + J3,e -

Since |p(z) — ¢(0)| < C|z|, the homogeneity of degree 1 — n of g implies
(2.3) Jl,c — 0 (6 - 0)

Moreover, since nj(z) = z;/|z| for z € S, by homogeneity of degree 1 — n of g we see that
(2.4) Ty = —(0) L 9(2)z;dS; (z).

1
Since g(x)Dje(z) is integrable, lim,_o J; exists, and hence lim,_q J5 exists by (2.3) and (2.4).
So we obtain :

/g(:c)nga(x)dx = —(,0(0)/ g(z)z;dS;(z) — lim Djg(z)p(z)dz.

S1 e—0 I.’L‘IZC

This proves the lemma.

LEMMA 2.4.  Let k,m be positive integers with k > m and ¢ € D(R™). We assume that
for multi-indices B and v with |B| + |v| = k,v; > 1 and vl < k—m,

§

im [ DPknm(2)D(p(z) = O

<=0/ lel2e || <k—m—1



exists. Then

e—0

)
lig [ D kn(@D(ele) - 3 ZECasg,

exists, and

' s
lim DPkp(2)D(p(z) — > D S'o'.(o)w‘s)da;
=0 lal2e 5|<k-m—1 !
_ —D°(0)
|6|=k—§,t:52‘y—c, (5 - (7 - e]))| S
5
—lim/Il DP*% ki (2) D (p(z) — Y D (P(O):v‘s)dx.
z|>e

e—0 |
|§|<k—m-—1 !

DPg,(z)z’ 12248, (z)

Proof.  First we note that the conditions || + |y| = k and |y| < kK — m imply |8| > m.
Hence by Lemma 2.1 DPk,,(z) is homogeneous of degree m — || —n.  Moreover

I = DPkpm(z)D(p(z) = > M:v&)dx

|z|2e Sl<kom—-1 O
exists by the condition |3| + |y| = k. So by Lemma 2.2 we have

I = lim DPkp(2z)D(0(z) — > Mw‘s)d:c

M=co JeglalsM pl<homo O

)
lim {| DPku(z)D"%(p(z)— 3 De(0) ®)n;(z)dSu(z)
M—s"'Js,, 6!

|5|<k—m—1
—e D5p(0
[ Do) - Y 2w (@)as @)
€ || <k—m—1
- D%p(0) 4
— DP*e i (2)DV"% (p(z) — =29 de).
Lerene @D ple) = gat)de)

The condition |3| + |y| = k implies

5
lim DPkm(z)D" % (p(z) = 3 D(0) 2°)n;(z)d Sy (z) = 0.

M=o Jsu pigkm-1 °'
Hence we have
—e D%p(0) ,
L=~ [ Dora@D (o)~ 3 2y (2)is,(z)
S lsl<k-m @



_/se DPk(2) D75 ( M D—Sa@x")nj(x)dse(m)

|
|6|=k-—m 6!

5
D :';(O):c‘s)dx

= [, D) D () Y
lz|>e 1§]<k=m—1
= Il,e + IZ,c + IS,e
Taylor’s formula and homogeneity of degree m — |3 | —n of DPk,,(z) give

Il < C [ IDmn(@)lfal 425, (2)
Se

- Ce/ D%k (2)]dSy (z) = 0 (€ — 0).
51

Moreover, by the change of variables z = €z and homogeneity of degree m — |B| —n of DPk(2)

we have
D%¢(0)
]2,5 = — Dﬁ/cm(q,) 6=(v- e;)n( )db (IL)
|5|=k—%27—e,( ~ (v —e) /
DPy(

B DPk,(2)28 -1+ 2 4s,
Isl=k‘§.52’7—e1 (6 - (‘Y - e, ! / (2) (2).

This completes the proof of the lemma.

LemMma 2.5.  Let k and m be positive integers.
(i) Ifk<mand T,epy caD¥km(z) = f(z) for z #0, then LaeM, Ca0%km = f.
(i) Ifk>m and T ,epr, caD%m(z) = 0 for z # 0, then 2aeM, CaO%Km 15 a lenear combi-
nation of 86 (B € M_,,).

Proof. Let ¢ € D(R"). We have

I = < Z Ca0%Km,p >= (—l)k Z Co < Kmv‘Da‘P>
a€M; aEM

= (1" ¥ [ wn@D%(a)dz = (1) ¥ cal.

€M keM;
First, let £ <m and ¥ eps, ca D%k (z) = f(z) for v #0.  Since m — (k-=1)—-n>1 _ n, by
applying Lemma 2.3 (i) repeatedly we obtain

I= ca/D%m -/( 3 oD%k (2))e(z)dx.

a€EM xEM,,



Therefore, the assumption gives I =< f,¢ >. This proves (i). Next, let £ > m and
YaeM, CaD%m(z) = 0 for  # 0.  We write a as follows: a = e;; + - + ¢;,. Since
m—s—n>1—nfor s <m—1, by applying Lemma 2.3 (i) repeatedly we have

I = / e (2) D+ () da

— (—1)""—1/De’1+"'+e]"“1‘R,n(.’v)De""+"'+e“°(,O(IL')dCL“.

Since D1 *+%im-1k,,(z) is homogeneous of degree 1 — n, by applying Lemma 2.3 (ii) we see
that

lim Dentteim g (2) Doimir ¥ F ik (1) d
€=0J|z|>e

exists, and

L = (=1)""YC;j, DYmn ¥ ek p(0)

—lim [ Dot (1) Do+ p() ).
z|>e

Further, by applying Lemma 2.4 repeatedly we have

lim Dent*eim g (a) Domirt ¥k p(z)dz

e—0 [z|>e

: . . ‘ D"y(0

= lir% o Dentteimpg () Doimir e (p(2) = D ———g'g—lx")d:c
=0 Jlz|>e .

= In|<k-m-1

= Y dapDPp(0) + (1) "lim [ Dmn(2)(p(z) — Y D"p(0)

. 1
BEMp_, |2 l<k—m-1 T

z")dz

with suitable constants d, 3.  Consequently, by the assumption for suitable constants ds we
obtain

I = (1) Y o,

€M,
= (-1)* Y dgD%p(0)
ﬁEMk—m
n
flim [ (T cDhn@)o(@) - Y LWy,
=0 Jizze ;557 migk-m-1 T
= (—'].)k Z dﬁDﬁcp(O)=< Z (_l)mdﬁaﬂ6,¢>'

BEMy_m BEM_m

This completes the proof of (ii).
We use the following properties of pseudo functions in the next section.
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LemMa 2.6.  Let € be a real number and P(z) be a homogeneous. function. Then

P()Pt.— = pg. 2

ettt

Lemma 2.7. O;Pf.|z|™ = Pf.Dj|x|™ + wd;é where w = — [s, ¥2dS1(y) = —n?(':;zz).

3. HOMOGENEOUS POLYNOMIALS IN DERIVATIVES OF THE RIESZ
KERNELS

We let Pi(k > 1) be the set of all homogeneous polynomials of degree k. The dimension
of Pk is
n+k—-1\ (n4+k—-1)
( k ) T o (n=1)k!

We note that P, o € Pifora € M. We denote by V... « the set of all finite linear combinations
of elements belonging to the set {P, ,:a € M}

THeoREM 3.1.  Let k,m be positive integers and k < m. If m —n ¢ 2N orm —n €
2N,k > m —n —1, then the elements of the set {Pp o :a € M.} are linearly independent.

Proof. Let Yoep, CaPma(z) =0. First,letm—né2Norm—-n€2N,k>m—n+1.
By Lemma 2.1, for z # 0 we have

CaPro(z)
0= Z |x|n—m+2k = Z cc"‘Daﬁ;m(‘T)'
€M a€EM)

Lemma 2.5 (i) gives

Z Ca0%Km = 0.

a €M)
By taking the Fourier transforms Fs: of the both sides we get
Y caliz)*Pflz|™™ =0

aE M

and hence Y,¢py, a2 = 0. This implies that ¢, = 0 for all o € M,.
Next,let m —n € 2N and k =m —n. By Lemma 2.1, for = # 0 we have

Z CaDaKim(:L') = Z ca( Pm,a( )

&
Iw'n—m-{—'zk
a€EM €M) m,n

= blog|z|

_Dcvlwlm—n

log |z| +

11



where b is a constant. Hence Lemma 2.5 (i) gives

Y cadkm(z) = blog |z|.

xEM;

By taking the Fourier transforms Fs/ we obtain

> caiz)*Pl.|e]™™ = bFs(log|z)
x €M

= b(c1PL.|2]™" + c26)

where
[(n/2)

t o (m/2) ~

G = —2"‘1F(n/2)7r“/2, Cy = (27[')"‘(.—%

log )
(see [Sc: §7 in Chap. VII]). Hence Lemma 2.6 gives

(Y caliz)™ — crblz|™ ™)PL.|2|™™ = c;bé.
a€EM|,

Therefore for ¢ € D with suppy C R™ — {0}, we have

0 = < () caliz)™ —ciblz|™™)PL.|z| ™™, >
O!GIV[[;
/ ZaEMk Ca(iw)a — CIb|xlm—nQ0(.’l))d:L‘.

ol

The arbitrariness of ¢ implies

> caliz)* —crblz["™" =0 on R"— {0},

OIGJ‘/Ik
and hence .
Y ca(im)* —ciblz[™™ =0 on R".
a€EM|,
This gives
(Y caliz)™ — crblz|™™)Pf.|z|™™ =0
x€M;
and so

Hence we have
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and

D" cofiz)*PL.|z|™™ = 0.

a€EM;,

This implies that ¢, = 0 for all « € M}. Finally weletm—n€2N andk=m—n— 1(>1).

By Lemma 2.1, for 2 # 0 we have

3 _Dalmlm—n Pm N
Y. caD%km(z) = ) ca(————Iog le+ﬁ;—%)
«EM, a€M; Tm,n

= Y d;z;log|z|.

7=1
By taking the Fourier transforms Fg/ of the both sides we obtain

n

Z Cl]']",sl(.'l:j lOg IiL'I)

> co(ix)*Pt.|a|™™

€M} j=1
= 3 Z (ljaj}-sl(log I’L‘I)
J=1
= 1Y _d;0;(aPf|z|™ + )
j—l

= Z Cl(Pf ' | —" +w3 (5) +023 6)

—nz;

= chZd Pf e +de (crw + ¢2)0;6
where we used Lemma 2.7. Hence by Lemma 2.6 we have

(> caliz)* LCIZd (—nz;)|z|™""?)Ptf.|z|™™ = Z (cyw + ¢3)0;6.

(XEI\’[A_ ] =1

Therefore, for ¢ € D and suppy C-R™ — {0}, we obtain

0 = <( Z ca(iz)* — 101 Zdj(—nlfj)|ﬂ,'|m—n—2)Pf'|:L.|—‘Tn.,kp >

€M, J=1

/ZaeMk Ca(i)” — iy Ui, dj(—ng;) 2™ "2

— p(z)dz.
2] (

Since ¢ is arbitrary, we see that

Y ca(iz)* —ia Y di(—nz;)|z|"™ % =0 on R"- {0}

xE€EM), 7=1

13



and hence

Y cali@)® —ic; Y dj(—nz;)|2/"™ 2 =0 on R

€M}, Jj=1
This gives
(Y caliz)* —ic > dj(—nz;)|z|™"""?)Pf.|z|"™ = 0
a€EM;. 1=1
and so

Z cl]-(clw + cz)()ﬁ =0.

J=1
Since ciw + ¢; # 0 (ciw + c; is an increasing function of n),wehaved; =0forj=1,2,---,n.
Therefore

> caliz)*Pf.|z|™™ = 0.

x €M
This implies that c, = 0 for all @ € M,. This proves the theorem.

For a multi-index 3 we set
My +B={a+p:ae M}
Further, for a set £ C My, M} \ E means

M \E={a€M:a¢E}.

THEOREM 3.2. Let k> m.
(i) If m is an odd number, then the elements of the set {Pno : o € My} are linearly
independent.
(i) If m is an even number 24, then for each n € M,, the elements of the set {Pyq : @ €
M\ (Mi_3 + 2n)} are linearly independent.

Proof. (i) Let Y oeM, CaPma(z) =0.  Since
o:Pm al\T
0= 3> c—% = Y cuD%n(2)
a €M Ia:l7l m €M,

for z # 0 by Lemma 2.1 and k > m, Lemma 2.5 (ii) gives

Yo k=Y. dgdPs

€M BEMK_m

By taking the Fourier transforms Fs: of the both sides we get

> caliz)*P.la|™ = > dp(iz)P.

o €M), BEM_m
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Hence
(3.1) Y culiz)* = Y dg(iz)Plz|™
A€M BEMKk_m
‘Since m is an odd number, the equality (3.1) implies that the both sides of (3.1) are zero.
Hence ¢, = 0 for all & € M.
(i1) Let Zae,\,,k\(Mk_u_,_%) cang,g(a:) =0forn € M,. Then for 2 #0

0= Z Calaa(2) = > CaD%k94(2)

|z |n—2t+2k
ael\/[k\(l\/fk_gg+2'l7) Otel\’[k\(l‘/[k_gg-i-?ﬂ)
by Lemma 2.1 and k£ > 2¢.  Since k > 2¢, Lemma 2.5 (ii) gives
> cadku(z) = Y dpdPe.

aeMk\(Mk-u+2n) BEMy_2,

By taking Fourier transforms Fs: of both sides we obtain
> ca(12)°Plla|™ = Y dg(ia)P.
€M\ (M _2¢+2n) BEM . _a¢

Hence

2 caliz)® = 3 dp(ia)’(af+--- +2l)*

€M\ (Mi—20+27) BEMj 2
£ ) !
= Y (—l)gdp—T(za:)m'Z" + Y dg(iz)® Y —':1:2".
BEM—2¢ m: BEM_2, vEMyy#n 1

Since the left side does not contain the term P+(B ¢ Mj_32), we see that dg = 0 for 8 € Mj_q,,
and hence the right side is zero. ~ Consequently, 2 eMi\(My—z¢+2n) CaZ™ = 0 and hence ¢, =0
for all « € M\ (M-, + 2n).  This proves the theorem.

Let ¢ be a positive integer. By (1.2) the Riesz kernel k2¢(2) is polyharmonic of order £ on
R™ —{0}. Hence for a multi-index «,
le%ﬁ%l%l’ 20—n ¢ 2N or
D%ka(2) = 20 —ne€2N,|a|>20-n+1
-‘D—:Ejl——nlog |w|+m%%?p;r, 26 —ne2N,|la|<20—n
is polyharmonic of order ¢ on R™ — {0}. Further we show that Pyyo(2) is polyharmonic of

order £ on R". We need some lemmas. The following lemma follows from straightforward
computation and Euler’s formula for homogeneous functions.

Lemma 3.3.  Let r,s be real numbers and u(z) € C®(R" — {0}) be homogeneous of degree
r. Thenfor:r;éﬂ

A(lz[*u(z)) = |z]"Au(z) + s(s + 2r + n — 2)|z|* 2u(z).
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Let k,¢ and m be positive integers with £ < ¢.  For 0 < j < k, we set

C'Jl-c’e'm = 2j<j,‘)(n—2.€+2m)(n—-2€+2m+2)---(n—2E+2m+’2(j—1))
X(k= 0= (C+1) (k= (+(G=1)),  §=Lek

and
klm __ .
Clitm _ |

The coefficients C’f 4™ have the following properties which are verified straightfor-
wardly.

LemMa 3.4. Letk+1<4¢.  Then
(i) C'jk,t’,m + C'jkfimz(n —204+2m+2(j —1)2k+1-L—-(j - 1)) = C]{:+1,£,m'

(i) CEA™2(n — 20 + 2m + 2k)(k + 1 — £) = CETIA™,

LemMMa 3.5.  Let k,{,m be positive integers with k < £ and u € C>=(R"™ — {0})

be homogeneous of degree m.  Then for x # 0
k k=g
; k U(SC) _ k,tm A ‘]'U,(:ZI)
(3-2) A (|l.|n-2e+2m) - ;)Cj | |n=2t+2m+2s
]=

Proof.  For k =1, (3.2) follows from Lemma 3.3. We assume that (3.2) holds
for k(< ¢ —1). By the assumption of induction, for 2 # 0 we have

Fu(x)

_ k,m
- Z C |a’ln—23+2m+2])

Further, by Lemma 3.3 we see that for x # 0

e+t (@)
A (|:L.ln—2l+'7'm )

AF ARy
k. 4m c : : 3 .\(¢ .
E C {W+2(n~2f+2m+2])(2k+1—K—])h:l )

n—=204+2m+25+2 }

16



Ak+ly(g)

Iw |n-2i.’+2m.

ARI=Iy(7)
|z P2t 2m e

k
+ Y {CH™ p Cma(n — 20+ 2m + 2(5 — 1)) 2k + 1 = £~ (7 — 1))}

i=1

oy . : u(z)
+C"™2(n — 20+ 2m + 2k)(k +1-4) |z[p-2teame2+2”

Therefore Lemma 3.4 gives

|z[-2rm2

k+1
k+1 u(z) _ Z k+1,6,m
A (lwln—2£+2m) T OCj
=

for z # 0, and hence we obtain (3.2) for k + 1.

COROLLARY 3.6.  Let £, m be positive integers and u € C°(R" — {0}) be homo-
geneous of degree m.  Then for x # 0

u(z) Atu(z)

¢ —
A (lwln—2£+2m) - |w|n-~z£+2m‘

Proof.  This corollary follows from the fact that C’f””m =0forj=1,---,¢
THEOREM 3.7. Py () is polyharmonic of degree £ on R™.

Proof.  Since Py, is a homogeneous polynomial of degree |c|, the theorem is
clear for |a| < 2¢. Let |a| > 2¢. By (1.2) and Lemma 2.1, for z # 0 we have

PZZ,a(w)

0= D*Aky(z) = A*D*ka(z) = A |$|n-2e+2|al)-

Moreover, since Py, is a homogeneous of degree |a|, Corollary 3.6 gives

0= Alpﬂ,a(a")
- len—2l+2|a|

for  # 0. This implies that APy o(z) = 0 for z # 0, and hence Py 4 is polyhar-
monic of degree ¢ on R".

We denote by A, the set of all polyharmonic functions of degree £ on R". By
Theorem 3.7 we have Vo C PN A, We show that Vo, = Pr N A, and give
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a basis of the vector space Vaer.  The following lemma is due to (E.M.Stein and
G.Weiss [SW: §2 in Chap. IV]). For a real number r we denote by [r] the integral
part of r. '

LemMa 3.8.  If P € Py, then
P(z) = Po(z) + |z|*Py(z) +--- + IxIZkIPkl(:v)

where ky = [k/2] and P; is a homogeneous harmonic polynomial of degree k—2j,5 =
0,1,---,k;.

LEmMma 3.9.  Let j,s be positive integers with j > s and u be a homogeneous
harmonic function on R*.  Then

A (lz[*u(z)) = 0.

Proof.  Let the degree of homogeneity of u be r. By Lemma 3.3 we have
A*(Jz)**u(z)) = ¢(r, s)u(2)
where ¢(r,s) = 2°s!(2s+ 2r +n—2)(2(s = 1) +2r+n—2)--- (2+2r +n — 2). Hence
for j > s we obtain A’(|z|?*u(z)) = 0.

Lemma 3.10.  Let k,£ be positive integers, ky = [k/2] and P be a homogeneous
polynomial of degree k.  Then P is polyharmonic of degree £ if and only if

P(z) = Po(z) + |2[*Pi(z) + - + || P,(2)

where s = min(¢ — 1,k;) and P; is a homogeneous harmonic polynomial of degree
k—'2]’.} =071)"',S'

Proof. If £ = 1, then the lemma is obvious. Let £ > 2. fe—-1 >
ki, then 2¢ > k. Hence the lemma follows from Lemma 3.8 and the fact that a
homogeneous polynomial of degree k is polyharmonic of degree £. Let ¢ —1 < k;.
If P(z) = Po(2) + [z[*Po(2) + - - + |&|* Py(2), then A’P(z) = 0 by Lemma 3.9 since
s=4£—1. Conversely, we assume that P is polyharmonic of degree . Since P
is a homogeneous polynomial of degree k, by Lemma 3.8

P(2) = Po(z) + |22 Py () + - - + ol Py, ()

18



where P; is a homogeneous harmonic polynomial of degree k — 2.5 = 0,1,-- -, k;.
By the assumption, A’P(z) = A*1P(z) =--- = AMP(z) = 0. By Lemma 3.9, we
see that 0 = AM P(z) = c(k—2ky, k1) Py, (z).  Since c(k—2ky, ky) # 0, This implies
that P, =0. By repeating the above procedure we obtain that Py = Py, =--- =
P, =0. This proves the lemma.

CoroLLARY 3.11.  Let P be a homogeneous polynomial of degree 2¢.  Then P
is polyharmonic of degree £ if and only if

LJ%@MMﬂ:O.

Proof. By Lemma 3.8 we have
P() = Po(e) + [o?Py(2) + -+ + 2D By (2) + e

where P; is a homogeneous harmonic polynomial of degree 2¢ —2j,5 = 0,1,---,£—1
and ¢, is a constant. By harmonicity of P; and P;(0) = 0,5 = 0,1,---,{ — 1, we
see that

LP@MH@ZQ%.

where 0, = [5 dS;(z). Hence the corollary follows from Lemma 3.10.
5

Lemma 3.12.  (E.M.Stein and G.Weiss [SW: §2 in Chap. IV])

v n+k—-1 n+k—3
— > ¢
dim(P, N 4;) = ( k ) ( k—2 )’ k22

CoroLLARY 3.13.  Let k and £ be positive integers.  Then

(n+k—1)_(n+k—2é—1 ) k> o0
dim(Pr N Ay) =

k k— 20
("+:_1),k<u.

Proof.  This corollary follows from Lemmas 3.10 and 3.12.
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Now we have

Tueorem 3.14. (I) Letk<m. Ifm—-n ¢ 2N orm—n € 2N,k >m—-n—1,
then Viux = Pr and {Pp o : o € My} is a basis of Vi, .
(II) Letk > m.
(i) Ifm is an odd number, then V, x = Py and {Pp, o : @ € My} is a basis of Vi -
(i) If m is an even number 2¢, then Vaero = PN Ay and for each n € M,,
{Payo: a0 € My \ (My—30 + 20)} is a basis of Vyy.

Proof.  (I) This follows from Theorem 3.1 and dim V,, ; = dim P.
(II)(i)  This follows from Theorem 3.2(i) and dim V,, ; =dim P.
(I)(ii)  Vaex C Py N A, follows from Theorem 3.7. Hence Theorem 3.2(ii) and
Corollary 3.13 implies that dim V34 =dim (P, N A;). Therefore Vo, = P, N A,
and {Pyo: o € My \ (Mg—20 + 2n)} is a basis of Vyy.

4. HIGHER RIESZ TRANSFORMS

In this section we state relations among the four kinds of the higher Riesz trans-
forms. As defined in section 1, for a multi-index o = (ay, - -, a,) we set

R* = R Ro».
By (1.8), for f € L*(R™)

(—i)l“’"x‘”‘ )

(41) 7 f?(Raf)(T) = ImI'a| “7:2.]((1:)

The Riesz potential UZ, of order m of f € D(R") is defined by
UL(@) = [ kmlz = ) Fy)dy.

M.Ohtsuka [Oh] proved that D;U{(z) = —R;f(z). Moreover we have
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Lemma 4.1.  Let f € D(R") and |a| =m. Then
(42) R f(2) = (~1)"UR™/(2) = (~1)" DU, ()
for all 2 € R".

Proof. By (1.1), (1.4) and (4.1) we have

Fs(UE™) = Fa(DU) = (-1 Fs(Ref) = 2L 75,

ol

Since R*f € C*(R") by Lemma 1.2 and US"/, D*Uf € C*(R"), (4.2) holds for all |
xr € R

We note that the equality R*f = (—1)™D*U/ is shown in the sense of weak
derivatives in [Saml: Theorem 7] and [Sam3: Theorem 7.25]. .

In case m is an odd number, for |a|] = m D%, (z) = TT"I';&(;? is obviously a
smooth Caldéron-Zygmund kernel.  In case m is an even number 2¢, for |a| = 2¢
D%kq(z) = ;—iﬁ% is also a smooth Caldéron-Zygmund kernel by Theorem 3.7 and
Corollary 3.11.  We set

S f(z) = lim /Im e D%m(2z —y)f(y)dy, |a|=m.

e—0

In case m = 2, by Theorem 3.7 P, is a homogeneous harmonic polynomial of degree
|a| for any o.  Hence %,ﬁiﬁ;l' is a smooth Caldéron-Zygmund kernel.  So for any
o we can consider singular integral
) P, (z -1
N*f(z) = lim Drale = y)
=0 Jla—yl2e [z — y|rFlel

fy)dy.

THEOREM 4.2.  Let f € L*(R") and |a| =m.  Then
R f = (=1)"Sqf + emaf
where

(="

On

Cm,a -

/Sl:c dSy(z).

Proof. It suffices to show the theorem for f € D(R"). We write a =
e, +---+e;,.. Wehave

Spf(@)=lim [ D D* . (y)f(z — y)dy.

m. e—0 |y|2£
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Since D*~®mk,,(y) is homogeneous of degree 1 —n, Lemma 2.3 (ii) gives

S,L:,'f(l) = dm,af(a") + / Da—ejm":m(y)Djmf(a: - y)dy

where d,,, o is a suitable constant.  Since D*™m ™ m-1 . (y), DY m " m1 " Im-2 g (y ),
.-+, D%1k,,(y) are homogeneous functions of degree more than 1 —n or products of
homogeneous functions of degree more than 1 — n and log |z|, by applying Lemma

2.3 (i) repeatedly we obtain

S2£(8) = dmaf(@) + [ Kn()D*F(@ = Y)dy = dnaf(2) + U (@)
Hence Lemma 4.1 implies

(4.3) R*f(z) = (-1)"Sp f(2) + cmaf(2)

where ¢, o = (=1)"*'d,, ,. By taking the Fourier transforms F, of the both sides,
and using (4.1) and Lemma 1.1 we obtain

£——|i3v‘)|w%ﬂJ-'zf(w) = oa(z)Fof(7) + cmoF2f(2)

where o, is homogeneous of degree 0 and [s oq(z)dSi(2) = 0. Therefore

(__i)mza

lem

This gives

On

This completes the proof of the theorem.

Y.Mizuta [Mi] and S.G.Samko [Sam2] give the value of the integral [5 z*dS;(z).
Namely

ol HEUT p(atty

=1 2 2

a:adsl(l') = nhla
/sl r(=thl)

Hence

LemMa 4.3,  Let a = (o, -, ) be a multi-index.  Then [5 2%dS;(z) = 0
if and only if there exists ¢ such that «; is an odd number.

By Lemmas 4.1, 4.3 and Therorem 4.2 we have
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COROLLARY 4.4.  Let f € D(R™) and « be a multi-index.  Then D*US = S f
if and only if there exists ¢+ such that o; is an odd number.

Since ﬁ%— is a smooth Caldéron-Zygmund kernel for a homogeneous harmonic
polynomial P(z) of degree k, we can consider singular integral

TF f(2) = lim Pe=v) )ay.

=0 Jlz—yle [z — y|?

THEOREM 4.5.  Let o be a multi-index with || =m.  Then

-
=0

where £ = [(m — 1)/2] and P; is a homogeneous harmonic polynomial of degree
m—2j5, (7 =0,1,---,0).

Proof. By Theorem 3.7 and Lemmas 3.8, 3.10, we have

P o(x) = Po(z) + [e*Pi(z) + - - + [2|* Py(z)

where £ = [(m — 1)/2] and P; is a homogeneous harmonic polynomial of degree
m—2j7, ( =0,1,---,¢). Hence

Pna(z) _ & Py(e)

|z|+m = j;o |z[rFm-2

This proves the theorem.
Finally we use Theorem 3.14 for m = 2. Then we have

THEOREM 4.6. Let P be a homogeneous harmonic polynomial of degree k.

Then
Za&l\/[k cal\,a; k - 1

Tf = {
ZO{E!‘/[k\(IWk_2+'261) CQIVCV? k Z 2'
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