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Abstract

In the present paper, we are concerned with Riemannian manifolds with
semi-parallel vector fields. In particular, we shall investigate hyperbolic spaces
and give a characterization of them in terms of semi-symmetric metrical con-
nection which is naturally obtained from a semi-parallel vector field.
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1 Introduction

Hashiguchi[Ha| studied Riemannian manifolds of negative constant curvature by in-
vestigating semi-parallel vector fields and semi-symmetric connections. An interest-
ing results in [Ha] is a characterization of hyperbolic spaces in terms of semi-parallel
vector fields and semi-symmetric connections. He proved that for a Riemannian
manifold (M, g) to be of constant curvature K = ep? if and only if the system of
equation (2.1) below is integrable and an arbitrary initial value of E may be pre-
scribed to determine the field uniquely (Theorem A in [Ha]). Furthermore he proved
that for a Riemannian manifold (M, g) to be of negative constant curvature K = —1
if and only if an arbitrary vector E with unit length may be extended to the field E
uniquely so that this field is parallel with respect to the associated semi-symmetric
metrical connection V (Theorem C in [Hal).

In the present paper, we also investigate Riemannian manifolds of negative con-
stant curvature, say hyperbolic spaces, and we shall give some results obtained after
[Ha]. The basic idea in this paper follows to Hashiguchi’s idea in [Ha]. The au-
thor wishes to express his sincere gratitude to Professor Dr. Masao Hashiguchi for
invariable suggestions and encouragement.

2 Semi-parallel vector fields

Let M be a smooth connected manifold of dim M > 3 with a Riemannian metric g.
We denote by V the Levi-Civita connection of (M, g).

“This work is supported in part by Grant-in-Aid for Scientific Research No. 15540084(2003),
The Ministry of Education, Science Sports and Culture.
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Definition 2.1 ([Hal, [Fu]) A vector field E on M is said to be semi-parallel if
VxE =p[X +€9(X,E)FE] (2.1)

is satisfied for all X € I'(T' M), where p is a constant and € = +1.

Let 8 € I'(TM*) the dual form of E, i.e., (X) = g(X, E). Then, since V is
metrical, (2.1) implies

Proposition 2.1 Let E be a semi-parallel vector field on a Riemannian manifold
(M,g). Then its dual 3 satisfies

(VxB) (Y) = p[9(X,Y) + eB(X)B(Y)] (2.2)

for all XY € I'(TM), and thus (Vx3)(Y) = (VyB) (X) which shows that 3 is
closed, i.e., d3 = 0.

In [Yal], a 1-form 3 satisfying (2.2) is called a torse forming 1-form. Conversely,
any torse forming 1-form 3 defines a semi-parallel vector filed £ by 8(X) = g(X, E).

The existence of semi-parallel vector field is restrictive. We denote by R the
curvature tensor of V, i.e., R(X,Y)Z =VxVyZ - VyVxZ — V(x,y)Z. Since

VxVyE = p{VxY + cXBY)E +pB(Y) [X + eA(X)E]}

and
Vixy)E =p{{X, Y] +eB([X,Y])E},

the integrability condition VxVy E —VyVxE —Vxy)E = R(X,Y)E (Ricci iden-
tity) for (2.1) is given by
R(X,Y)E = epdB(X,Y)E + ep® [B(Y)X — B(X)Y]
=ep? [B(Y)X - B(X)Y],
and thus the integrability condition for (2.1) is given by
R(X,Y)E = ep*[9(Y, E)X — g(X,E)Y] (2.3)

for all X, Y € I'(T'M). Then, the sectional curvature K(X AE) of the 2-plane X A E
is given by

KX nE) = - —
A IX A E|? IXIPIEP - g(x, B2~

for all X € ['(T'M). In particular, if (M, g) is a Riemannian manifold of constant
curvature €p?, i.e., if its curvature R satisfies

R(X,Y)Z = ep? [9(Y, 2)X — g(X,Z)Y] (2.4)
for all X,Y,Z € I'(TM), then the integrability condition (2.3) is satisfied.
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Proposition 2.2 Let E be a semi-parallel vector field on (M,g) satisfying (2.1).
The sectional curvature K(X A E) of the 2-plane X A E is the constant ep® for
all X € I'(TM). In particular, if (M,g) is a Riemannian manifold of constant
curvature K = ep?, then M admits a semi-parallel vector field E satisfying (2.1).

It is reasonable to assume that the parallel displacement with respect to V
preserves the length || E|| of semi-parallel E. Because of
Vx [ E|* = 2¢ (VXE, E)
= 200(X) (1 +¢ || BJ)

for all X € I'(T'M), if we assume that E has unit length, the constant e must to be
e = —1. Hence, in the sequel, we assume that the semi-parallel vector field £ has a
unit length, i.e., E satisfies

VxE = p[X — B(X)E]. (2.5)
Then, since Vg E = p[E — g(E, E)E] = 0, we have

Proposition 2.3 Let E be a semi-parallel vector field on a Riemannian manifold
(M, g). Then the integral curve of E is a geodesic.

Example 2.1 Let H? = {(z,y) € R?; y > 0} be the upper half plane in R? with
Poincaré metric

1 1 1 0
2 _ e _
ds —yQ(dx®d¢+dy®dy), g—yé(o 1).

The Christoffel symbols F]’k are given by

1

1 _ 1 2 2 1 1 2

Iy =lyn =TI =15 =0, I,=1Iy :F22:_F121 :“;
and (H?,ds?) is a space of constant curvature K = —1. The vector field

. 0 0
E(lay): ( —y ) = _y5§

in (H?,ds?) has the unit length. The dual 1-form B is given by f = —dlogy. By

direct calculations, we have
Xl
FE =
Vx 0

X - g(X,E)E = ( )gl )

for all X =%(X*!, X?), and thus F satisfies (2.5) for p = 1. The integral curve of E
is a line orthogonal to the z ray which is a geodesic in (H2,ds?). O

and
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For the simplicity for computations, we assume p = 1 in the sequel if we treat a
semi-parallel vector field F of unit length on a Riemannian manifold (M, g).

3 Semi-symmetric connections

We suppose that a Riemannian manifold (M,g) admits a vector field F of unit
length. We denote by 3 the dual 1-form of E, i.e., 3(X) = g(X,E). We define a

linear connection V by
VxY =VxY + [g(X,Y)E - B(Y)X] (3.1)

for all X,Y € I'(T'M ), where V is the Levi-Civita connection of (M, g). The torsion
tensor T' is given by

T(X,Y)=p(X)Y - B(Y)X,

i.e., Vis semi-symmetric. Then we have (Theorem B in [Ha])

Proposition 3.1 The semi-symmetric connection N defined by (3.1) satisfies
f7g =0. (3.2)

Moreover, the unit vector field E is semi-parallel if and only if E is parallel with
respect to V, 1i.e.,

VE =0. (3.3)

By Theorem A in [Ha], if (M, g) is a space of constant curvature K = —1, then
M admits a unit semi-parallel vector field E, i.e., a vector field E satisfying (2.5)
for the constant p = 1. Now we shall show a characterization of hyperbolic spaces
in terms of semi-symmetric connection V.

Lemma 3.1 Let (M, g) be a Riemannian manifold with Levi-Civita connection V.
Suppose that M admits a semi-parallel vector filed E of unit length. The curvature
R of the semi-symmetric connection V defined by (3.1) is given by

R(X,Y)Z = R(X,Y)Z + [g(Y, 2)X — g(X, Z)Y] (3.4)
for all XY, Z € I(TM).
Proof. By definition (3.1), we have
Vy (\?yz) =Vy (VyZ)
+9(X,Vyv2) = B(VyZ)X — XB(Z)Y + Xg(Y, Z)E — B(Z)VxY'}
- B(Z2){9(X.Y)E - B(Y)X}
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and

Vixv1Z =Vixy)Z +{9([X,Y], 2)E - B(Z)[X,Y]}.
Thus we obtain
R(X,Y)Z =VxVyZ—VyVxZ - VixyZ
=R(X,Y)Z
+{9(X,Vy2) + Xg(Y,Z) - Yg(X,2Z) - g(Y,VxZ) - g([X, Y], Z)} E
+{YB(2) - B(VyZ)} X —{XB(Z) - B(VxZ)} Y
+H{B8(Y)X - 8(X)Y}B(Z)
Since V is metrical and symmetric, we have
= g(vXYa Z) —Q(VYX, Z) —g([X7Y]7Z)
=9(T(X,Y), Z)
= 0.
Moreover, we have
{YB(2) - B(Vy2)} X ={Yg(E,Z) - g(E,VyZ)} X
={9(Z,Y)X - B(Y)B(Z2)} X
and similarly
{X8(2) -B(Vx2)} Y = {9(Z, X)Y - B(X)B(2)} Y.
These equations imply the identity (3.4). O

Lemma 2.1 above implies

Theorem 3.1 A Riemannian manifold (M, g) is a space of constant curvature K =
—1 if and only if the following conditions are satisfied.

(1) (M,g) admits a semi-parallel vector field E of unit length.

(2) The semi-symmetric connection V defined by (3.1) has zero curvature.

Proof. We suppose that (M, g) satisfies the conditions (1) and (2). Then, the

curvature It of the connection V defined by (3.1) vanishes identically. Hence (3.4)
implies \

K(Xpy)= SBEYY.X)  g(RXY)YV,X)
X AY? X2V = g(X,Y)2




Tadashi Aikou

for all vector fields X,Y on M, and thus (M, g) is a space of constant curvature
K= -1.

Conversely, we suppose that (M, g) is a space of constant curvature K = —1.
Then there exists a semi-parallel vector field E of unit length by Hashiguchi’s the-
orem (Theorem C in [Hal), i.e., F satisfies (2.5) for the constant p = 1. The

semi-symmetric connection V defined by (3.1) satisfies the relation (3.4), and this
relation implies R = 0. [J

Remark 3.1 As is well-known (cf. [Ya2]), a Riemannian manifold is conformally

flat if and only if it admits a semi-symmetric metrical connection V whose curvature
vanishes identically. Theorem 3.1 shows that a conformally flat Riemannian manifold

is reduced a hyperbolic space if such a connection V is defined by (3.1) for a semi-
parallel vector field £ under the assumption dim M > 3. O

4 Some remarks

4.1 Weyl structures

We suppose that a Riemannian manifold (M, g) admits a semi-parallel vector field
with unit length. Then, by Proposition 2.1, the dual 1-form 3 for E satisfies (2.2)
for the constant p =1 and € = ~1, i.e.,

(VxB) (Y) = g(X,Y) = B(X)B(Y) (4.1)

for all X,Y € I'(TM). Then, for the semi-symmetric connection V defined by (3.1),
we define a symmetric connection D by

DxY =VxY — 3(X)Y
= VxY +{g(X,Y)E - B(X)Y - B(Y)X}.

Since V is metrical, i.e., V satisfies (3.2), we have
Dg=23®y, (4.2)

and thus D is the so-called Weyl connection of the conformal C' = [g], and the 1-
form 3 is the Lee form of (M, C'). Moreover, since the dual form 8 is closed, (D, )
defines a closed Weyl structure on M. The curvature RP of D is given by

RP=R—-df®Id=R, (4.3)

since (3 is closed. Thus, if (M, g) admits a semi-parallel vector field E of unit length,
then the conformal manifold (M, C' = [g]) admits a closed Weyl structure.
Conversely, if a closed Weyl structure D satisfies

DxE = —B(X)E (4.4)

for every X € I'(TM), then F is a semi-parallel vector field.
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Proposition 4.1 Suppose that a (D, 3) a closed Weyl structure is given on a con-
formal manifold (M, C). The vector field E dual to the Lee form 3 is semi-parallel
if and only if B satisfies (4.4).

We note that a Weyl structure (D, (3) is closed if and only if (i) the Ricci curvature
RicP of D is symmetric or (ii) D is locally the Levi-Civita connection of a local metric
in the class C. Thus a Riemannian manifold (M, g) is conformally flat if and only if
the conformal manifold (M, C) with C = [g] admits a closed Weyl structure whose
curvature vanishes identically ([Ai]). Consequently, if the curvature R” of a closed
Weyl connection D satisfying the condition (4.4) vanishes identically, then the space
(M, g) is reduced a hyperbolic space.

Proposition 4.2 A Riemannian manifold (M,g) is a space of negative constant
curvature K = —1 if and only if the conformal manifold (M, C) with C = [g] admits
a closed Weyl structure (D, 3) satisfying (4.4) and RP = 0.

4.2 The triplet (¢, E, )

In this section, we shall consider a smooth manifold of dim M = n with a vector
field E, 1-form 3 and an endmorphism ¢ : TM — TM satisfying

B(E) =1 (4.5)
and
¢*=I-3RF. (4.6)

The endmorphism ¢ may be considered as a deformation of an almost product struc-
ture on M. An almost product structure on M is the reduction of the structure
group GL(n,R) to the sub group GL(n1,R) x GL(ny,R), where ny + ny = n. A
smooth manifold M admits an almost product structure if and only if there exists
a section Y(# Id) € I' (End(T'M)) satisfying ¢? = I. With respect to an adapted
frame of GL(n1,R) x GL(ng, R)-structure, the endmorphism v is written as

I, O
o= (% 0)

The triplet (¢, E, 3) exists in a hyperbolic space.

Proposition 4.3 We suppose that a Riemannian manifold (M, g) admits a semi-
parallel vector field E' satisfying (2.5). Then M admits a triplet (¢, E, 3) satisfying
(4.5) and (4.6). Especially any hyperbolic space admits such a triplet (¢, E,3).
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Proof. Let E be a semi-parallel vector field E of unit length. Then, E satisfies
(2.5) for p = 1. If we denote by 3 its dual 1-form, the condition (4.5) is satisfied.
Then, we shall define an endmorphism ¢ by

H(X) = VxE = X — B(X)E.
By this definition, we have ¢(F) = F — 3(E)E = 0, and
P(d(X)) =g(E,¢(X)) =g(E, X - BX)E) =0
for an arbitrary X € I'(T'M), and thus we get (2.4). Moreover,
¢*(X) = $(¢(X))
(X) - B(e(X)) E
(X)

I
<

I
S S

I
S

and thus the triplet (¢, E, §) satisfies (4.6). O
The proof of the following is the same as the one of Theorem 4.1 in [BI]
Proposition 4.4 Suppose that M admits a triplet (¢, E,(3) satisfying (4.5) and
(4.6). Then the identities
6(E) =0 (4.7)
and
Bop=0 (4.8)

are satisfied.

We suppose that a triplet (¢, E, 3) satisfying (4.5) and (4.6) on a manifold M.
For any Riemannian metric ¢ on M, if we put

JCY) = SAXY) +3(6X.6Y) + BBV )],
we have

9(¢(X),6(Y)) = g(X,Y) = B(X)B(Y). (4.9)

We call a Riemannian metric g satisfying this condition a compatible metric of
(¢, E, B)-structure. In such a case, since ¢(E) = 0, we have B(X) = g9(X, E),
i.e., B is the dual form of E.
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Proposition 4.5 If M is a manifold with a triplet (¢, E,3) satisfying (4.7) and
(4.8), then M admits a compatible metric g of the given triplet (¢, E, 3). Moreover

9(X,0(Y)) = g(¢(X),Y) (4.10)
is satisfied for all section X and Y on M, i.e., ¢ is symmetric.
Proof. By the identities (4.4) and (4.5), we have
g (82(X),6(Y)) = g (6(X),Y).

The left hand side of this equation is written as

9 (6%(X),6(Y)) = g (X = B(X)E, 6(Y))

=g(X,9(Y)) - B(X)g (E,6(Y))
=9(X,0(Y)) = B(X)B (6(Y))
=9(X,9(Y)),

and thus we obtain (4.10). []

From (4.7), we have rank(¢) < n — 1. If X satisfies ¢(X) = 0, then (4.6) implies
0=¢*X)=X - B(X)E, and X = 3(X)E. Thus we have rank(¢) = n — 1 and
L = ker ¢ is a line bundle spanned by E. We put

N =TM/L.

We note that the restriction ¢|n = ¢y satisfies ¢%, = I, and thus ¢x is an almost
product structure on the bundle N. Thus ¢y has eigenvalues +1, and, with respect
to a suitable local frame field {E, X;} of TM = L& N, the endmorphism ¢ is of the
form

0 -~ 0

0 O _
0 O —I,

Then, the structure group of TM = L& N is reducible to 1 x O(n1) x O(ny), where
n1 and ny are non-negative integer satisfying ny +ng = dim M — 1.

Conversely, if M admits a 1 xO(n;)x O(ng)-structure, then M admits a (¢, E, §)-
structure. In fact, with respect to the adapted frame {F, X;}, we shall define an
endmorphism ¢ by (4.11). Moreover, for the unit vector field E = *(1,0,--- ,0) and
its dual 8 = (1,0,---,0), we have

P’ +BRE =1 (4.12)

Theorem 4.1 A smooth manifold M admits a triplet (¢, E, 8) satisfying (4.5) and
(4.6) if and only if the structure group GL(n,R) of TM is reducible to 1 x O(n1) x
O(n2), where ny > 0 and ny > 0 are integers satisfying ni +no = n — 1.
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