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ABSTRACT. In this paper, we formulate the infinitesimal mized Torelli problem
for an algebraic surface S with ordinary singularities. We use 2-cubic hyper-
resolution ae : Xe — S (@ € [3) of S in the sense of . Guillén, V. Navarro
Aznar et al. not only to describe the mixed Hodge structure on the cohomol-
ogy of S, but also to describe the infinitesimal locally trivial deformation space
HY(S,05) of S, where Og = Home, (Q4,0g). For an analytic family = :
8 — (M, 0) of locally trivial deformations of S, parametrized by a pointed com-
plex space (M, o), we define the Kodaira-Spencer map oo : ToM — H'Y(S,0g).
We show that if each fiber of the family = : & — (M, 0) is projective, then
the variation of mixed Hodge structures, arising from this family, can be de-
scribed by taking 2-cubic hyper-resolution of its each fiber simultaneously. We
give a formula which describes the relation between the Kodaira-Spencer map
0o : ToM — H'(S,0g5) and the Jacobian map d®, of the so-called period map
QM — My (Hl(S)Z)) XM iz (H?(S)z)) at 0 € M, where M, (Hlé(*SY)Z))a
¢ = 1,2, denotes the modular variety of mized Hodge structures on H(S)z
:= H*(S,Z) modulo torsion (Theorem 3.17).
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Introduction

In this paper, we shall study the infinitesimal mixed Torelli problem for
algebraic surfaces with ordinary singularities defined over the complex number
field. This kind of surfaces is attractive because every smooth algebraic surface
defined over the complex number field is obtained as the normalization of such
a surface in the three dimensional complex projective space P?(C). Indeed,
it is well known that every smooth algebraic surface embedded in a complex
projective space of sufficiently higher dimension can be projected onto such a
surface in P3(C) via generic projection.

Thanks to Deligne’s result ([3]) there exist mized Hodge structures on the
cohomology groups of a singular complex projective variety. Hence we may
consider infinitesimal mized Torelli problem for singular complex projective va-
rieties like infinitesimal Torelli problem for non-singular complex projective ones.
However, for this purpose, we need to consider an equisingular family of singu-
lar complex projective varieties in some sense so that from such a family there
arises naturally a variation of mized Hodge structure. In this paper, we shall
consider a locally trivial complex analytic family of (complex projective) alge-
braic surfaces with ordinary singularities. Describing the mixed Hodge structure
on the cohomology groups of an algebraic surface with ordinary singularities by
use of its cubic hyper-resolution in the sense of F. Guillén, V. Navarro Aznar et
al ([13]), we shall formulate the infinitesimal mixed Torelli problem for such a
surface, and give sufficient conditions for the problem to be affirmatively solved.
The arrangement of this paper is as follows:

In §1, for the reader’s convenience, we shall review the definition of cubic
hyper-resolution of an algebraic variety due to F. Guillén, V. Navarro Aznar
et al., and construct a natural 2-cubic hyper-resolution a, : Xe — S for an
algebraic surface S with ordinary singularities. Further, we shall explain how
the mixed Hodge structures on the cohomology groups of S can be described in
terms of this 2-cubic hyper-resolution.

In §2 we shall describe the variation of mixed Hodge structures arising
from a locally trivial complex analytic family = : & — M of algebraic surfaces
with ordinary singularities, parametrized by a complex manifold M, using the
simultaneous 2-cubic hyper-resolution X, Lo, & I M of each fiber S, := 71(t),
t € M, of the family m : & — M. The simultaneous 2-cubic hyper-resolution
Xe Lo, & I M will be generalized to the notion of a cubic hyper-equisingular
family of complex projective varieties. In §2 we shall work in this more general
frame work.

In §3 we shall define the Kodaira-Spencer map
o,: T,M — H*(S,05)

for a complex analytic family (&, m, M, o0, ¢) of locally trivial deformations of a
compact complex surface S ~ S, := 77 1(0), 0 € M, with ordinary singularities,
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parametrized by a pointed complex space (M, o0); and when M is non-singular
and each fiber of the family & is projective, we give a formula which describes
the relation between the Kodaira-Spencer map o, : T,M — H'(S,0g) and the
Jacobian map

d®, : T,M — @7, {#'_ Home (H 7 (Q%_[1]), H P (Q% 1))}
of the so-called period map
D : M — My (H'(S)z)) X Mopiz(H*(S)z))

at 0 € M, which comes from the variation of mixed Hodge structures on R ()
= R, Z @ Oy, £ = 1,2, where M, (H(S)z)), £ = 1,2, denotes the modular
variety of mized Hodge structures on H*(S)z := H*(S, Z) modulo torsion (Theo-
rem 3.16). For this purpose, we need not only to describe the variation of mixed
Hodge structures arising from the family (&, w, M, 0, ¢) by use of the simulta-

neous 2-cubic hyper-resolution X, b & T M of the family 7 : & — M, but
also to describe H'(S,035) by use of the 2-cubic hyper-resolution ae : Xo — S.
We shall define the sheaf ©(as) of germs of holomorphic tangent vector fields to
the 2-cibic hyper-resolution ae : X4 — S, which is a coherent sheaf on S with
the property that

H'(S,05) ~ H'(S,0(a.)),

and define a homomorphism
po: ToM — H'(S,0(a,)),

which might be considered as the Kodaira-Spencer map of the simultaneous 2-

. . b ~ .
cubic hyper-resolution ¥, — & = M of the family 7 : & — M. Then we can
show that there exists a homomorphism

7o o H'(S,0(as)) — ®f_ {&)_ Home (H (0% [1]), HPHH(Q 1))}

and that the composite 7,0p, coincides with the Jacobian map d®, of the period
map ® at o € M up to sign.

In §4 we shall describe the hyper-cohomology H*(€2%, ) in terms of the co-
homology groups of the non-singular objects X, (a € [g), of the 2-cubic hyper-
resolution X, — S. Further, under some condition, we shall express the coho-
mology H'(S, ©g) in terms of the cohomology groups of the non-singular objects
Xo (o € Og) with the coefficients of the sheaf of germs of descendable holomor-
phic vector fields on X,. Note that the condition above is satisfied if the genus
of every irreducible components of D%, the normal model of Dx := f~1(Dg),
where Dg is the double curve of S and f: X — S the normalization map of
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S, is greater than one. After these works, we shall reformulate the infinitesimal
mixed Torelli problem for an algebraic surface S with ordinary singularities in
the form where we can handle the problem more easily cohomologically, and give
sufficient conditions for the problem to be affimatively solved.

In §5, with an aid of the results in §4, we shall give a few examples of
algebraic surfaces with ordinary singularities for which the infinitesimal mixed
Torelli problem is affirmatively solved.

We would like to end the introduction with two comments:

(1) In this paper, we have not taken into consideration “polarization” of
the family. Hence the family we consider in this paper is not a “variation of
gradedly polarized mixed Hodge structure”, but just a “variation of mixed Hodge
structure”.

(2) Throughout this paper our method is basically “complex analytic”, and
we always consider algebraic manifolds and algebraic varieties defined over the
complex number field as comlex manifolds and comlex spaces.

Owing to its length, this paper is divided into two parts: Part I includes
sections 1-3, and Part II sections 4-5.

§1 Algebraic surfaces with ordinary singularities, their cubic hyper
-resolutions, and mixed Hodge structures on their cohomology

1.1 Definition. A 2-dimensional compact complex surface S is said to
be with ordinary singularities if it is locally isomorphic to one of the following
%erms of hypersurfaces at the origin of the complex 3-space C* at every point of

{ (Z) z=20 (simple point)./ (Zl) Yz = 0 (ordinary double poim),

(Z”) TYz — 0 (ordinary triple p()int), (LU) .’L’y2 — 22 =0 (cuspidal point)7

where (z,v, ) is the coordinate on C?. Further, if S is projective, we call it an
algebraic surface with ordinary singularities.

We denote by Dg the singular locus of S, and call it the double curve of
S. Dg is a singular curve with triple points. We denote by Xtg the triple point
locus of S, and by ¥cg the cuspidal point locus of S.

In order to describe the mixed Hodge structure on H’(S, C) (0<f<4), we
construct a cubic hyper-resolution of S in the sense of V. Navarro Aznar, F
Guillén et al. by taking normalizations successively. First, we refer to some
notions from [13]. For a non-negative integer n, let (I} the augmented n-cubic
category, 1.e., the category whose objects Ob(CJ) and the set of homomorphisms
HomDi (Qa ﬁ) (O‘ = (0407 Qg aa7i,)7 /3 = (ﬁUa /3% t aﬁn)
€ Ob(LI)) are given as follows:

Ob(T1) == {a = (ap, a1, , ) € Z" | 0<;<1 for 0<i<n},

a — ( (an arrow from a to ) if a;<f; for 0<i<n

Homp+ (o, 8) = {

] otherwise.
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For n = —1 we define (0, to be the punctual category {x}, i.e., the category
consisting of a single point. For n > 0 the n-cubic category, denoted by U, is
defined to be the full subcategory of ;7 with Ob(d,) = Ob(0;) — {(0,--- ,0)}.
Notice that Ob({J}) can be considered as a finite ordered set whose order is
defined by a<8 <= a — [ for «, 3 € Ob((J}).

1.2 Definition. A f-object (resp. U,-object) of a category C is a con-
travariant functor X (resp. X,) from [0} (resp. O,,) to C. It is also called an
augmented n-cubic object of C (resp. an n-cubic object of C).

1.3 Definition. Let X,,Y, be [J/-objects (resp. [J,,-objects) of a category
C. We define a morphism ®, : X, — Y, to be a natural transformation from
the functor X, to the one Y, over the identity functor id : O} — O, (resp.
id: O, — O,).

1.4 Definition Let X, be an n-cubic object of C (n > 0), X a (—1)-object
of C. An augmentation of Xo to X is a natural transformation from the functor
X, to the one X x [, over the natural functor [1,, — 007, = {x} .

We may think of an n-cubic object of C with an augmentation to X as
an augmented n-cubic object of C. Conversely, an augmented n-cubic object

X (OF)° — C of C can be identified with an n-cubic object X, := X:F\Dn :
(O,)° — C of C with an augmentation to X(JB .0y Where o denotes the dual

category. In what follows we shall interchangeably use an augmented n-cubic
object of C and an n-cubic object of C with an augmentation.

1.5 Definition A [O}-complex projective variety is defined to be a -
object of the category of complex projective varieties (Proj/C). It is also called
an augmented n-cubic complex projective variety. For U7 -complex projective
varieties X,, Y,, we define a morphism ®, : X, — Y, to be a natural transforma-
tion from the functor X, to the one Y, over the identity functor id : ;) — O,

1.6 Definition. For a [J}-complex projective variety X,, a contravariant
functor Y, from O] to the category of (17 -complex projective varieties is called
a 2-resolution of X, if Y, is defined by a cartesian square of morphisms of
[O.F-complex projective varieties

Yiie —— Yo1e

(1.1) | K

Y106 — Y00e:

which satisfies the following conditions:

(i) Yooe = X,

(ii) Yo1e is a smooth Of-complex projective variety, i.e., a contravariant
functor from O} to the category of smooth complex projective varieties,

(iii) the horizontal arrows are closed immersions of [JF-complex projective
varietles,

(iv) f is a proper morphism between [ -complex projective varieties, and

(v) f induces an isomorphism from Yy — Y115 to Yoog — Yigp for any

B8 € Ob()).

We think of the cartesian square in (1.1) as a morphism from the O -
complex projective variety Yiee t0 the one Yjee and write it as Yiee — Ypee-
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For a 2-resolution Z, of Yiee, we define the Dfl yg-complex projective variety
rd(Ye, Ze) by

Zile —— Zple

rd(Ye, Zs) := l l

Z10e = Yee-

and call it the reduction of {Y,, Zs}.
1.7 Definition. Let X be a complex projective variety and let { X}, X2,
-+, X7} be a sequence of [ -complex projective varieties X7 (1<r<n) such
that
(i) X! is a 2-resolution of X,
(ii) X7t is a 2-resolution of X7, for every r with 1<r<n — 1.

Then, by induction on n, we define
Zo = 7d(X01~X027 e >X?) = Td(?“d(X.l Xg, U 7X:2/7l>7Xlon)'

With this notation, if Z,, are smooth for all « € Ob([1,,), we call Z, an augmented
n-cubic hyper-resolution of X.

Now we are going to construct a cubic hyper-resolution of an algebraic
surface S with ord%nary singularities. Let f : X — S be the normalization. We
put Dx = f~1(Dg) and Sty := f~1(Xtg). Dx is a singular curve with nodes
and Xtx coincides with the set of nodes of Dx. Since the normal medel X of S
is non-singular, a 2-resolution of S in the sense of F. Guillén, V. Navarro Aznar
et al. ([13]) is obtained as follows:

D)(——-——>X

(1.2) ﬂnxl lf

Dg —— 5,

where fip, denotes the restriction of f to Dx, and horizontal arrows are inclu-
sion maps. We consider the map f|p, : Dx — Dg as a Dg -complex projective
variety. Since both of the normal models DY and D% of Dg and Dy, respec-

tively, are non-singular, a 2-resolution of the 0-cubic complex projective variety
Jipx : Dx — Dg in the sense of F. Guillén, V. Navarro Aznar et al. is obtained

as follows:
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2 t% D%
/ /
Z tg Dfﬁ; nx
(1.3)
Z tX ns DX
/ AX
> ts Ds

where ng : D§ — Dg and nx : D% — Dy are the normalizations, g : D% —
Dy the lifting of the map fip, : Dx — Dg, and Xt§ := n;(EtS), Xty =
ny (Xtx). Replacing fipx : Dx — Dgin (1.3) by f : X — S in (1.2), we
obtain the following cubic hyper-resolution of S in the sense of F. Guillén, V.
Navarro Aznar et d%

(1.4)
* 652) *
X111 :ELX DX =: Xo11
651) 652)
X0 1= t% D =: Xo1o vx=:85"
(1) 5(()1) vs=:5" :
83 Xio1 =) tx X =: Xoo1
s¢m
f=:6
X100 =D ts S =: Xooo

§(0)

where vg and vx are the composites of the normalizations ng : D§ — Dg and
nx : Dy — Dx and the inclusion maps Dg — S and Dx < X, respectively.
We put Xg := Xoo1 [[ Xoio[[ X100 = X[ D% ][ Bts (disjoint union), X; =
Xon [ Xao1 [T X110 = Dy [T 3tx, [[ 285, Xo = X1y = Sty, mp = 69 o
5,51) o 5/522) Xy — S, m =000 (Si(ll) . Xy — 8, and mp = 60 Xy — S,
where i1 = 0,1 and 75 = 0,1,2. Then the semi-simplicial hyper-resolution of S
associated to this cubic hyper-resolution is as follows (cf. [12}):
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58
5<1)

5<z) 5

—— 7

8%

We denote symbolically this semi-simplicial hyper-resolution of S by me : X.q —
S. We denote by Dt (S,7Z) the derived category of lower bounded complexes of
sheaves of Z-modules over S. We define K € Ob(D™(S,Z)) by

0 1 .
K: 0-— mulx, 4, S sz*sz —0 (K'=mu.Zx,, 1=0,1,2)

where d° = §{7" —6(V* and dt = (" =62 46, Then K = Zg in D*(S,Z).
We define a so Called weight ﬁltmtwn W on KQ = K®Q e Ob(D*(S,Q)) by
W_,(Kg) = 0.54m.Qx (stupid filtration). Then (Kg, W) € Ob(D*F(S,Q)),
WhCI‘O DT F(S,Q) denotes the derived category of filtered, lower bounded com-
plexes of sheaves of Q-modules over S. By calculation we can prove that

‘¢ := K ® C is quasi-isomorphic to 5(me.Q%, ), where Q% (i=0,1,2) denotes
the holomorphic de Rham complex over X; and s(me.Q2%, ) the simple complex
associated to the double complex 7, Q5% . We define a so-called H. odge filtration
F on K¢ ~ 5(me.2%,) by FP(s(mex%, )) = 5(0g>pTex %, ). Then the data:

{Zs, (TexQx,, W), Qs, (s(mexQ%,), W, F)},
(Qs = mexQx., (TexQx,, W) @ C = (s(me: 0%, ), W) )

is a cohomological mized Hodge complex in the sense of Deligne. Hence the fil-
tration W[¢] (W], := W,_¢, the shift of the filtration degree to the right by

¢) on HY(S,Q) ~ HE(X.,QX.) HYRT(S, s(me+Qx,))) and the filtration F
on H'(S,C) ~ H*(X,,Cx,) ~ Hf(X.,sz;(.) ~ HY(RI(S, s(7e:82%,))) (0<<4)
define a mixed Hodge structure on H*(S,Z) (modulo torsion). Since the spectral

sequence with respect to the weight fitration W[f] abuting to H*(S, Q) degener-
ates at Eo-term (cf. [3], [4]), we have:

1.8 Proposition. For every pair of integers (£, k) with 0<¢<4 and 0<k</,

Ker{H*(X,_1,Q) i H Xy 141,Q)} _
Im{H*(X, 1,Q) 5 HF (X1, Q)}

G'I'ZVW H’é(S, Q) ~

where Gry WHE(S, Q) := W[E), H' (S, Q)/Wllx_ H (S, Q).
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§2 Variation of mixed Hodge structures arising from a locally triv-
ial analytic family of algebraic surfaces with ordinary singularities

We consider a locally trivial analytic family of algebraic surfaces with ordi-
nary singularities, from which there arises naturally a variation of mixed Hodge
structures.

2.1 Definition. A [ocally trivial analytic family of algebraic surfaces (resp.
compact complex surfaces) with ordinary singularities, parametrized by a com-
plex space M, is defined to be a triplet (&, 7, M) such that;

(i) 7 : & — M is a surjective holomorphic map between complex spaces,

(ii) S; := 7~ *(¢) is an algebraic surface (resp. compact complex surfaces)
with ordinary singularities for every point t € M,

(iii) for every point p € &, there exist open neighborhoods U of p in &, V
of m(p) in M with 7(i4) = V, and a biholomorphic map ¢ : i/ — U x V, where
we define U :=UN S,r(p), such that;

(a) the diagram

u ¢ UxV
Wx /A
v

commuts,

(b) d|uxp = iduxp.

By taking cubic hyper-resolution of each fiber of the family 7= : 6 — M
simultancously, we obtain a 2-cubic hyper-equisingular family of complex pro-
jective varieties, paramerized by M (See Definition 2.4 later). We denote it by
Xe =65 M.

2.2 Theorem. Let (S, 7, M) be a locally trivial family of algebraic surfaces
with ordinary singularities, parametrized by a complex manifold M. We define
RL(m) == R'm.Ze modulo torsion (0 < ¢ < 4), R&(W) = RS(7m) ®z Q and
R () := Rfm. (7w Opp) ~ Rfﬂ*(DRé/M), where 7w Oy is the topological inverse
of the structure sheaf of M by the map w : & — M and DR(',B/M the relative
cohomological de Rham complez of the family 7 : & — M (c¢f. Theorem 2.9).
Then there exist a family of increasing sub-local systems W (weight filtration) on
Rf@(w) and a family of decreasing holomorphic subbundles F (Hodge filtration)
on RS(m) such that {R% (), (RG (), WIA)), (RG (), WE],F)} is a variation of
mized Hodge structures , where W[l| denotes the shift of the filtration degree to
the right by £, i.e., W[l], := W,_,. Furthermore, there exist spectral sequences

W’Ef’q ~ R(l(ﬂ’ o a’p)*@f{p = M/E&q — GTK‘;(R%_F(I(TF))’

PEV? 2 RY(moal) 04y = rERT = Gri(Rp(m))
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with wEP? = wER, pEPY = pEPA.

In what follows we shall prove this theorem in a more general setting. That
is, we prove this thorem for a cubic hyper-equisingular family of complex pro-
jective varieties. To explain this notion, we prepare some notation. We denote
by Far(Proj/C) (resp. Far(An/C)) the category of analytic families of complex
projective (resp. analytic) varieties, parametrized by a complex space M.

2.3 Definition. We call a [J}-object (resp. O,-object) of Fas(Proj/C)
(resp. Fup(An/C)) an analytic family of augmented n-cubic (resp. n-cubic)
complex projective (resp. analytic) varieties, parametrized by a complex space

M.

Let by : Xe — X be an augmented n-cubic complex projective (resp. an-
alytic) variety and M a complex space. Then X, x M (a € Ob(0,,)), X x M,
Qo = by Xidps: Xy X M — X x M and 7 := Pry;: X x M — M, the projection
to M, consititute an analytic family of augmented n-cubic complex projective
(resp. analytic) varieties , parametrized by a complex space M, which we denote
by

:=Pry

X, x M Le=bexidu gy TEPIM 4y

and call the product family of augmented n-cubic complex projective (resp. an-
alytic) varieties, parametrized by a complex space M. Let XF = {ae : Xo — X}
be an analytic family of augmented n-cubic complex projective (resp. analytic)
varieties, parametrized by a complex space M. Whenever we wish to express its
parameter space M explicitly, we write

(2.1) Xo 2 x 5 M.

For t € M, X¢o = (7 0a,)" t) (a € Ob(Jy)), Xt = 77 1(t) and a =
Ua|X;, @ Xta — X¢ constitute an augmented n-cubic complex projective (resp.
analytic) variety. We denote it by ae : Xte — X and call it the fiber at t € M
of an analytic family of augmented n-cubic complex projective (resp. analytic)
varieties in (2.1). Similarly, for an open subset U of X, we form an analytic
family

elag @)

a,* (U) U= m(U)

of augmented n-cubic analytic varieties, parametized by a complex space 7(U).
With these notions, we define an n-cubic hyper-equisingular family of complex
projective varieties, parametrized by a complex space as follows:

2.4 Definition. Let X, — ¥ - M be a family of augmented n-cubic
complex projective varieties, parametrized by a complex space M. We call
Xo = X = M an n-cubic hyper-equisingular family of complex projective va-
rieties, parametrized by a complex space M if it satisfies the following conditions:

1) for any pont t € M, aie : Xte — X; 18 an augmented n-cubic hyper-
yp ) g )
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resolution of X,

(ii) (analytical local triviality) for any point p € X, there exists an open
neighborhood U of p in X such that ag ' (U) == U — 7 (U) is ana-
lytically isomorphic to

(0" U N Xapye) x 7U) — UN Xnp)) x 7(U)

over the identy map id. ) : 7(Uf) — 7(U)

P
Tr(U) W(Z/{)

2.5 Proposition. Let X, —% X = M be an n-cubic hyper-equisingular
family of complex projective varieties, parametrized by a complex manifold M.
Then the O, -object mq : Xg — M(mq := 7 0 as) of smooth families of complex
manifolds, parametrized by M is C* trivial at any point of M ; that is, for any
point ty € M, there exist an open neighborhood N of ty in M and a diffeomor-
phism ®q : (771 (N) — Xye X N of [, -objects of complex manifolds over the
identity map idy : N — N. Furthermore, ¥4 — X = M is topologically trivial
at any point of M.

Proof. Let N1 be a coordinate neighborhood of tg in M with a holomorphic
local coordinate system (¢1,--- ,t,,), and N a relatively compact open subset of
Ny with N € Ny. Let t; = o, + V=1 pmyi(1l < i < m) be the expression of t;
in real local coordinate functions z;,y;. To prove the proposition it suffices to
show that for every 0/0z; (1 < i < 2m) and every o € Ob([J,,) there exists its
liftings v¢* to 71 (N), i.e., a C® vector field on 7,1 (N) with the properties;

(i) (dma)(vf) = 75 (55),

(2.2)
(i) dE.5(v)) = Ef ()

in £;0%, for every pair (o, /) of elements of Ob([J,) with « < 3 in the
category L1, where F,3 : X3 — X, denotes a holomorphic map corresponding
to an arrow o — 3 in [J,, and Oy _ the sheaf of germs of holomorphic vector

fields on X,,.

Indeed, if such liftings {v§* }aconm, ) exist, integrating v§¥*, we have a (-
trivialization of the family m, : X, — N along the z;-axis in N for all a €
Ob(,,) such that those trivializations commute with the maps F,z: X5 — X,
for every pair («, ) of elements of Ob(0J,) with & — /3 in the category [,
due to the condition (ii) in (2.2). Arguing inductively on the dimension of M,
we finally obtain the trivialization asserted in the proposition (cf. for more
precise argument we refer to Theorem 3.3 in [9]). Now we are going to prove
the existence of the liftings v& to 7,1 (N) of 9/dz; subject to the conditions in
(2.2).

We take open coverings V = {Vy}rea, and V' = {Vi}ren, of 7 1(N) in X
that satisty the following conditions:
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for every A\ € Ag,
(i) Vy is a compact subset of V,
ii) there exists an embedding ¢, : Vi — C™, and
¥ A
i) ag ' (V4) == Vi = w(V4) is analytically trivial.
A A A

We are allowed to put the condition (iii) due to the analytically local triviality
of the family X, == ¥ 7 M (cf. Definition 2.4 (ii)). By this condition there
exist liftings v§; of 8/dz; to a;'(V}) for every a € Ob([J,,) and every A € Ay,
subject to the conditions in (2.2). We take a C* partition of unity {px }rea, on
X' = Uyen, Vi subordinate to the covering V = {Vx}xea,, i-e., pa’s are "C>
functions” on X' := |J, 25, V) satisfying the following conditions:

(i) 0 < px < 1 for A € Ag,
(ii) Supppr C Vy for X € Ay,
(iti) D aea, P2 =1 on X'

Notice that X’ is a singular space. We use here the term “C® functions” in the
sense of that they are locally pull-backs of C*° functions on C"* via embeddings
oy V), — C™. The existence of C-partition of unity {px}reca, as above
is guaranteed by the fact that the proof of the existence of C'*°-partition of
unity subordinate to a countably indexed open covering of a C'°°-manifold is
also applicable in our case (cf.[9, Chapter I, Theorem 4.6]). We define

= Y anlons,

A€Ao
for a € Ob([J,,). Then we can easily check that
0
85]1’1’

(dBus)(0)) = Bl g(v)

(drg)(vf) =nh (=) and

for every pair («, 3) of elements of Ob([1,,) with o < 3 in the category [J,,.

Finally, we shall show that the C°° triviality of the family mq : X¢ — M
implies the topological triviality of the family X, — X - M. For a fiber X,
(t € M) of the family 7, : Xo — M, we define an equivalence relation on the
topological space [[,con,) Xta (disjoint sum) by

a<f and e =
p~qiff p€ Xyn,q € Xy such that { - G
q

or a>f3 and eg,(p) =

where eng @ Xig — Xio (vesp. ego @ Xia — Xip) is the holomorphic map
corresponding to an arrow o — ((resp. S — «) in [J,,. Then the natural map
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from (I, con(m, ) Xta/ ~) (the quotient topological space of [Locon@,) Xta by
the equivalence relation ~ defined above) to X, gives rise to a homeomorphism
between these spaces, because Xyq is a cubic hyper-resolution of X;. Therefore
a diffeomorphism between different fibers X, and Xy 4(t,t" € M) gives rise to
a homeomorphism between different fibers X;s — X; and Xy e — Xy of the
family Xo —> X = M.

Q.E.D.

The relative version of cohomological descent holds for a cubic hyper-
equisingular family of complex projective varieties. In order to state this fact
we prepare some notation and terminology. Let &, : X4 — X be an n-cubic
topological space with an augmentation to a topological space X, i.e., X, is a
contravariant functor from the n-cubic category [, to the category of topological
space (T'op) and ®, is a morphism from X, to X x [0, (cf. Definition 1.2,
Definition 1.3 and Definition 1.4). For a commutative ring R with identity, an
R-module preshef F'* on an n-cubic topological space X, : [J,, — (Top) is defined
to be a contravariant functor from the total category tot(X,) to the category
of R-modules, where we identify a topological space with the category of open
subsets of it. We say an R-module presheaf F'* on an n-cubic topological space
X, is an R-module sheaf if the presheaves F'* on X, defined by F'®, are sheaves
for all o € OJ,,. For R—module (pre)sheaves F'* and G*® on X,, a morphism from
F'* to G* is defined to be a natural transformation from F*® to G*.

We denote by M(X,, R) and M(X, R) the categories of R-module sheaves
on X, and X, respectively, where R is a commutative ring with identity. For
an R-module sheaf 7 on X we define its inverse image ®*F € M(X,, R) in
a natural way. The functor ®} : M(X,R) — M(X,, R) has a right adjoint
Do, : M(Xe, R) — M(X, R). Since the functor ®* is exact, it defines a functor

(2.3) ®:: DT (X,R) — DY(X,,R),

where DT (X, R) and DT (X,, R) denote the derived categories of lower bounded
complexes of R-module sheaves on X and X,, respectively. The functor in (2.3)

has a right adjoint
R, : DT (X,,R) — DT(X,R).

For more details we refer to [13, Exposé I].

Now we introduce some general notation. Let F'* be a lower bounded com-
plex of R-module sheaves on an n-cubic topological space X,. We take the
factorization

(2.4) X, 2% X <O, 25 X

of ae: X¢ — X. By definition ae.f"® = {G/]OJ*FQ}QEOb(DT,)a to which we asso-
ciate a simple complex s(aj¢+F®) of R-module sheaves on X. To explain this
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we give the definition of an n-ple complex of an abelian category. Let A be an
abelian category. We denote by Ot (A) the category of lower bounded complexes
of A. Let n be an integer> 1. We denote by e; the i-th vector of the canonical
basis of Z", i.e., ¢; = (0,--- ,1,--+,0) (1 is at the i-th place) for 1 <i < n.

2.6 Definition. With the notation above, an n-ple complex of A consisits

of the following entities:
(i) a Z"-graded object {K“},czn of A, and

(ii) a family {d;}1<i<n of differentials of K" such that d; is of defree e; and
they commute each other.

We denote by n-CT(A) the category of n-ple complexes of an abelian cate-
gory A.

2.7 Definition. For K € n-CT(A) its associated simple complex s(K) €
CTt(A) is defined to be as follows:

s(K)? = Z KPibrop e 7 and
2. Pi=p
the defferential d of s(K) is defined by

d= Z(—l)g-"dj on KPrPn,
j=1

where g; = . < Pi-

Let A, be a ([07)°-object of lower bounded complexes of R-module sheaves
on a topological space, say Y, i.e., a functor A, : (0F)° — CT (Y, R), where
C*(Y,R) is the category of lower bounded complexes of R-module sheaves on
Y. We denote Aq(a) € CT(Y, R) by A® for each o € Ob([J}"). We associate to
such A an object K(A,) of (n+2)-C* (Y, R), i.e., an (n+2)-ple lower bounded
complex of M(Y, R) as follows:

A% if o € Ob(}h)

K(A)¥0 and .—
) {o if o € Z"1 — Ob(});

the (i+1)-th differential is the one induced by the morphism o — a+e; in O for
0 <i < n, and (n+2)-th differential is the one of A?. For the sake of simplicity
we denote s(K(A.)) by s(A,).

Je think of @164 F'* = {G10+F*}eon(,) as a () °-object of lower bounded
complexes of R-module sheaves on X by defining F(0 = {0} for (0,---,0) €
(Ot and form s(aje«F'®). Then we have

Ra2ex (105 F*) = s(a10+F°)[1]
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in DT (X, R), where [1] stands for the shift of the degree of complexes to the left
by 1, i.e., s(a1e+F*)[1]P = s(a1e«F*)PTL. Then we have

(2.5) Regs F'® 22 s(a14+F*)[1]

in Dt (X, R) (for more definite arguments, see [13]). This description of Rae, F'*
is necessary for our arguments in the following.

2.8 Theorem. (Cohomological descent of R-module sheaves) Let X4 —%
X 5 M be an n-cubic (n > 1) hyper-equisingular family of complex projective
varteties, parametrized by a complex space M. Then, for an R-module sheaf A
on X, the adjunction map
A — Rag,a, A

is an isomorphism in DT(X, R).

For an n-cubic (n > 1) hyper-equisingular family ¥, —* ¥ - M of comlex
projective varieties, parametrized by a complex space M, we denote by Q5. Y,
the relative de Rham complex of a smooth family 7 - a, : X, — M of complex
manifolds for each o € Ob([J,,). Then Q% = {9,/ tacon@,) is obviously
a complex of sheaves of C-vector spaces on a [J,,-complex manifold X,.

2.9 Theorem. (Cohomological descent of relative de Rham complexes)
Under the same setting as in the preceding theorem, there exists naturally an
wsomorphism

[ ] ~ ®
DR:%:/M — RaO*Qx./M

in DT(X,C), where DR;E/M 18 the relative cohomological de Rham complex of a
locally trwial family m: X — M, i.e., the relative version of a cohomological de
Rham complex of a singular variety (cf. [14, p.28, Remark]).

The proofs of these theorems are almost identical with those in the absolute
cases, i.e., M is a single point (cf.[13, p.41, Théorem 6.9], [13, p.61, Théorem
1.3]), due to the analytical local triviality of the family ¥, —> ¥ = M (cf.
[27]).

2.10 Theorem. Let X, —= ¥ 5 M be an n-cubic (n > 1) hyper-
equisingular family of complex projective varieties, parametrized by a complex
manifold M. We define R () := Rin.Zx modulo torsion (0 < £ < 2(dimX —
dimM)), RG(w) := Ri(7) @z Q and Rl (m) := Rl (7 Oup) RKW*(DRSC/M),
where m Oy is the topological inverse of the structure sheaf of M by the map
m:X — M and DR;e/M the relative cohomological de Rham complex of the
family m: X — M. Then there exist a family of increasing sub-local systems W
(weight filteration) on Ré(w) and a family of decreasing holomorphic subbundles
F (Hodge filteration) on RS () such that;
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(i) there are spectral sequences
. : 7 ppt
VVE?q = ®\a|:p+1Rq7Ta*@Ia = W’Egéq = GTE‘p(R({:@ q(ﬂ_))’

PEP? R (s(a10u0% 3 (1) = pERS = Grip (R (7))

with W’Eg’q = WEgc’)q, FE%)’q = pEgéq7
(ii) (R (m), W[(],F)} defines mized Hodge structure at each point t € M
. where W[l] denotes the shift of the filtration degree to the right by £, i.e.,
Wty :=W,_ys, and
(iii) (the Griffiths transversality)
VFP C QL @ Frl,

where V denotes the Gauss-Manin connection on R&(T).

The outline of the proofs of the asertions (i) and (ii) are as follows: By
Theorem 2.8, Theorem 2.9 and (2.5), we have an isomorphism

T Onm ~ DRy = s(a1ex02%, ar) 1]

in D*(X,C), where a1,.0% e the n-cubic object of complexes of C-vector
L]
. ° 0 ta d QO € o ,
spaces coming from Qf v and s(a,l.*Qx_ /M) is its associated single complex.
By this ismorphism we have

Rb(m) == R'm (7 On) ~ Rimo(s(a10.0%, /00)[1]).

To compute the hyper-direct image Rfr, (s(a1e42%, /M)[l}), we shall use the
fine resolution A$? /,, of Q% ,,, where AT; Jar are the sheaves of relative C*

differential forms of type (r,s) on X, (o € Ob(0,,)). Then the natural homo-
morphism

s(a1exQ%, ar)[1] — s(arextot AS 50)[1]

is an isomorphism in D* (X, C), where tot A$® /i the single complex associated
to the double complex A3® /,, for each a € Ob([,,). Since s(ayestot Y a1
is m.-acyclic, we have

RY () ~ H (7, 5(a)extot A;E:/A,[)[l]),

We define an increasing filtration W = {WW,} and a decreasing one F = {F”} on
the single complex L := m,8(ae+t0t A;E'./M)[l} by

W_,(mes(aiestot A;E’./A/[)[l]) 1= Ola|>q+1TeS(A1ast0t AS 3p) (¢ 2 0)

and
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FP(mes(aiextot A L)) = orspmis(arestot A;‘C/M)[l} (p > 0),

where
[ 1] )

O|a|>q+1TxS5(A1axtO0t X, /M) T 0>¢(L)

if we put L := m.s(ae-tot SC'./M)M. (0>q: stupid filtration). Notice that the
filtration W is defined over Q. We calculate the spectral sequence associated to
these filtrations, abutting to RS (7). Since (Ls, W, F) is a cohomological mized
Hodge complex in the sense of Deligne for any ¢t € M (for definition see [3,
(8.1.6)]), the spectral sequence {E,.(L;, W), d,} degenerates at the Eo-terms and
the one associated to ' at the F-terms ([4, p.48, Théoréme 3.2.1 (Deligne), (vi),
(v)). The assertions (i) and (ii) follow from these facts.

The assertion (iii) can be proved by mimicking the argument of Kats and
Oda in [15] for a smooth family of algebraic manifolds. The remaining part of
this section will be devoted to the proof of the assertion (iii). We are now going to
give an explicit description of the Gauss-Manin connection V on R%(7) in terms
of local coordinates on the cubic hyper-equisingular family X, —> X - M. We
proceed along the arguments in [15], slightly changing them so that they fit to
the case of cubic hyper-equisingular families of complex projective varieties. The
arguments will proceed in the following three steps:

(I) Definition of an integrable connection V : RS (7)) — QL @ RS (7).

(II) Explicit calculation of the connection.

(III) Proof of KerV = RZ(7) := R: () @z C.

Step (I): Definition of an integrable connection V : RS (7)) — QL @ RS ().

Since the family of algebraic manifolds 7, : X, — M is smooth for every
a € [, (n=the length of a cubic hyper-resolution a;e : X;e — X; of a fiber of
the family X, —% X > M), the sequence

0— mh(Qy) — Q. — Qalca/M — 0 (e e0,)

is exact. {QF P ®o, TH, Yaco, constitutes a sub-complex of sheaves of Q% _,
because

* e—p * (YD o—p * P

ad(Qx Dox, Tallyy) C Qa@; ®ox, sy

«

for every integer p with 0 < p < m (m = dimM) and for every pair («, )
of o,3 € O, with o — (3 in the category O,, where Eog : X3 — X, is a
holomorphic map over M corresponding to an arrow o — 3 in [J,,. Hence the
complex 5((11.*9;.) admits a canonical filtration

s(a1e:92%,) = Go(s(al.*ﬂ}.)) » G"(s(al.*ﬂgg.)) D GQ(s(al.*Q}.)) Do

where
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G7 = G¥(s(10.2%,)
= Im{s(a1e(Q%," @z, 1)) — s(a10.02%,)}
The associated graded objects of this filtration are given by
gr? = gr(s(a1e.2%,)) == GP /GPH
= s(areu(me () ®ox, QY J0r))
Therefore the spectral sequence effected by the filtration {G?} and abutting to

the graded objects of H*(Rm.(s(a1e+$2%,))) with respect to the filtration induced
by {GP} is as follows:

EVT = RPTI, (grP) = RPT9(s(a1e. (75, Qox, O;E:];M)))
~ R, (s(a10x (e @05, %, /1))
~ QQZ/I Koy Rqﬂ'*(s(al.*g.%./]\l))) = Qﬁf Qo RL(I’)(W)

— Egéq — Grp(Rp+q7T* (5((11.*9?[:,)»

Since the filtration on s(a1448%,) is compatible with the exterior product
G' A GV C G*F7, and since the sequence of functor R, is multiplicative, the
spectral sequence has a product structure; that is, there are pairings

/ 7 4 ’
P.q P g p+p q+q
EPY x BP9 — BT

!

for each p,q,p’,¢ and r, sending (e, e’) to e - ¢’ where e, ¢’ are sections of KP4

and Ef”q’, respectively, over an open subset of M. This pairing satisfies
e-e = (_1)(p+q)(p’+q’)€/ e, and
de(e-€)=d.(e) ¢+ (=1)PTie-d.(e).

The E; terms of the spectral sequence are as follows:

0,q 1,q9

d d
0 — RY(m) 25 0} 0 R (m) 25 0% @ Rb(m) — -
In order to show that d(l]’q is a connection, let us consider the pairing
E:([]O x E?,(] — E’??q7
which satisfies
(2.6) A w-e) =d w- e+ w-d)e,

. X 0, B .
where w, e are sections of Ey” ~ R (r) ~ Oy and E\*® = R (7), respectively,
over an open subset of M. Since

0,0 . 20,0 1,0 ~1
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is nothing but the exterior differentiation dy; on M, (2.6) shows that d}*? is
certainly a connection. Furthermore, since

4 BN = QY @ Rb(x) — B2 = 03 @ Rb()

is equal to dy ® 1, d7? - d)"? = 0 shows that d7? is an integrable connection,
which is nothing but the Gauss-Manin connection on R}, (7), so we denote di*
by V in what follows.

Step(I1): Explicit calculation of the connection.

First, notice that, in the spectral sequence of a filtered object, the differen-
tial
d11>7q . Ef’q = RPTar, (grf) — Ef“’q — Rp+q+17r*(grp+l)

is the connecting homomorphism of the functor Ri7, for the exact sequence
0 — g,,.p+1 _ GP/GZH-Q —gr? — 0
Using this fact, we shall explicitly calculate the connection

dy?: B = Rim, (gr°) =~ R (w)
N Eiaq — Rq+]7r* (grl) ~ Q}\/[ ® R((JQ(TF)

For a cubic hyper-equisingular family X, — X =+ M, we take a point 0 € M
and put
X, = (roay) o), X :=7""0).

By the definition of an n-cubic hyper-equisingular family X, — X = M, it is
analytically locally trivial. Hence, schrinking M sufficiently small around o, we

may assume that there is a system of open coverings U, := {Ui((X)}iEAa of X4
(A, finite set, a € ) consisting of Stein coordinate neighborhoods, which is
subject to the following requirements;

(i) for each pair («, 3) of elements of Ob((J}) with o« — 3 in O,

there is a map Ang : Ag — A, such that:
(a) if a, 3, are elements of Ob((J}) with @ — 8 — v in L}, then

Aay = Aag - Agy, and
(b) eaﬁ(Ui(ﬁ)) - Uii‘l(i) for any ¢ € Ag, where eq3: Xg — X is
(2.7) a holomorphic map corresponding to an arrow a — 3 in O,
i) if we define V*) := U x M for a € Ob(00}) and i € Ag, then V, =
7 T T
{V;(a)} is a Stein covering of X, for every a € Ob(L;}), and

3 . .
(iii) Eaﬁl‘/f : Vi([) — V/\(:};(i) is equal to eaﬁ!Uﬁ’@) x idpz, where Eqp @ X

— X, is a holomorphic map over M corresponding to an arrow
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a— G in O} for o, 8 € Ob((I7) and i € A,
(iv) 7 o0 = Prag « V@ := U x M — M (the projection to M),

K2

where 7, := 7o a, and Ty = .

Notice that, in order to prove the existence of such a system of open cov-
erings of an n-cubic hyper-equisingular family ¥, —= ¥ -~ M consisting of
Stein coordinate neighborhoods , we use the fact that, for a holomorphic map
f: X — Y between complex spaces, the intersection f=1(U) NV of the inverse
image of a Stein subset U of Y by f and a Stein subset V' of X is Stein (cf. [11,
p.33, Chapter I, §4, 4]). Schrinking M sufficiently small around o, we take such
a system of open coverings of Stein coordinate neighborhoods of X, == ¥ & M
and fix it. Using this special covering of X,, we shall explicitly describe the map

Vi H (M, 7. (s(ares %oan)(1])
- F(Mv Q}\/[) ®F(A’LOJ\J) He(‘/\/L T (S(al‘*Q;E./jW) []]))

In what follows we shall always calculate under this setting unless otherwise
mentioned.

Let {K?,dq}acno, be a bounded complex of sheaves of coherent analytic
sheaves on X,. Let {€*(V,,K2),d,} be the Céch complex consisting of alter-
nating cochains with values in P, respecting the Stein covering V,; that is,

Ve KB) = iy TV 00V k)

1q

and the coboundary map 59 . CI(V,,KP) — €27V, KP) is defined by

q+1
(6D B) (s prig -+ igra) = (=P (1) Blig - +ij -+ igs1)
=0

for 5 = {Baspig---if)} € €1(Vy, KE), where B(asp;ify---if) € TV oo
Viga), K2) for (if,--- ,i,) € AL, The pre-sheaf

» Yq
Vo €V VL) =8, eagn TV 0 NV VLK),
defines a sheaf where V' is an open subset of X,,, which we denote by C4(V,,, KZ).

We associate to the double complex of abelian sheaves C*(V,, K?) a single com-
plex tot C*(Vq, K£2) defined as follows:

(06 C*(Va, K3))" = Spyq=rC! (Va, KL),
A = pygmr (~1)1NAE 4+ 659) : (10LC*(Va, K2))" — (10t C*(Va, K2))H,
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where 6% is the Céch coboudary map C7(V,,KE) — CI1(V,,KP) and d? is
the map C?(V,,K2) — C4(V,, K2T1) induced by the differential of the complex
Ke and || = ag + -+ + «, for a € O,,. Obviously, {totC*(Va,K?2),da}aen,
defines a complex of abelian sheaves on X. which is quasi-isomorphic to
{K2,d. }uer, » because {totC*(V,,K?),ds} is quasi-isomorphic to (K3, dq) for
every « € [,.

2.11 Proposition. The single complex of abelian sheaves
s(a1e+t0t C*(Ve, K2))) is myu-acyclic. Hence

HE (M, 7.5(a10:K2)[1]) = HF (X, 5(a145K8)[1])
~ HE (X, s(a1e:tot C*(Va, K2))[1])
o ¥ (5(0en, T (X, 1000 (Vo K1)
~ H*(s(tot €*(Ve, K2))[1]) for k >0,

where s(tot (€*(Ve, K2)))) is the single complex of abelian groups associated to
the (n+2)-ple complex tot €*(V,, 7).

Proof. In order to prove that s(ayextot C*(Ve, K2))[1] is m.-acyclic, it suffices to
show that

(2.8) H (71 (U), (s(a1extot C* Ve, KIN[A])) =0 (k> 1,7 € Z)

for a sufficiently small open subset U of M. Let us notice that
(5(a104£0t C* (Vo K1) = Blap gor+100sC? (Ve KE).

hence

H*(nH(U), (s(arextot C*(Ve, K3))[1])7)
(2.9)

- @|a\+p+q:T+1Hk(7r_l (U); aasC(Va, KL)).

Concerning the holomorphic map a, -1 ;Y U) — 7« Y(U), where a, :
X, — X and 7y := 7 aq : X4 — M are the same ones as in (2.7), we have the
Leray spectral sequence

B3 = HY (1 (U), R 00" (Va, K7)))
— B, = HY iy (U), €0 (Va, KD)).
From this it follows that
H* (771 (U), aa:C?(Va, KE)) = H* (71 (U),C7(Va, KE)),
since R*a.C%(V,,KE) =0 for s > 1. On the other hand,

H* (7 HU),C4( Ve, KP)) = 0 for k > 1;
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hence
H’“(W“l(U),aa*Cq(Va,ng)) =0 fork>1

Consequently, by (2.9), we obtain (2.8). The latter part of the proposition follows
from the facts that the natural map s(a1e+K3)[1] — $(a1estot (C*(Ve, K2))[1] is
an isomorphism in DT (X, Ab) where Ab denotes the category of abelian sheaves
on X, and that

H*(X, s(a10:K2)[1]) = H*(X, s(arextot C*(Ve, £2))[1])
~ H*(%,T(X, s(aretot C*(Ve, K2))[1]))
~ H*(s(tot €*(V,, K2))[1]).

Q.E.D.

By Proposition 2.11 the explicit description of

Vo HQUW, Ty S(al.*Q.%‘/j\/j)[l])
(2.10)
— T'(M, Q) @r(,0,,) HI(M, 7.5(a10:Q%3,)[1])

is reduced to that of

Y H(s(tot € (Va, 2%, ja))[1])
— T(M, Q) @10, H(s(t0t € (Va, %3 [1)).

In what follows we shall use the notation
K*(FJ) = 8(Dacn, tot(€* (Va, 7))

for a complex of abelian sheaves F? on X,. With this notation we have the
following exact sequences of abelian groups:

(2.11) 0— K'(GI(Q'I.)) — K*(Q%,) — K'(Q;E_/M) — 0,

(2.12) 0— K*(Gr'(0%,)) — K*(0%,/G*(Q%.)) — K*( %) — 0.

For a € UJ,, and ¢ € A,, we denote by (xg?) e ,xEZi) a local coordinate
system on U,Z-(a), where n, = dim Ui(a). We denote by (t1,---,t,) a local

coordinate system on M. We decompose the exterior differentiation dx_ on X,
as

(2.13) d};u =dy + dU_(a)
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on each I/,i(a) = U,i(a) X M, where dp; and dy; are the differentiations with
respect to (t1,--- ,tm) and (;1:2(.(11), e ,:r?(zi), respectively. We define
(o) . () .
67 e = B e

by

S Yl (w el A A dz )

J1<<Jp
= Z (Lg-?,)“jp (z, t)d.rg;xl) Ao A d:z:ffp),
G1<<Jp

where [0, ;. ag?) i, (@, t)dx,g;f? Aees da:,fj;)} is a local cross-section of the sheaf

Q% /p OVer an open subset V!, represented by a differential form

S @ (@ e Al

Groeej idp
J1<<Jp
involving da;gix), - dazgzl only. In what follows the proofs of Lemma 2.12

through Lemma 2.15 are straightfoward caluculations, so they will be omitted.

2.12 Lemma. (bga) splits the exact sequence O, ) -modules

0— Gl(Q;Q)W(u) — Q2 — Q — 0

[
Xa |V o /M|V Y

and satisfies

(bz(.a) . d%a/}w' — dUi(a) . ¢Sa)v

where dyx, /pr s the differential of the complex Q;CQ/M, i.€., the relative exterior
differentiation.

Hereafter we use the notation w(a;p;io---i,) (@ € Ob(,), p:a posi-
tive integer, and ig,---,i, € A,), which represents the component of 3 €

(s(tot € (Va, K2))" (r = |al + p + q) lying in T(VL™ -0 V™ KR), for
a complex of abelian sheaves KJ on X,. We define

¢ K*( .%./M) — K*(Q%,)
by
(o)
20

(pw) (s psio -~ -ig) := ¢; (w(a; piig - iq))

for w e K*(Q%, /)
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2.13 Lemma. ¢ splits the exact sequence of abelian groups

0— K*(GY(Q%,)) — K°*(Q%,) — K*(9Q%, /) — 0.

Define J : K*(Q%, ) — K*TH(Q%,) by

(Jw)(aspiia---ig) = (~1PH (G — o) (wlasprin i)

1o 1

it Vi v e v £ 0. Then we have J(K*(Q%, ) € K*(GH9%,))-
2.14 Lemma. d¢ — ¢po = J

,where 0 is the Céch coboundary map.

Define the total Lie derivative Ly : K*(Q%,) — K*T1(Q%,) with respect
to the parameters of M by

(Lyw)(aspyig---ig) i= (—1)‘O‘ldM(w((x;p; Qo ig))
Notice that Ly (K*(G'(Q%,)) € K*(G"(Q%,)). We denote by
dx, : K°(0%,) — K**(Q%,)

the morphism of C-vector spaces induced by the exterior differentiations dx  :
Q% — Q% , and by

dx./m - }(.(Q.%./]W) - K.H(Q:%./M)

the one induced by the relative exterior differentiations dx /s @ Q% M

QO+1

%, /- Combining Lemma 2.12 and (2.13), we obtain

2.15 Lemma.
(—1)'“‘(13€nqb(w(()z;]); ig-rig)) = (Lad + (—1)|a‘¢d35(1/M)(w(oz;p; Qg iq))

for w(osprio-ig) € VY v, 0% )

We define the differential map K"(Q%,) — K™ (Q%,) of complexes of
C-vector spaces by

(2.14)

DO = Sjapprgmrl Y DTS+ (CDIAEY 4 (—1) 50},
1<j<n+1
a+e; €0Ob(0,)
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Here

J

d((fjf)* : (’lq(VmQZ;gu) _ Q:q(va+€;>Q]3)€a+cj) (6,7 =(0---1---0) € Zn—i—l)

is the map induced by the holomorphic map Foqie; @ Xage, — Xao over M
corresponding to an arrow a@ — a + ¢; in Ob(0,,),

gi=aotor+ o to (1<j<n+1) fora=(ap - an) € Ob(lh),
where we understand £, = 0,

dg’;q) 1 CU(Va, Q) — CU(Va, Olgl) the exterior differentiation on X,
and

5 CU U, %) — CTH Uy, Q% ) the Céch coboundary map.
Similarly, we define the differential map K"(Q%, 5,) — K™H(Q%, /a/) by
(2.15)

DO = @papipro=r{ 3 ()P AT + (~)NAT G, o+ (<)o),
1<j<n+1
04+€j EDYL
Combining Lemma 2.14 and Lemma 2.15, we have the following:

Lemma 2.16.

Do—¢pD'=Lyd+J

mod G* r °
KT(Q%,) 2% K™%, /)

— p—

Dl D’

KT(GH(Qg,) —> KTH(0y,) 228 K0, )

Ly ¢+J

Thus the connecting homomorphism associated to the exact sequence (2.11) is
induced by the morphism of C-vector spaces

Lyg+J 0 K*Q%, a) — K*THGHOL,))
Proof. We denote by D and D’ the differentials of the single complexes of C-

vector spaces K*(§%,) and K'(SZ;./M), defined in (2.14) and (2.15), respec-
tively. Since
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D=3 1<j<nt (_1)E‘jdz,j+(_1>la!d3€a+(_1)|a‘6a on €V, Q%) and,

a+e; €Ob(LI™)

D' =Y 1<j<nt1 (,1>gjd;j JY“(““l)‘O‘ldxu/M +(=1)l*l§, on Q‘o(VQ,Q;EQ/M),
a+e; €Ob(0™)

we have

D¢—¢D" = (PCigjentr  (—1)¥d5 )0—0(X1gjcntn  (=1)7dG )
ate; €0b(O™) a+e;€0b(0™)
(2.16)

+(=Dlel(dx, ¢ — ddx, ) + (=1)*N(60¢ — $da)

on €*(U,, Q%a/M). Since the map Eoq4e; (1 < j < n+ 1) satisfies the require-
ment (iii) in (2.7), we have

(> (vEdie—e( Y (F)Tdy,) =0
1<jsn+l 1<isn+1
a+e; €0b(0™) a+e; €Ob(0™)

Therefore Lemma 2.16 follows from (2.16), Lemma 2.14 and Lemma 2.15.

Q.E.D.

On each V,L-(a) we define the total interior product with respect to the pa-
rameters of M

T B e = O e
by
I(Z)é(z:j1<...<j,r Qjyeogpkr ks (.CE, t)dxg? FANKIEIVAN dl’gji) ANdtg, N+ A dtks)
k1< <k,
r+s=p
0<r,s
(2.17)
= Sy 8 Wity ey (B AT A A Nty A At
ki <<k
r+8=p
0<r,s
for a local holomorphic p-form on Vi(a). Here we understand the forms da:l(.;? A

ERIAY dmgfl) Adty, N--- ANdt. for r = 0 (resp. s = 0) are those which do not
13 1 s

involve dxg'f), e dazfgi (resp. dty,--- ,dty,). When p = 0, we define Il =0.
Notice that
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IZ( ; |V(&)) - Gl(Q;&,)ﬂ/f"‘)'

Define
AT K*(Q%,) — K'“(Q;E_)
by
() (@i piig - iq) 1= (—)Pel (1io — 12 (w(as piin -+ - iy))
Lemma 2.17.
Ao = J mod K*(G*(0%,))
Proof. It suffices to show that we have

(2.18) Mow)(a; psioiy -+ - ip) — Jw(a; prigiy -« - ip) € GQ(QZ;EO).

for w(a;psiy--ig) € TV NV Q8 ) of the form

wla;p;in - 1) = [z, t)d (@) A A det) 1,

i1j1 t1jp

where p(x,t) is a local holomorphic function on Vl-(la) N--N V.(a), and

[z, f)(i:r(a-) A A dx(a) ,] alocal cross-section of the sheaf Qr

i1 Xo/M
- MV, represented by the form p(z, t)dxg N A dlrgluj)p Indeed, since
() (a)
plw, t)dw; 5 AN Adxg s
_ Owiyhy o iiay) 1 (@) AL p (@)
= (:L' t){z; <-- <}p ()(I(Q), .M’:_(a)’> xz od! - A xﬁojp
*0p
Zm 5 ()(T'(:n T E?;IJ) 1% AL Ad (o) Adty}
+ R <Gy 5, @), 1) i Vi, OV
t077 ¢ p—1

mod GZ(QQO),

we have

(2.19) Jw(as; pyigiy -+ ip) = (1P (68 — o (s priy - ig) =

P ) (- I S el 2000 ol el
= HAT, T k=1 D<o BT e, ) o i0J)
7,031' lojp 1

/\(ltk}
mod GZ(Slfea)

On the other hand,

over Vigu) N
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Mow)(a; pyigiy -+ - ip)

= (1Pl (o — 1) (u(w, t)dal®) A A dal))

i11 i17p
2.90 — (—1)Ptlel fio " a(xfifa)-l ) Z;yj)p)d (a) Ad ()
( . ) - <_ ) o {:u(@": )(Ej{<...<j;) 8(1(0‘), " () ) ZUzon
"‘0.]1 L()]P
+Z7n a('L‘E;Ql “Lglaj)'p) ],.(a) Ao A ] ( ) A if ) + R )} —
k=1 2uji<-<jl_, ‘)(””’(»(XJ)- (n]) tk)("'l”ioj{ dx; 0il 1 aty =
1047 07, _q

B(mia> . J:EM )
p—1 ()(L U.l.‘ x(a)lmt dx(ﬂl)’/\ /\d:];(a?, 1/\dtk}
)~ ? : -/

(— )p+|a|/1($ t){ZA 1Z]]< <1

mod  G*(Q% )

Then (2.18) follows from (2.19) and (2.20).

Q.E.D.

By Lemma 2.16 and Lemma 2.17 we infer that the connecting homomor-
phism associated to the exact sequence in (2.12) is induced from

K*(Q%, ) 2 K*(Q%,) 202 koG (08,)) 229 ko (Grl (03,)).
Xo/M X, EN

Furthermore, since

® L ] ¢ [ ] ® o Y aLd L ]
K*(Q%, ) — K (Q%,)/ K (GH(Q%,) = K*(Q%, /ar)
is the identity map and
(Lag + N(K*(GH(QF,)) € K*HH(G2(Q%,)),

we conclude that this connecting homomorphism is induced from Lj; + A :
K*(Q%,) — K*THG (2%, )) by passing to quotients, i.e.,

K*(Q%, ) = K*(Q%,)/K*(G1(Q%,))

(2.21)

Lar+X K“H(Gl(QE.)),/K'JA(GQ(Q%,» — K-Jr—l(Grl(Q;e.)).
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Lemma 2.18.
(L]\,;[ + )\)D -+ D(LA{ + )\) =0

The proof of this lemma will be accomplished after proving several claims.

Claim 1.

do i Ln + Lydy, ;=0 and
do A+ MG ;=0 (1<j<n+]1)

@3

Proof. Let w € K"(Q%,) = ®jal+prq=rCI(Va, Q%) and let 3 € O, be such

that there exist o € O,, with 8 = a+¢;, where e; = (0---1---0). Then

(Lard}, ;) (B;prio - +ig) = (—1)ldar (B gw(a; pi Aaglio), - Aaslig))s

where E,p5 : X3 — X, and Ao : Ag — A, are those defined in (2.7). On the
other hand,

(dg, j Larw)(B; pyio - - - iq)
= E}s(Lyw)(a;p; Aaslio), 5 Aap (i)
= Bl (=D dyrw(a; p; Aaplio), -+, Aapliy))

M . 3 AL sk 5
Since Eo3 = eqp X idpys on VLE)/ 'n...n \/ig‘i), dM]:dﬂ = L 3dnr. Hence

(=D (Lard5w)(B; piio - +ig) = (1) *Nd5 Lasw) (B prio - -+ i),

which means d, ;Lyr + Lydy, ; = 0 as | 3 |=] « | +1. Similarly, we can show
Q.E.D.
Claim 2.

Oaling + Lady =0 and S,A+ Aoy =0

Proof. The first identity is trivial. We are going to show the second identity.
Let w € €171V, Q% ). Then Adw € €1T1(V,, QF) is given by

(DI Saw) (@ prio -+ iger) = (“1)P (L = L) (8aw) (i prin - -ig41)
(2.22)
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= SN (T — Tl prig -y - igi1).

On the other hand,

(=1 AN By i) = (— 1P SES 1P Ow)(@i i1y gi)

= (L — L)l pia - igsr) — (10 — T2)w(as psiz- - iger)
(2.23)

+Zq+1( V(150 = I w) (e pydn -« dg - ige)-
= —{ZQH( V=1Ll — I )w) (s psin =45 - -igy1) }-
From (2.22) and (2.23) it follows that
{(Ada + daM)wHa; pyig -+ +igr1) = 0.

Hence Ad, + 6o A = 0 as required.

O.E.D.
Claim 3.
Lydx, +dx, Ly =0
Proof. Let w € €4(V,, Q’;E;Q) Then Lysdzx w € €1(V,, Q% ) is given by
(Lyrdx w)(aspyio---iq)
= (—1)*lds (dx w)(a; p—13io - +ig))
— (=)l dy (dprw)(a;p—13i0 - - - ig)
= (—1)dx. (Lyw)(o;p-liig - - - ig)
—(dx Lyw)(a; psip -+ - iq)
Hence we have done.
Q.E.D.

Claim 4. On each V* (o € Ob([,),i € A,),
I'dx, —dx I\ = dy.
Proof. It suffices to show that for a local holomorphic form w on Vi of the

form
w = p(z, t)d:(:,g;? A Nde, (“) Ndtg, N -diy,,
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where p(z,t) is a local holomorphic function,
Iédfaw - dfm[(lw == (JI,M[Q}

holds. We have,

, Oult) 1) 5 72 (o)
de.w =Yg :((o)>d1 Nz A A dal) Nt A,
Ou(x,t (Oé) ”(a)
3 ity ety Adwls) A A dalS) Adb, A dt,.
Hence
Li(dx,w) = A g5,y e dals) A dalf) Ao Ndal) Adt A dty,)
(2.24)

0+ V(g ) 282t A da) A N da S A dtg, A dty,)
On the other hand,

I(a)w = qu(z,t)dx;; o ) JARERWA d.rg;;) Adty, A---diy,).

Hence
dx, (Il w) = q(ng(_jl,.._,p d’;(ég (]l(a) A d:cfi) A d:z:,gi) Adtg, A---ditg,)
(2.25)

00 gy, 2Lty A dx (S A Al Ay, A dt)

» Ot ij1

From (2.24) and (2.25) it follows that
I (dx,w) — dx,, (Iw) = dyw.
Q.E.D.

Claim 5.
Mz, +dx A A=0

Proof. Let w € €171(V,, Qgg_l) Then Mdx.w € €9(V,, Q% ) is given by
(Adx.w) (e psig -+ - iq)

= (~DPHNI — 1) (dx,w) (@i pyio -+ i)

= (— )”Hald (I — I'yw) (e pyig - - i) (Claim4)

= —dx, (=)7L — IDw)) (s prig -+ i)

= —dzx, (Aw)(a;pio -+ +ig)
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Hence

(Mdx. + dx Nw) (s psig---iq) =0

This means Adx. + dx A = 0.
Q.E.D.

Proof of Lemma 2.18. We are now ready to prove Lemma 2.18. By
Claim 1, Claim 2, Claim 3 and Claim 5, we have

Ly D)
= Lat{(@lalmpral Ciejcnpr (1T AP0 4 (=1)eldPD 4 (—1)lels oy

=T

- {@WHPW(Zlﬁjgnﬂ(_1)6"Lﬂfd$}Q)* + (*U‘aiLMd;g/e.;q)

+(=1)* L)}

= (‘1){(@1C¥|+P(21§j§n+l (-1 dg)’qu)*L]M + (‘1)|a'd¥:17q)Lﬂl
+q=r

= (“D{(®ajtpra(C1cjenis (~1=dD" + (=1)1dLY + (=1)el6P YLy,
=r-1
- (~1)D(’"+1)LM,

and similarly AD() = (—=1)D Y\, Therefore,
(Lar +A)DM) = (=1)DTHD (L, + A).

Q.E.D.

Consequently, by (2.12), (2.21) and Lemma 2.18, we conclude that the con-
nection
Vo HUM, mo(s(a1e0% /0 ) (1)) > HI(K®(Q%, /a0 [1])

— T(M, Q) Or(as,0,) HYM, w.(5(a10. %, 20)[1]))

~ T(M, Q) ®ruoy) HUK(Q%, /a0 [1])

~ HITH(K*(Gr! Q%))
is nothing but the homomorphism induced by Lys + A in (2.21). We should note
that L s + A is independent of the choice of a system of open coverings consisting

of Stein coordinate neighborhoods of X, subject to the conditions (i) through
(iv) in (2.7) (cf. [2, p.220, (3.7.1)]).
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Step(III) Proof of KerV = Im{R%(7) — RS (7))}
Let O be the sheaf of germs of C*° functions on M. If K*(Q°

oox./M) =
$(Paen, I'(Xa, Q;o.%ia/]w)) is a C'°° analogue of K'(Q;C./M) constructed by use

of the complex of relative C'° C-valued differential forms on X, over M, then
we have locally

(2.26) Rﬁow (m) = HE(K.( ;cx./MD
Furthermore, we can define the C*° analogue
(2.27) Vo : Réoc (m) — Q) @ Rp_(7)

of the connection V : R5(m) — Qi, ® RS (r) so that the following diagram
commutes:

0 —— RA(r) —— RY(n) —— Qb ®RY(n)

l ! | l

0 — Ré(m) —— RYH (1) —= QL ,, ® R,_(m)

Therefore it suffices to show that

(2.28) KerVe =1Im {Ré(?r) — Rf%c (m)}

Since Qi Xo/M (0 <p <dimgX,,a € J,) are fine sheaves, the explicit calcu-
lation of V4, in terms of H*(K *(Q2% %, /1)) remain valid verbally for all cover-
ings of X, which are subject to the conditions (i) through (iv) in (2.7), except
that they are Stein open coverings. Since, by [2, Proposition 2.5], the family
7.1 Xe — M (7o = 7o ae) is C trivial at any point of M, we may take V,

= {X,} for all « € O, to calculate Hﬁ(K'(Q;ox./M)) and

Voo HE(K.< ;ox./M)) — (M, Qéo]%) ® fﬂ(K'( ~;oae./M))-
We fix these coverings. In what follows we shall use the following symbols:

K*(Q2%x,) = 8(@aen, '(Xa, Q20x.))s
K*(GP(Q20x.)) = 8(Daen, (X, GP(Q% 2, ) forp>1,

etc..

The connection V. in (2.27) is locally derived from

LA/I -+ A K.( ;Ox'/ju) - {.+1<F1(“ ;CI./A/;f))
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by passing to quotients, i.e.,

K (2 x, 0r) = K (Q82,)/ K (GH(Q%x,))
M, KL GH(,2,)) K G x,)
= D(M, Qnr) Orm,0.) K2 1, /)

as in (2.21). Notice that A is in fact zero map in this case, because we may take
V, = {X,} for any a € J,,. We have the C* analogue of the exact sequence
n (2.12):

0 — K*(GM Q%2 )/K*(G*(Q2,))
(2.29)
2 K0, ) /K (G (28x,)) — 0.

I

K* m;oae /w)

— K*(Q%x,)/K*(G*(Q2%x.))

Notice that V., comes from the connecting homomorphism of the long exact
sequences of cohomology associated to this exact sequence. On the other hand,
by Theorem 2.8, we have

R&(m) = R, (s(a14+Cix, )[1])
NRKW*( (alox ﬁoi.)[u)
=~ HYK*(Q%x.)[1])  (locally)

Therefore, since the inclusion map RE(w) — Rém (7) is induced from the com-
posite of the projection

K*(0%x,) — K* (2%, )/ K (G (Q%x,))
and the map P in (2.29), we infer that
(2.30) Im{RL(m) — Ro_(m)} C Ker Vo

Hence,

rank o Réx (7) > rank ¢ Ker Vo, > rank ¢ Im{RL(7) — RoH_(7)}
= rank o Ry ()

From this (2.28) follows, and so we conclude that KerV = Im{R&(7) — R, (m)}.
This means that horizontal local cross-sections of RS, (7) with respect to V coin-
cides with local cross-sections of R(f: That is, V is the Gauss-Manin connection

on RS (7).
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The fact VEP(RS (7)) € Q3 @ FP~Y(RE (7)) follows from the explicit cal-
culation of V in Step(IT) (cf. (2.21)). This completes the proof of the assertion
(iii) in Theorem 2.8.

§3 Infinitesimal mixed Torelli problem

In this section we shall formulate the infinitesimal mixed Torelli problem
for an algebraic surface with ordinary singularities.

3.1 Definition. For a compact complex surface S with ordinary singulari-
ties, a complex analytic family of locally trivial deformations of S, parametrized
by a complex manifold M, is defined to be a quintet (&, 7, M, 0, ¢) such that;

(i) (&,m, M) is a locally trivial analytic family of compact complex surfaces
with ordinary singularities, parametrized by a complex space M (cf.
Definition 2.1),

(ii) o is an assigned point of M,

(iii) ¢ : S — S, := 7 (o) is an isomorphism between compact complex
spaces.

For a compact complex surface S with ordinary singularities, we put

O5 = Home. (2%, Os)

and call it the sheaf of germs of holomorphic vector fields on S. Now we are
going to define the characteristic map

o,: T,M — H'(S,05)

for an analytic family (&, w, M, o, ¢) of locally trivial deformations of S, paramet-
rized by a complex space M, where T, M denotes the Zariski tengent space of M
at o. In what follows, taking an open neighborhood of o in M, we may assume
that M is a closed complex subspace of an open neighborhood B of the origin
0=(0,---,0) of C", and that the assigned point o coincides with the origin 0
of C". We denote by t = (t1,- - ,t,.) a system of local coordinates of C".

3.2 Definition. A geometrish Finspannung of an analytic family (&, 7, M,
0, ¢) of locally trivial deformations of a compact complex surface S with ordinary
singularities, parametrized by a complex space M, a relative analogue of the
geometrish Einspannung of a complex space in the sense of O. Forster and K.
Knorr ([7]), is a data

{&i,¢:,9:,D;, Dij,uij, Ti, By, Eij, i Vi jer,
such that;
(3.1)
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(i) {S;}ier is a finite Stein covering of &,

(ii) D; is an open polycyrinder in C3,

(iii) ¢; : S; — D; is a closed embedding, where S; := &, N7 1(0),

(iv) ®; : &; — ¢;(S;) x M (C D; x M) is a biholomorphic map between
complex spaces such that:

(a) the diagram
D,

S; $i(S;) x
W\(& A

M

M

commuts,
(b) ®s, = ¢,
(v) D;; C D, is a Stein open subset,

(vi) ui; :+ Dj; — D, is a biholomorphic map between complex manifolds
such that:

(a) Si N Sj = &; ' (Dij N ¢i(Sh)),
(b) for any i,j € I with S; N S; # 0, the diagram

D,J C D;

$;NS;

D

ji C Dj

commutes,

(c) for any i, 4,k € I with S; N.S; NSy # 0,
Uik = u;j © ujr, modulo the ideal sheaf Zy, s,y on Dy; N Dy;,

(d) for any i € I, D;; = D; and uy; = idp, (the identity on D),

(vil) E; CC D is a relatively compact open polycyrinder D; such that if we
put T; :== ¢; '(F;) and Eyj := F; N Dyj, then

(11717 ¢2|T1 ) Ez« Ei_j, ,U/ileij)

ijs
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is a refinement of the system (S;, ¢;, Dy, Dij, usj),

(viii) if we put T; := @;1(E,; x M), then {%,;};cs is a finite Stein covering of
S,

(ix) for any i,j € I with D;; # 0,
Gij:DiJXB_)DinB

is a biholomorphic map between complex manifolds such that:

(a) the diagram

DijxB—S" . D.xB
M Prg
B

commuts, i.e., G;; is a vertical automorphism over B,
(b) G”|DLJ <0 = szuXO (the 1dent1ty on El] X O),
(c) Gy =idp, x B,

(x) the automorphism G;; send Z((¢;(1;) N E;;) x M), the ideal sheaf of
(QDZ (Tz) N EU) X M) in OET.ij, into itself,

(xi) if we put Fj; := Gjj o (u;; X idp), then

(a) for any 4,7 € I with T, N T; # 0, the diagram

commutes,
(b) for any 1, J, k € I with Eijk = Ezy N Ei 7é @,
Fik = Fij @) ij

modulo the ideal sheaf Zy, (7, yxp on (Exi N Eyj) x B.
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Let (z},27.27) be a system of local coordinates on D;. Since D;; is an
open subset of D;, we may regard this as a system of local cordinates on D;;.

We denote by (x;,t) a set of r+3 complex numbers z, z7, 23, ¢, -+ , ¢, and also
the point D; x C” with the coordinates (z},2%,23,¢1, -+ ,t,). We express the

vertical automorphism G;; : Dy; X B — D;; X B over B as

and the holomorphic map F}; : Dj; x B — D;; x B as

Then, since Fj; = G5 o (ui; X idg), we have

(3.2) 28 = (@) = g5 (uy(2;),t) (1< a<3)

We identify T, M, the tangent space of the parameter space M at o, with the
subspace

{veT,C" | (v€)(o) =0 for any £ € Z(M), }

of T,C, where Z(M), denotes the stalk at o of the sheaf ideal of M in O¢-. For
any 0/0t € T,M, we set

0y = TS5 (a0 )
(3.3)
3 ij
X0 4 oy (x; 0)(83:?) on D;; C D;

where u},; denotes the pull-back of holomorphic functions on Dj; by the map
Uyq - Dij — Dji> and

g5 g5 0 . 0
(,%'] (2;,0) = E;ZlmaTj(:pi, 0) for — =X1_ju\(=—
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Claim 1. éz’jmij € I'(Eij, Op,(—logg:(13))), where O, (—logd;(T;))) de-
notes the sheaf of germs of logarithmic vector fields along ¢;(T;) on E;.

Proof of Claim 1. Let &1(t),- -+ ,&s(t) be the generators of the ideal sheaf of M in
Opg, h;(x;) the generators of the sheaf of ¢;(T;) in Og,. Then, by the condition
(ix) in (3.1), there exist holomorphic functions a;(z;,t), bf(:ri, t),1 <3 <s,on
E;; x B such that

(3.4) hi(g,ij(xi,t)):ai(:z:?;,t)hi(a;i)+Zgzlbg(xi,t)£a(t) on FE;; x B.

Derivating the both sides of (3.4) by 0/0t = X5 _,vx(0/0tx)o € T,M, we have

995 Oh;
a=1 at (l’ 9 )6'17? (gj (':U /t))
(3.5)
é)ai 0 s
= E(xi,t)hz‘(ﬂfi) + a(z}a:1b[1j($i»t)fa(t))~
Since g;;(z4,0) = z; and (9¢/0t)—q = 0 for any € Z(M)o, substituting 0 for
¢t in the equation (3.5), we have

which indicates that the vector field éij sends the ideal sheaf of ¢;(T;) into itself,
that is, éijl E,;» the restriction of 6; J to E;j, is a logarithmic tangent vector fields
along ¢;(1;) on E;j;.

Q.E.D. for Claim 1

Since
Oy, (1) = O, (E,)(—1logdi(T:)) /Oy, ) (—¢:i(Ti)),

where O, (g,)(—¢:(T};)) denotes the sheaf of germs of holomorphic tangent vector

fields on E; which vanish on ¢;(T), 0;;g,, determines an element of
['(Eij, Og,(1;)), which we denote by thetay;, and by 0;; the element of I'(7; N
T;,0g,) corresponding to b7, e,

5 095 0

bij = (fﬁfl)*(za:lw(%0)(@;@)\@(’1;)0Eij)-
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Claim 2. For any i,j,k € I with T, NT; NT}, # 0, we have

(36) 97;]' + Ojk -+ sz =0 on rfi N T'] N Tk

Proof of Claim 2. From the condition (xi),(b) in (3.1), it follows that

modulo the ideal Sh(}df I¢k(Tk)xA[ on (Ey N Ey;) x B
(I1<a<3).

Since fjr(xk,0) = ujr(xy), derivating the both sides of (3.7) by
0/0t =35 _,vA(0/0t)), € T,M and substituting 0 for ¢, we have

(3.8)
o Of i dug, of8
o — (ujr(zx),0) + B3_, 8:5 (7, 0) - 8:—17§(ujk(xk)) = & (24,0)
modulo the ideal sheaf Ty (Tey On Eg; N Ey;
Then, since
of . Of5
gy (" ot (‘fjk<Lk) 0)) :“ji( 81‘3 (xj70))7
it follows from (3.8) that
(3.9)
dfe 9 of i, Ou B
3 * ) 2
28w (5 (a;, 0) & g St (B 5 o 0 T ) )
. 0
= (e 0.0 (5)
modulo the ideal sheaf Zy, (1) on E;; N Eyy.
On the other hand,
. 3 . a (,\ a
(wij) b = Eoq (wig)e{up; (—,~ dt ® (. 0))(01?)}
ZS ook K JQ;C }JS ok 8%23] 0
= a:1u]z kj( ot ( )){ ]ujqj((f)x? ( J))(al,ﬁ)}
L Of% 0
= ¥ T (T (@ 0) o (@)} 5)
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Of i du?j B
= Y5 up {Sho, 5 (@ ’“O))(‘)a:_g* (“yk(ﬂk))}(@)
Therefore, by (3.8), we have
(3.10) 0 + (uU)*éjk =0,

modulo the ideal sheaf I@(z‘i) on F;; N By
Further, derivating the congruence equation
Jie(fri(zi,t),t) = idp, x B
modulo the ideal sheaf Zy (1« on FE; x B
by 0/0t = 3% _,vx(0/0tA), € T,M, and substituting 0 for ¢, we have

()f“b

16) ous
(ki (1, 0) + X5y 25 (1), 00) 2 (ana () = 0

modulo the ideal sheaf I@.(Ti) on F;.
Therefore, we have

: oy 9
Oir = T0—1 (uri)™( (%k (:(:k,()))(%)

. ws OF2 A’ 5,
=-%3_ 1’“}1“{2%:1—5];“(%1(:(5@),0) xéﬂ (Ik)}(@)

(3.11)

= (i) {Zh (5 (1, 0)) (522}
— (k) +Opi-

modulo the ideal sheaf Z, 7,y on Ej.

Consequently, by (3.10) and (3.11), we have

075 + (wij) <02y + (uir)«05; =0 on  ¢i(13) N By N B,
from which (3.6) follows.

Q.FE.D. for Claim 2

By claim 2, we conclude that the collection { 6;;}; jer define an element of

H'(Sy,Os,), which is independent of the choice of the system
{6i> (/)ia CD’U DZ DL]: Uij, T“ E’éa EL//ng}L,]EI .

3.3 Definition. We define the characteristic map o, : T,M — H'(S,,0g,)
of a complex analytic family (&, m, M, 0, ¢) of locally trivial deformations of S,
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parametrized by a complex space M, by 0,(9/0t) = {6;;}: er for any /0t €
T, M, where T,M denotes the Zariski tangent space of M at o.

3.4 Definition. For a locally trivial complex analytic family (&, 7, M) of
compact complex surfaces with ordinary singularities, if the characteristic map
o : TIM — H'(S,,0g,) is injective at t € M, then we say that the family
(&,m, M) is effective at t € M. If the family (&, 7, M) is effective at every
t € M, then we say that the family is effectively parametrized.

Now we proceed to defining the completeness. First, we recall the definition
of a complex analytic family of deformations, not necessarily locally trivial, of a
compact complex space, and define the completeness for such a family.

3.5 Definition. A complex analytic family of compact complex spaces,
parametrized by a complex space, is a triplet (), w,N) such that @w : Y — N
is a proper, flat surjective holomorphic map between complex spaces.

3.6 Definition. For a compact complex space Y, a complex analytic family
of deformatins of Y, parametrized by a complex space N, is defined to be a
quintet (), w, N, 0,v) such that;

(i) (9, w, N) is a complex analytic family of compact complex spaces, para-
metrized by the complx space N,

(ii) o is an assigned point of N,

(iii) ¢ : Y — Y, := w (o) is a biholomorphic map betwen complex spaces.

Suppose we are given a complex analytic family (), @, V) of compact com-
plex spaces, parametrized by a complex space N. Let N’ be another com-
plex space, and h : N’ — N a holomorphic map from N’ to N. We put
h*Q) ;=2 xn N, the fiber product of 2 and N’ over N, and Pry- : h*9) — N’,
the projection to N’. Then (h*Q), Pry/, N') is a complex analytic family of
complex spaces, parametrized by the complex space N’.

3.7 Definition. The family (h*Q), Prys, N’) thus obtained is called the
family induced from (), w, N) by the holomorphic map h : N’ — N. In partic-
ular, if N’ is a complex subspace of N, and if i : N’ — N is the inclusion map,
then we call the family (A*9), Prys, N') the restriction of (), w, N) to N’ and
denote it by (Yn/, @, N').

3.8 Definition. Let (9),w, N, p,¢) and (9, @', N',p’,¢') be two complex
analytic family of deformations of the same complex space Y, parametrized by
complex spaces. If there is a holomorphic map h : N/ — N with A(p’) =
p such that 9’ is isomorphic to h*Q) i.e., there is a biholomorphic map ® :
h*Y) — D* over the identity map idy: : N’ — N’, then we say that the family
', @', N',p',¢') is induced from the family (), w, N,p, ).
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3.9 Definition. Let (),w, N) be a complex analytic family of compact
complex spaces, parametrized by a complex space, and let p is a point of N.
(), w, N) is said to be complete at p € N if for any complex analytic family
(), @', N, p',¢') of deformations of S, := w™'(p), parametrized by a complex
space, there are a sufficiently small open neighborhood N of p’ in N’ such
that the restriction (iDTN,,,w’, N p' ") of (Y, ', N',p',¢') to N” is induced
from (9, w, N,p,ids,). Here (9, w, N,p,ids,) denotes the complex analytic
family (9, @, N) considerd as a complex analytic family of deformations of S, :=
w ™ (p) with idg, : Sp := w ™ (p) — Sp, the identity map on 5.

We are now in a position to define the completeness with respect to lo-
cally trivial deformation for a locally trivial complex analytic family of compact
complex surfaces with ordinary singulatities.

3.10 Definition. Let (2),w, M) be a locally trivial complex analytic family
of compact complex surfaces with ordinary singularities, parametrized by a com-
plex space. (), w, N) is said to be complete at tg € M with respect to locally triv-
ial deformations if for any complex analytic family (), @', M’, o', ¢") of locally
trivial deformations of Sy, := w™1(t,), parametrized by a complex space, there
are a sufficiently small open neighborhood N’ of ¢/ in M’, and a holomorphic
map h : N’ — M with h(o') = t, such that the restriction (@1’ @ N o' @)
of (Y, @', N',0',¢") to N is induced from (). w, M, t,,ids, ).

3.11 Definition. The family (), w, M) is called complete with respect to
locally trivial deformations if (), w, M) is complete at every point ¢t € M with
respect to locally trivial deformations.

3.12 Theorem. For a compact complex surface S with ordinary singu-
larities, there exists the Kuranishi family (), 7, M,o,¢$) with respect to locally
trivial deformations of S, that is, the family for which the following conditions
are satisfied:

(i) (Y, 7, N,o0,0¢) is a complex analytic family of locally trivial deformations
of S, parametrized by the complr space N,
(ii) the characteristic map at o
oo : ToM — H(S,,05.)
s 1njecticve,
(iii) (Y, m, M) is complete with respect to locally trivial deformations.

Proof. Due to a result by H. Grauert ([10]), or V. P. Paramodov ([19]), or O.
Forster and K. Knorr ([7]), there exists a complex analytic family (&,7, M, 0, ¢)
of deformations of S, not necessarily locally trivial, parametrized by a complex

space M, such that:

(i) the characteristic map at o
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7o TsM — ExtoSF(SZ}%, Os.)

is defined, and is injective,

ii) the Complex analy tic family 6, T, M) of compact Complcx spaces is com-
plf’tﬁ at every point te M.

By Cororally (0.2) in [6], for any point z € Sz, there exists a locally closed
complex subspace M, of M containing the point o, which enjoys the following
property:

If a: (N',0') — (M,0) is a holomorphic map between germs of complex
spaces, then the induced family (o*&,z) — (N’,0’) of deformations of
the germ of complex space (S5, ) is isomorphic to the trivial deformation
(Sz,2) x (N',0') — (N',0)) if, and only if, o factorizes over (M,,0).

/e define

M = m M, (the intersection as complex spaces)
TESH

G = —6|M (the restriction of & to M),
Ti=Tg: 6 — M (the restriction of 7:= & — M to &),
0:=0, ¢:=0

Then (&, 7, M, o0, ¢) is a complex analytic family of locally trivial deformations
of S. We claim the family (&,7, M,o0,¢) enjoys the properties (ii) and (iii)
in the theorem. Indeed, by the definition of (&, m, M, o0, ), it is complete at
o € M with respect to locally trivial deformations of S. Besides, locally trivial
deformation has a good deformatiion theory in the sense of J. Bingener and H.
Flenner. Therefore, by the openess property of the completeness, or versality
([5]), we conclude that (&, 7, M, 0, ¢) is complete at every point ¢ € M, shrinking
M sufficiently small around o if necessary. The fact that (&, 7, M, 0, ¢) enjoys
the property (ii) is shown as follows:

Since S is locally a complete intersection, Sl‘t((’gs(Ql ,Og) =0 for ¢ # 0, 1.
From this it follows that the spectral sequence

EDT = HP(S, Eatd, (Q,0s)) = EPF1 = Extfé;;q(Q}g, Os)

(cf. [8, Chapitre II, Théoreme 7.3.3]) is such that E5'? = 0 for g # 0,1. Hence
we have an exact sequence

~p—2,1 d: , , —-1,1 d 1,0
R O S 7 QU . S .y Qi Ny 5 SR

(cf. [8, Chapitre I, Théoreme 4.6.2]). Therefore it follows that there exists an
injection

(3.12) 0 — H'(S,0g) — Exté, (g, Os).
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Since the characteristic map of the family (&, m, M, 0, ¢) at o € M as a complex
analytic family of locally trivial deformations of S is defined as the map o, :
T.M — H'(S,©g), the characteristic map 7, : T,M — E:J:t%f)s(ﬂs,(’)s) at
o € M of the family (&, 7, M, 0, ¢) as a complex analytic family of deformatins,
not necessarily locally trivial, of S factorizes through the map o, : O,M —
H'(S,05). Hence, by the injectivities of 7, : T,M — Eﬂftl@g(ﬂg, Og) and the
map in (3.12), we infer that the characteristic map o, : T,M — H'(S,0g) at
0 € M of the family (&, 7, M, 0, ¢) as a complex analytic family of locally trivial
deformations of S is also injective.

Q.E.D.

Now we are going to define the modular variety M .. (H®(S)z) of mixed
Hodge structures on H*(S)z := H*(S,Z) modulo torsion for £ = 1,2. We denote
by

Wi :={W[lloc Wiy C---CcW[l],=HS,Q) } (¢=1,2)

the weight filtration on H*(S,Q), and by
F:={HYSC)=F°>F'>F?>...oF"} (=12
the Hodge filtartion on H*(S,C).

We put
fOP =dimc FPH(S,C)  (1<p<{ ¢£=1,2), and
FO7 = dimeFrar M HY(S,C)  (1<k<( 1<p<k £=1,2),
where we define

Gri/WH(S,C) = W[l /W[l (W[]—1 =0)

and
kP Gr? By (S, C):= the subspace of G'r',l:/[e] H*(S,C) corresponding to
the subspace F? of H*(S,C).

In what follows, letting V' be a complex vector space and, ny, - --n, natural

numbers with ny > ng > --- > n,, we use the notation

Flag(Ving, -+ ,ny)
= {F = (F',F? ... | FP) | sequences of decreasing complex subspaces

of V,ie,VDOF!DF?> ... D FP with dimg F* = ny,
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for any k (1 <k <p)},
Grass(V,n1) := Flag(V,nq),
With this notation, we define
Fnie(H?(S,C))
.= { (F',F?) € Flag (H2(S,C) ; f®1, f@2) | dime FrGr P H2(S,C)
= l(f)‘p for every p,k with 1 <k <2, 1 <p <k},
F(Gry PIH2(S,C)) i= Flag(Gry P H?(S,C) 5 152, 577
f(GTF/[Z]HQ(S,C)) = G'r'(Lss(G'r'}/V[Q]HQ(S, C) ; 1(2)‘1),

M(Gry PUH2(S),) := {(F!, F?) € F(Gry PIH2(S,T))
| Fra F? = Gry P H2(S,C)}

(i.e., the modular variety of pure Hodge structures on Gr;/V 2 py2 (S)z
= Ker{ H*(X,Z) ® H*(D}%,Z) — H?*(D%,Z) } modulo torsion
of weight 2 [cf. Proposition 1.6] )
MG B Hy) = {F e F(arl"PH2(5,C)) | FaF =Gr PH2(S,C)}
(the modular variety of pure Hodge structures on G'r’]W[Q}H 2(8)z
= HY(D%,Z)/Im{H"(X,Z) & H'(D%,Z) — H'(D%,7Z)} (modulo torsion)
of weight 1 (cf. Proposition 1.8)

We denote by

T Fonin (H2(S,C)) — F(Gry PH2(S,0)) (k=1,2)
the map which assignes F? to FPGTZVM H?(S,C) for p=1,2.

3.13 Definition. We define

Moo (H(8)z) = i (M(Gry P HA()2)) Ny (M(Gry P (S)2))
and call it the modular variety of mized Hodge structures on H*(S)z

Similarly, we define

Fnic(H'(S,C)) := { F € Grass (H'(S,C) ; f)
| dime FGr M HY(S,€) = £ )



INFINITESIMAL MIXED TORELLI PROBLEM, I

47

F(Gr"MH(S,C)) == Grass (Gri"M (s, ) ;O

M (Gr{" W HY(8, 7)) = {F € F(Gr " HY(S,C))
| FaF =cr"MHY(S,C)}
(i.e., the modular variety of pure Hodge structures on G‘T‘}/VmHl(S)Z
= Ker{ H'(X,Z)® H'(D%,Z) — H*(D%,Z)} modulo torsion
( [cf. Proposition 1.8] )

We denote by

71 ¢ Foin (HY(S,C)) — F(Gri W HL(S,C))

the map which assignes F to FGry " II(S, C).
3.14 Definition. We define
Muia(H' (S)z) = m (M(Gr ' (S)2)
and call it the modular variety of mized Hodge structures on H'(S)z

Suppose we are given an algebraic surface S and the Kuranishi family
(6,7, M, o0, ) of locally trivial deformations of S in Theorem 3.12 which satisfies
the following conditions:

(i) the parameter space M is non-singular, and
(ii) all of its fibers Sy := 7~1(¢),¢+ € M, are complex projective.
Then there arizes naturally variations of mixed Hodge structures on (RQ &

Oum, ¢ =1,2). due to Theorem 2.2. Therefore we have a holomorphic map,
which is called, period map

D=0y x Oy : M — My (HH(S)z) X Mopin(H?(S)z)

at least from a sufficiently small open neighborhood of o in M to the product
of the modular varieties of mixed Hodge structures on H*(S)z := H‘(S,Z)
(modulo torsion), £ = 1,2. Now the infinitesimal mixed Torelli problem for S is
formulated as follows:

<Infinitesimal mixed Torelli problem for S >

Under the setting as above, is the Jacobian map of the period map ® at o

dq)o : T()A”[ - T<I>1 (0) (/\/[ mix (Hl (S)’/fj)) S ‘T¢2(O) (./Vl AT (HZ (S)/A))
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injective ?

In order to clarify the relation between the Jacobian map d®, and the
characteristic map o, : T,M — H!(S,0g) of the family (&,r, M,o0,¢) at the
point o, we define the sheaf ©(bs) of germs of holomorphic tangent vector fields
to the cubic hyper-resolution by : Xe — S. For each a € Ob((0J) we denote
by ©x_ the sheaf of germs of holomorphic tangent vector fields on X,, (X :=
S for 0:=(0,---,0) € Ob(d0F), and by O(Os, Ox. ) the sheaf of germs of Ox_ -
valued derivations on S, i.e., 8 € ©(Og,Ox, ) is a C-linear map Og — ba+Ox,
with the property 6(ab) = 0(a)b+ af(b) for a,b € Og. For each o € Ob((03) we
define

(3.13) thy 1 baxOx, — O(0g,0x,) and
(3.]4) wba . (‘)3 — @(Os, OXQ)
by tho (0) :==0b% for 0 € b.Ox, and

wha(p) :=bop for ¢ € O,

where b, : Og — bo+Ox, is the pull-back.
3.15 Definition. We define

O(b,) :=
(3.15)
[(e’r‘{'@ae()b(mz}r)ba*@xa — @anb(Dg)@(OSa Ox,):
(0n) — tha(0a) — wba(00)},

and call it the sheaf of germs of holomorphic tangent vector fields to the 2-cubic
hyper-resolution be : Xe — 5.

Now we are going to define the Kodaira-Spencer map

po: ToM — H'(S,0(bs))

for the 2-cubic hyper-equisingular family ¥, — & = M of deformations of
the cubic hyper-resolution be : X, — S arising from an family (&, 7, M, 0, ¢) of
locally trivial deformations of S. By the analytically local triviality of the family
X = & 5 M, shrinking M sufficiently small around o, we may assume
that there is a special system of open coverings U, := {U i(a)r}z'e‘/\a of Xo (a €
Ob(03), Xo = S) consisting of Stein coordinate neighborhoods as described in
(2.7). In addition, since b, is a finite map for every o € Ob([Jy), we may assume
that the system of open coverings U, := {Ui(a)}ie,\a (o € ObJy) satisfies the
following condition;

(v) for each pair of @ € Ob([J3) and i € Ag, there exists a finite subset A, (i) of
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A, such that:

(a) 031 (U;Y) = U_y‘eAa(i)U}Q), and
(3.16)
) U U™ =0 for jk € Ag(i) with j # k.

We take such a special system of open coverings and fix it. In what follows
we will always calculate with respect to this coverings unless otherwise men-
tioned. For each a € Ob((J]) we denote by €?(U,,Ox.) (resp. 3 Uy, Ox..))
the p-th Céch cochains (resp. the p-th Céch cocycles) with values in the sheaf
Ox, with respect to the Stein covering U,,, and by

08+ € (Un, Ox,) — € Ua, Ox,.)
Céch coboundary map. We define a subcomplex €(b,) of
Doeconmh Ua, Ox,) by

€P(b,) :=
(3.17)

Daecob(y) (tha —wba)

Bacob@y)CP (U, 0(0s,0x,))}
Then by the definition we have the following commutative diagram:

0 — & (U, B(be)) = S ,conm) @ (b5 (Uo). Ox,)

(3.18) l l

0 — &(be) —— Bconh) e Ua, Ox, )

Baecob(Oy) (tha—wba)

Dacob(0,) P (Up, ©(0s,Ox.,))
|

Bacob(@y) & (Uo, ©(0s, Ox,, ),

SEP €Ob(0y) (tba _Wbu)

where b1 (Up) = {b;l(ufm)}i%. Note that this commutative diagram com-
mutes with Céch coboundary maps.

Let (ty,--- ,t;,) and (:(:7(?) az(zi) (@ € Ob(OF),i € Ao, ng = dim X,
for o € Ob([z),ng = 3, the local embedding dimension of Xy = S) be local
coordinate systems on M and UZ-(O‘), respectively. (For Xy = S we take a local
embedding S € C? at each point of S and consider the ploblem modulo Z(S),

the ideal sheaf of S in O¢s.) Then (.T(a) gl t1,+- ,t;,) constitutes a local

[ Y Ming !

coordinate system in V;(a) = Ui(a) x M. We denote by
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D = A e e ) (1 )
te=te (1<&<m)

the transition functions of local coordinate systems in UZ-M) N U;u) for i, j € Ay
with Ui(a> NnU ](a) # (). They satisfy the compatibility conditions:

() (@)

(a)u

701]» (‘T k1o 'rkn 7IL)
o) a)l o « o)Ne o o
e P (o € R ) IOl € AR O O
Hence
0,,(_“)# ’
Yk (:17](\,,61),25) =
Otg ’ ‘
Me 8995‘1)“ N N 8+/((;z)c N a(’pg(})/’f N N
Z (]a)c ((/ng)(xgc ) t)vt)#(xl(c )vt) + _ﬁ‘(sp(]k)(xlg )7t>7t)
=1 0z; 3 3
This implies that if we define
S, O ) 0
ik = Zzbﬁ aLt (2}, 70)(—(;;))
/J-:1 gzl 5 3:131»'“
for
u o0
T:Z (dt ) e, M,
£=1 13
then

9@ - {Hﬁ;}i,ke/\a S 31(2/[@7@:’(&)'

On each UZ-(‘B) (i € Ag) we express the holomorphic map F.z : Xz — Xa
corresponding to an arrow a — 3 in Ob([y) as

0% ; ﬁ
xg\(jﬁ('i,)/z, = 62045,#(1:511 )7 T 7(5)3) (] < K < na)
te = te (1<&<m)
They satisfy the compatibility conditions:
k I
Qp?k’)‘u’((ab'l(l ) (adn ( ( )) t)

i 8
oz[;’ /,L(Y}(k)(;l/}({; )7t>) (O S H S n(,\:)-

Hence
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(o)
aap K k B .k (B) ¢
81% (eaﬁ 1<£k )7 78046’,71 (xk )7 )
ns 3, A(B)¢
_ Z 060/” /l (13) ) t)%(fg(m £)
0 (ﬁ)C T ot (%g R

This means

deag(fs) = eqp(ba)-

Hence

(319) {H(X}ae([];> € 31(b0)7

where 3'(bs) stands for the 1-cocycle group of the complex €°*(b,) defined in
(3.17). The 6, in fact defines an element of €*(b;'(Up),Ox, ) for each a €
Ob(s) due to the condition (v) in (3.16). Hence by (3.18)

{0} aeonoy) € 3 Uo. ©(ba))
We define a map pg : T,M — H'(S,0(b.)) by
(3.20) po(7) = {Ba}aconay) € H' (Uo, ©(bs)) (Céch cohomology)
~ H'(S,0(b,))

for 7 € T,M. We can see that the map p thus defined is independent of the
choice of a system of open coverings {Ua}anb(Dj) of be : X¢ — 5, subject to
the conditions in (2.7) and the condition (v) in (3.16).

3.16 Definition. We call the map p thus defined the characteristic map,
or Kodaira-Spencer map at o of the 2-cubic hyper-equisingular family Xo L,
& 5 M of deformations of the cubic hyper-resolution be : Xe — S arising from
an analytic family (&, 7, M, o0, ¢) of locally trivial deformations of S.

Fort=1,2, let
FO:= RG(w) D F'RG(7) D -+ D FYRG(m) D FUH Ry (m) =0

(resp. FY := H'(S;,C) D F}H!(S;,C) D - D FfH*(S;,C)
S FYHY(S,C)=0,te M)

be the Hodge filtration on R&(r) (resp. H(S:, C)). We put

Grh. RS () == FPRS (1) JFPTIRG (7), (0<p</)
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Grh. H'(Sy,C) := FPHY(S,,C)/FPT H!(S,,C), (te M,
F t t
0<p<{))

The relation between the Jacobian map (d®), and the characteristic map
po: ToM — H(S,,0(b,)) is given by the following theorem.

3.17 Theorem.
(i) For a vector T € T,M, d®,(7) belongs to the subspace

@3, {®)_ Home (GrY, HY(S,,C),Gry "HY(S,,C))}
of Tti)l(o)(/\/tmia: (fll (S)Z)) © T%(o)(Mm'éw (H2 <S>Z))
~ @7 {®p=y Home (Gry, (HY(S,, C), HY(S,, C)/FP(H'(S,,C))}.

(i) For every pair of integers (£,p) with 1 < £ <2, 1 < p < {, there is an
isomorphism

Home (Grl, (H!(S,,C), Gry *(H*(S,,C))
~ Home (H*~P(QF_[1]), HEPHL(Q5 1)),

where we simply denote H*(s(Dacobn,) C® Ua. X ))[1]) by HI(Q% [1]).
(iii) Any element of H(S,,O(bs)) defines an element of
Home (H' P (2% [1])), H 1O "[1])))

by the coupling through the contraction.
(iv) The following diagram commutes up to [Dgzl{@f):l(-l)p“}:

T,0M (a2 &2 {©L_ Home(Grb, (H'(S,, C), Gri ' HY(S,,C))}

S

H' (S5, ©(bs))

where the map 7, is the one induced by the coupling through the contraction and
the isomorphism in (ii).

For the proof of this theorem we prepare a lemma.
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3.18 Lemma. Let f : X — Y be a holomorphic map between complex
manifolds and let (0x,0y) be a holomorphic vector field of a holomorphic map
f: X — Y thatis, 0x and 0y are holomorphic vector fields on X and Y, respec-
tively, which are subject to the requirement that df (0x) = f*(0y) inT(X, f*Oy),
where f*Oy denotes the inverse image of the sheaf of germs of holomorphic vec-
tor fields on Y. Then we have

(3.21) Ox | f'w=f"(0y|w)

for any holomorphic form w on'Y, where | stands for the contraction.

Proof. Let m and n be the dimensions of X and Y, respectively. In terms of
local coordinates we express f, 0x and Ay as follows:

yi = filzr, @) (1<i<m),

n

5}
Oy = Zal(x)(&—?) and

=1

= 0
by =D by
j=1
Then the condition df (6x) = f*(0y) is restated as
" (9yj .
(3.22) Zai(:ﬁ)% =b;i(f(z)) (1<j<m).
i=1 '

It suffices to prove the assertion for a holomorphic diferential p-form of the form

w=dy;, N+ Ndy;, (1<iy < --ip<m)

1) The case p < dimX:

For such a form w we have

Jn‘ Jz)
Z o, p)dwj]/\---/\dxjp and

J1<--<Up ot
yll . )
j W= Z dl’ )[GXL(d:UJI /\dﬂ’,'jp)]
J1<<Jjp J1 Ly
() yn : yzp P — 3
= Z a(r Z L 1“3# )dle/\"'/\da:ju/\"'/\dl'jp)
J1<<Jjp e p=1
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On the other hand,

D

Oy L(“" = (Z(_l)/\ilbw\(y)dyh ARRRNA dqjm ARERRA dyjp , and
A=1
[ Oy |w) =
p 77 R
S ey 3 D ) gy, )
g, -, ) g
A=1 J1<--<Jp P
p . a(y?’l”gl .y7)
= Y O =DM a(f() 2 T dg, A Adz, )
. . Ny -y, )
J1<<Jp—1 A=1 p

— Z {Zp:(_

J1<<jp—1 A=1

< (3 ) S (w) 7(;’;;;' - i y;"’) blaj, Ao Adag, - (by (3.9))

= Z {Z a;(x)

,'A1<“'<jp L i=1

E /\ layb\ x))a(yhgb\ "'y'ip)

dz; A+ Adx.;
— O Oxjy -z, ) sz, o

(3.23) = Z {Z OWss - Yin) Yz, A Nday,

x :1/ ...17.
j1<- <}p ;=1 2y Jp 1)

= Z {Z )s—éjih%if}f%}d%/\da%/\u-/\dxjp).

J1<<gp-1 p=1

Therefore we have Oy | f*w = f*(0y|w) as asserted.

2)The case p > dimX:

In this case we have f*w = 0, and so the left-hand-side in (3.21) vanishes.
The right-hand-side in (3.21) also vanishes, because the index i in the expression
in (3.23) appears at least once among the indexes ji, - - - ,Jp—1. Therefore the
equality in (3.21) holds.

Q.E.D.

Proof of Theorem 3.17.

Since the problem is local with respect to M, shrinking M sufficiently small
around the point o, we may assume that a, : X4 — & is covered by a system
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of open coverings {V(},}aeob(mg) consisting of Stein coordinates neighborhoods
subject to the conditions (i) through (iv) in (2.7) and (v) in (3.16). In what
follows we shall use the same notation as in §2.

(1) By Theorem 2.8, Theorem 2.9 and (2.5), we have

Ro(m) := R'm.(m Onr) = RY(DR )

~ Rew*(s(a,l.*Q;.ﬂW) 11])
= HE(S(CDOAEO})(DZ)tOT‘ ¢* (Va7 Q.XQ/M»DD

By the Griffiths transversality (Theorem 2.10 (iii)), the Gauss-Manin connection
V on RS (7) induce the map:

Gri(V): G R, (7) — Oy © Grf R, (7

which is called the quotient of Gauss-Manin connection. For a vector 7 € T, M,
we take a local holomorphic vector field 7 on M around o with 7,—o = 7. We
define

(3.24) 7+ Gri(V) € Homo,, (Gri R (n), Griy™ R ()

by the contraction of Gr%.(V)(s) by 7 for a local cross-section s of Grh RS ().
Then d®,(7) is nothing but &)_,7 - Gr'n(V);;—0, and the assertion (i) of the
theorem follows from (3.24)

(ii) The assertion (ii) of the theorem follows from Theorem 2.10 (i).

(iii) Let 0 = {0a},conmr) € 3%(be) be a l-cocycle of the complex €°(b,)
where 6, € 3'(Ua,,Ox,) for a € Ob(F), and let w = {w,} € 37PTH((Q%)
be a (£ —p + 1)- cocycle of the complex K*(Q%) = $(Bacob@,)€* Ua, U ))
where w, € c:ffpﬂf\a\(ua,ﬁ’g(a) for a € Ob(y) with 1 < |o| <l —p+ 1. We
define

0lw = {ba|wa} € KeierQ(Ql));.l) 1= $(Bacob@,) € Ua, QI))(ZI))K#MQ)
where 0, |w, € €PH2-laly,, Qg{l) is defined by

(Ha Lwa)('i()u 1'1, e 7i€—p+2——\a\) = 9(1(7:07 21) qu(i17 e :ié—p+2—]cx|)~

What we have to verify is that
0w € 3PH2(Q5 ).

In order to verify this, we will show that

DYPF2(9lw)(ayp — 15ig - 4p) =0
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for any multi-index (a;p—1;ig - 4,) with || +7 =£—p+2, a = (ag,a1,02) €
Ob([y) where

D(E—P-FQ) : I{fvp%"Q(Qg{:l) = EB‘CEH-’I’:pr—}—QQ:r(VU“ Sz];(—;l)
(3.25) — KX PO = o mps€ (Vo 5

is the total differential of the complex K ’(Q]j(_.l) defined by

DD = @ja prp—pra{ 1</ (=17 dl;h7" 4 (= 1)leloP ey

ate; €Ob(O%)
(cf. (2.14)).

First, we have
DEP(0|w)(asp — Lydg -+ ir)

= ) 1<j<3 (=D eq—e, a(@lw)(@—€jip = 1 Ada—e;alio) - Aa—e;,alir))
a—e; €0b(0?)

+0(0|w)(a;p— 1349+ ir) (g5 =00+ -+ aj-1)

=D 1<j<3 (=D%el .. alp(T)|w)(@—ejip—15 Aa—e; alio) - Aa—e;,alir))
a—e; €0b(0?)

+ (Pl (1 (0lw) (asp — Tsdo oty ey
- Zlﬁjﬁiﬂ (“1)€j ez—cf,-,u(ga—ej ()‘a—ej,oz(iﬂ)v A(X*ej,@ (21»
a—e; €Ob(0?)

Lw(a —€55D 3 )\a—ej,a(il) T )\a-—ej,a(ir)))

+ (=1)PtHleltg, (i, i) |w(es p sig - i) — Oaio, i2) |w(; piig - - - ir)

+ Zgzz(_l)jeu(io,il)Lw(a;p Gy dge i)}

=>1<j<3 (‘1)”9@(7307il)LGZ_ej,aw(a_ej%p s Aa—e;,alin) Aa—e;.alir))
a—e; €0b([1?)
(3.26)
+(=1)P1H0lG,, (i, i) |w(s pyia -+ i) — Ba(i0, 12) |[w(o; pyia - - iy

+ 3o~ balio i) |w(@ipiis -+-Bj--+i)} (by Lemma 3.5)
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Next, since w € 3971(Q%, ),
(DY PO (s pyiy - - - iy)
= Z (_1)€j62—ej,aw(a = €jiP ; Aa—e;,alil) - Aa—e;,alir))

1<5<3
a—e; €Ob(0?)

+ (=Dl (dw) ez prir -+ ir)
- Z (*1)83. (52—63»7@‘?‘)(& —€5D ;ACMACJ',Q'(Z‘].) e )\oz—ej,a('[:r))

1<5<3
a+e; €0b(0%)
+ (—1)ptled Z(~1)J Ywlasp yip- iy i) =0
j=1
Hence
>1<5<3 (1) ef_e, awl(a = €5iP s Aame;alin) -+ Aa—e;,alir))
a—e; €0b([0%)

(3.27)

= (P T (~Dwlaip i),

Substituting (3.27) into (3.26), we have

(—1)PH1e DEP (6] w) (s p — Lo -+ -iy)

r

o {Q(X(ihi?)\_w(a;p ;’iQ T Zr) - ga(io, ig)Lu)(a;p ;iQ R Zr)
+ 00 (i i) [(Y_(~1)wlasp i 1)}

7j=2
= —ba(io, i1)|w(asp jiz---ir) — Ou(ir, i) [w(asp siz - dy)
+ (i, i2) [w(a;p iz - - ir)
- _(59(1)(107 ?:1,2'2”.(«0(0&;]) ZZ T 77’) =0

as required.

(iv) Let us recall that

GriRo(m) = H*(K*(FP(Q%, /0 [1])/K* (FPHQ%, ar)[1])
= Hé(K.(Ql%./A/])[p +1])

~ HEAP(AK. (Q&./M) [1])7
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where K*(QF /M) = $(Bacob() € Va, U5 /M)), and that the Gauss-Manin
connection

V: FPRo(m) — Q3 © FP Ry (m)
is induced by
K FP(Q%, jar)) = KTHGO(FP(9%,))/GHEP(0%,)))
__(_,b_) Kg.+1(GQ(FP(Q, ))) Tu+>\ K—£+2(G1(Fp(ﬂse.))
— T(M,Q},) @ KTH(GY(FP~1(Q%,)))
~T (M, Q))& KHGOUFPH(QY,)/GHFPTHOL,)))
~ T (M, Q) @ K (FPH(QF, /)

Here we should notice that
Ly (KTH GO (FP(Q%,)))) € KTHGHFPTH(9%,))
Hence, if we pass to the quotient

Grin(V) : GrioRS (1) — QY ® Gr¥T'RE ()

I l

HEP (K%, 1) — Q) @ HEPH (K4, [1),

Xo/M
L s becomes zero map. Therefore we conclude that the quotient of Gauss-Manin
connection Gri.(V) is induced by

KErH(@ ) = KGO0, )/GHO,)

~ KT (GO(Q5, ) /KGO,

L KGN (9F,) S KGN (QR,))
(3.28)
— KPR (GG )/ KITT(GH(9R,)

~ KPP (GHOL)/GR(OL)))
~ (M, QL) ® KEPH2(GOQR 1) /GHOLY)
~ (M, Q%) @ K P25t

We denote by

A 3TPEUES Q) ) — DM, QL) ® 3P F2(K (045 ),)

the map corresponding to the one in (3.28), where 3*(K*(Q25. . )) denote the

Xo/M

cocycle group of the complex K ‘(Q};E /M)
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Claim. For a vector 7 =3 "", bw(%)o on T,M, we have
p(r)w = (=P <7 Adjpmo >

for anyw € 3P (U, K*(Q%)[1]), where @ is an element of 3¢ P(V,K* (9 /M))
with W;—, = w and < , > denotes the contraction.
Proof. By definition

(Ao @ip 50+ iepra) = (~)PI2 = I)@(@ip i ie—pra)

modulo (KE*IJH(GZ(S’Z&.)[H),

where I’ is the total interior product with respect to the parameters of M
(cf. (2.17)). Using local coordinates, we write
(o p yiy - ig—pr2) as

~ (e o : _ . (o)A (@) Ap
Olasp yi1 - Gp—pta) = 215/\1<---<Ap§m Axyx, (Tig, D)dxy 770 A Ndy

(ng = dimXy,).

Row (@)A (@)X
Na 8 ‘(x‘ i m 8 A 'aA
(o) Pigi « o Pioi (@)
dlio )‘i N Z 8—2041)<x7(1 )’t)d'r'glli + 0; '1 ( z;y at)dt%
p=1 'T’il/.z, ~y=1 o
where IE ,i = 899§:i>1>\i (Jigf),t) is the transition function of local coordinates on

Vi, NV, Hence

de'®) A dzl)
10Ap

o1
Doy (o) (@)
= ( 8071 dis,) AdaiS A N dzl
71=1 !
m OW(Q)
+dzl®) A Tt ) A del®) A N dl®
yo=1 7’2
() (o) = D
toeee + dxz A A A dg“lﬂA 1 A (Azl 8;’}/: dtﬂyp)
'p=
modulo (d1§ /)t Ao A de?}\p + dty, Ndty,)

Therefore, by the definition of the interior product, we have
(A&)(aspyio - ir—pi2)

= (—1)PH! > axgn, (Tigs t)
1<A 1 << Ap<ny
m kP(OL)A ()
1011 A
X {Zdlf?}\l A A a; dty, ) Ao Nday b
’)’521 Vs
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Hence, for 7= 37" | b,(0/0t,),

<7, (Aw)(e; psio - Cigee) =0 >
(3.29)

= (=1)Pt1{ > axy.x, (Tig, 0)

1< << Ap<ng

X{Z b,
y=1

P P () As
S— SDloll e [e%
<D (=D g i, O A A Adel T
s=1 R

On the other hand, since

0= {ea}ae()b On)» 904 = { io;,ﬁ }io,’i1€1\a
m e ()X 9

10,11 = Z Z by ( kploh iy, 0)(

()
y=1A=1 &%A

)7

we have

(Olw)(esp —Lido -+ yip—pia) = 05 4 |w(asp sio - ie_pya2)

m nNe 99(-0))\ 9
= {Z Z b”/ ot ( i1 0)((917(@) ))}
y=1A=1 igA

1{ Z Ay, (Tig O)daz,gg?\l JARERWN dmgf'))\p

= Z b (1) Z A2, (Zig 5 0)

y=1 1§)\1<~~</\ <na
p L9l . (@) (a) (a)
: [g(_l) 8;“ dz (I’ilvo)dxio)u A A dfio;\s A dxiukp]}'

Comparing (3.29) with (3.30), we conclude that 6] w = (—=1)"*! < 7, Aw >.
Q.E.D. for Claim

This completes the proof of Theorem 3.17.
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In order to explain the relation betwen the characteristic map p, : T,M —
H'(S,0(b,)) of the family X4 = & - M and the characteristic map o, :
T,M — H'(S,05) of the family 7 : & — M, we fix some notation:

Let S, Dg,Xts, ¥cg, X, Dx,¥tx, D%, Xtg, DY, Xty, f: X — 5, ng
D¢ — Dg,nx : Dy — Dx,g: D% — D, vg: Dy — Sand vy : Dy — X be
the same as in the diagrams (1.3) and (1.4). Further, we shall use the following
notation:

O x (—logDx): the sheaf of germs of logarithmic tangent vector fields along
Dx on X, i.e., the subsheaf of © x consisting of derivations of Ox which
send I(D ), the ideal sheaf of Dy in Ox, into itself.

Op; (—Xcg — Xt5): the sheaf of germs of holomorphic tangent vector on D
which vanish on X¢% and X%, where Yc§ is the inverse images of the
cuspidal point locus Y¢g of S by the normalization map ng : D — Dg,

Ops (=%t%): the sheaf of germs of holomorphic tangent vector fields on D
which vanish on ¥t%. (Note that 3t% coincides with the inverse image
of the triple point locus Xtg of Dg by the composed map ngog : Dy —
Dg.)

3.19 Theorem. There erists naturally the following exact sequence of Os-
modules:

0 — 05 25, £ O (~logDx) & vs.Ops (~Sck — Lth)
(3.31)
SN v, Ops (~3t%) — 0

where v := fovx =vgog (cf. (1.4)).

The proof of this theorem is a direct calculation by using local coordinate
description of the normalization maps X — S, Dg — an — Dx, and
will be accomplished after several lemmas. First We will (dl(‘ulate )tche generators
of the stalk Og, at a cuspidal point p of S. Since the problem is local, we
may assume that S is a hypersurface defined by the equation xy? — 2% = 0 in
the complex 3-space C3. Note that, in this case, Og = Homo.(Qk, Os) is
isomorphic to Ocz /Ocs(—logs), where O¢s(—logS) denotes the sheaf of germs
of logarithmic tangent vector fields along S on C3, i.e., the subsheaf of Ogs
consisting of derivations of Ocs which send Z(S), the ideal sheaf of S in Ogs,
into itself. We define a holomorphic map f : C* — C3 by

(3.32) (u,v) — (u?,v,w) = (z,y, 2),
which gives the normalization of S. Let
0 0
0=alx,y,z)— +blx,y,2)— +clz,y,2) =—
alz,y,2) 5+ bzy,2) 50 F ey 2) 5
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be a locla holomorphic vector field defined in an open neighborhood U of the
origin of C3, where a(z,vy, 2),b(x,y, z) and c(x,y, z) are holomorphic fuctions on
U. 0 is tangent to S, i.e., 8-Z(S) C Z(9), if and only if

v-a(u?, v, uv) 4+ 2u? - b(u?, v, uww) — 2u - c(u?, v, uv) = 0

on f71(U). We denote by Og¢z, the stalk at the origin of the structure sheaf
of C2, by (’)(?23 , the direct product of three copies of O¢2 ,. We define a Ogz ,-

submodule R¢2 ,, of ngo by

RCQ,O = {(f(ua /U)? T/(u: U)? C(U, U)) € Og;:o
v-&(u,v) 4+ 2u? n(u,v) —2u-((u,v) = 0}.

We will omit the proof of Lemma 3.20 and Lemma 3.21 below, which are
direct calculations.

8.20 Lemma. R, is generated by the elements (u,0, 3v) and (0,1, )
as a Ogz g-module.

3.21 Lemma. For an element &(u,v) of Ocz, there exists an element
a(z,y, 2) € Ocs , with £(u,v) = a(u?,v,wv) if, and only if, £&(u,v) is of the form

§(u,v) = &o(u”) + v - & (u,v),

where &(u?) is a convergent power series in u?, and &1 (u,v) in u,v.
3.22 Lemma. Let {(u,v) be an element of Ocz , which has the form
(3.33) E(u,v) = u - alu?, v, uv),

where a(w,y,z) € Ogs . Then there exists an element b(x,y,z) € Ocs , with
&(u,v) = b(u?,v,uwv) if, and only if. a(x,y,z) is of the form

alz,y,z) =y-a(x,y,2) + 2 az(z,y, 2),

where a;(x,y,z) € Oc¢s , (i = 1,2).

Proof. Assume that there exists an element b(z,y,2) € Ocs, with &(u,v) =
b(u?,v,uv). Then by Lemma 3.21 £(u,v) is expresed in the form

(3.34) E(u,v) = &o(u?) + v - &1 (u,v).
On the other hand we can express a(z,y, z) in the form
(I(ZL', Y, Z) = aO('T’) + Y- (3;7 Y, Z) +2z- a2($)ya Z)a

where ag () is a convergent power series in z, and a;(x,y,2), i = 1,2,in z,¥, 2.
Then by the condition (3.33) we have
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(3.35) E(u,v) = u - ap(u?) + v{u - ar (u?, v, uv) +u? - ag(v®, v, uv)}.

Comparing (3.35) with (3.34), we have
u - ag(u?) = & (u?)

This implies ag(x) = 0. Thus the necessity part of the lemma has been proved.
The sufficiency part is trivial.
Q.E.D.

Now we are ready to caluculate the generators of the stalk ©g, at the
cuspidal point o of S.

3.23 Lemma. The stalk ©g, at the cuspidal point o of S is generated by
the following elements as a Og ,-module:

@1—I2+1Z2
ox 2 0z

@3—1/8%1%270%

O, = z% + :L'y%.

Proof. The restriction to S of the germ of a local holomorphic vector field

%) 0 0
6 =a(x,1 ,3);); + b(x,y, Z)d_y + c(x, y, z)g

at the origin of C? belongs Og,, if, and only if

(a(u?, v, uv), b(u?, v, uv), c(u?, v, uv)) € Rez o

By Lemma 3.20 this is equivalent to that there exist &(u, v),n(u,v) € ng,o such
that

(3.36) a(u?, v, uv) = u - &(u,v)
(3.37) b(u?, v, uv) = n(u,v), and
. 2 1
(3.38) clu®,v,uv) = 3V E(u,v) + u-nlu,v).

Substituting zero for u in (3.36), we have a(0,v,0) = 0. Hence a(z,y, z) can be
written in the form
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(3.39) a(z,y,z) =x-a(x,y,2) + 2 - as(z,y, 2),
where a;(x,y,2) € O¢s ,, i = 1,2. Then by (3.36)
(3.40) Elu,v) = u - ay(u?, v, uv) + v - as(u?, v, uv).
We put

ap(z,y, z) = 1z cay(w,y, 2) + zy? - ag(u? v, uv).

2 2"
Then (3.40) implies

‘ 1
ao(u?, v, uv) = 50 &(u,v).

L

By (3.38) ,
w-n(u,v) = c(u?, v, uv) — ag(u?, v, uv).
Hence by (3.37)
u- b(u?, v, uv) = c(u?, v, uv) — ag(u?, v, uv).
Therefore, By Lemma 3.22, b(z,y, z) can be written in the form

(3.41) 0(x,y,2) =y -bi(z,y,2) + 2 ba(w,y, 2),

where b;(z,y,2) € Ocs,, i = 1,2. By (3.37) we have
(3.42) n(u,v) = v - by (u?, v, uv) + uv - by(u?, v, uv)

Substituting (3.40) and (3.42) into (3.38), we have

LU, UY) = lz'uv cay (u?, v, uv) + %112 as(u®,

2 2

c(u v, uv)

+uv - by (u?, v, uv) + uv - bo(u?, v, uv).
From this it follows that
C(l‘,’!/a )— 5% Cll(il’ Y, Z) + %y2a2($>y«, Z)

(3.43)
+2 - bi(z,y, 2) + 2y ba(w,y, 2)

holds identically on S. Cosequently, by (3.39), (3.41) and (3.43), we have

a1 0 1,0
0—@1(:1/71/,4)(1"(7+275—2—)+a2(1 y«~)(7 + 5y ())
00 0 9
+b1(xay7")( (91 ()2/)4"_172( “)i/‘ﬁ_y +mj82)

Coversely, a holomprphm vector field of this form is certainly tangent to S at
the origin of C3.
Q.E.D.
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3.24 Lemma. With the same setting as in Theorem 3.19, let p be a cus-
pidal point of S.

(i) For any element © € ©g, there exists uniquely an element 6 €
[+Ox(=logDx ), such that tf(0) = wf(O) in O(Os,0x), (for the defintion of
tf,wf see (3.13) and (3.14)). Furthermore, the map which assignes to © € Og,,
an element 0 € f,Ox(—logDx), with tf(8) = wf(O) is injective.

(ii) For any element € € v5.Op= (—Xc —Xt%), = Ops (=Xcs —Xt5),-1(p),
there exists uniquely n € v.Ops (=Xt ), = Ops (—XtY), such that tg(n) =
wg(§) in ©(Opy, Opy, )u-1(p)-

Proof. Since the problem is local, we may assume that S is a hypersurface de-

fined by the equation xy? — 22 = 0 in the complex 3-space C3, X = C2, and that

f is the map defined in (3.32). We may also assume that DY coincides with the

double curve Dg: y = z = 0 of §, and that D% is the inverse image of Dg by the

map [ : (u,v) — (u?,v,uv). D% is defined by v = 0 in C2. That is, D% is the

u-axis of C2, D} is the z-axis of C?, and g : D% — D} is given by u — u? = r.
(i) Any element of © x(—log Dx)s-1(;,) has the form

~p

0 s,
0 = a(u, v)% +uv- b(u,v)av

where a(u, v),b(u,v) € Ox §-1(p), we have

tf(0) =2u-a(u,v)f (é—);)%—u-b(u,,?,)f (ay)
(3.44)
0

+v{a(u,v) +u - b(u, U)}f*(az)

Here we consider tf(f) as an element of (f*©cs)s-1(,), though £f(0) can be
considered as an element of ©(Og, Ox),, since tf(0)(xy*> — z?) = 0. By this
description of ¢ f we can easily check that if we define

1 90 0
0y := Efu%, 05 := L% 0y = uv

9. . 1 0 0

1= ;Z—U%, %,

then tf(6;) = wf(0,) for each generator ©; (1 <i<4) of Og, in Lemma 3.23.
This implies that for any element © € ©g ), there exists certainly an element
0 € ©x(—logDx )y 1¢p) such that tf(0) = wf(©) in ©(Og, Ox),. Further, by
(3.44), if tf(#) = 0, then 6§ = 0. Hence for any O € Og, an clement ¢ €
Ox(—log Dx)s-1(p) with tf(f) = wf(©) is unique. The injectivity of the map
© — 6 is proved as follows: by Lemma 3.23 an element © € ©g , is represented
as

©:= A(x,y,2)01 + B(x,y,2)02 + C(x,y,2)03 + D(z,y,2)04
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0 0
(3.45) ={z-A(z,y,2) + 2 Blz,y,2)}(5 ) +{y-Cl,y,2) +2- D(a,y, Z)}(@)
+{§ZA(l,y,Z)+§y B(x,y,z)+zC’(J;,y,z)+xyD(:r:,y,z)}(7d;)

(mod Z(S),),

where A(x,y,2), B(z,y,2),C(z,y, 2), D(z,y,2) € Ogs,,. Hence, if we asuume
wf(©) =01in B(Og,Ox),, then

1
w- A(u?, v, uv) + SV B(u?,v,uv) =0, and

1
v Cu?, v, w) + Suv - D(u?,v,uv) = 0.

This implies that all of the coefficients of © in (3.45) belong to Z(S),, that is,
© =0in Og,.

(ii) Any element of v5.Ops (—Xc§ — Xt5), = Opx(—Xcg — Et‘*s%gl(p) has
the form "

€= alwa( )

Since we consider the map g : D% — DY is given by u — u?

element &, we have

= z, for such an

L, 0
wg(§) = a(u)u® - g7(5-)
Therefore, if we define
1 . 0 . .
n= ia(uz)u 70 € ViOps (=Xt )p = Ops (Xt )-1(p),

tg(n) = wg(£). Further this 5 is uniquely determined by &.

Q.E.D.

We are now going to prove Theorem 3.19.

Proof of Theorem 3.19 We will show the theorem only at a cuspidal
point p of S under the same setting as in the proof of Lemma 3.24. The proofs
at a double point and at a triple point are easier. It is obvious that, for an ele-
ment © € Og ), (resp. 0 € f.Ox(—logDx), = Ox(—log Dx)f-1(p)),there exists
uniquely an element § € v5.Opx (—Xcg—Xt5), = @Dg(—Ec’g—Et*S)ygl(p) (resp.
N € viOpy (=3t )y = Ops (=Xt ), 1(p)) such that trg(§) = wrs(O) (resp.
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tvx(n) = wrx(0)). Hence, by Lemma 3.24, for any element © € Og, (resp.
(0,¢) € f.Ox(—log Dx)p@l/s*(‘)pg (—XcE—Xt%)p), there exists a unique element
(0,€) € f.Ox(—logDx)p ® vg.Op: (=Xcs — Xt§), with tf(0) = wf(O) and
trg(€) = wrg(O) (resp. (n1,72) € v.Ops (=St )E? with tux (m) = wrx (¢) and
tg(ne) = w(&)). The map r.;}@@ (resp. wrx —@g) in (3.31) is defined to be the
one which assignes © € O, (resp. (0,€) € f.Ox(—log Dx ), ©vs.:Opz (—3cs —
Xtg)p) to this (0,) (vesp. m — n2). N

From Lemma 3.24, (i), the injectivity of the map wf @ ovg : ©g —
[+Ox(—logDx) © vs.Op: (—Xcg — Xtg) follows. The surjectivity at the last
term in the exact sequence in (3.31) and Im{;} P wvs}) C Ker{wrx —wg} are
obvious. We will show that Im{wf & &vg} D Ker{wrvxy —wg}.

Let (0,n) € (fsOx(—logDx) ® vs.Opx(—Xc§ — Xtg))p. Then 0,7 are
represented as follows:

0 = a(u,v)% +v- b(u,v)%, and

0
n=ux- (,(L)%
where a(u,v),b(u,v) € Ox s-1() and ¢(x) € Opsx ,-1(y). Remember that vy :
D% — X,g: D% — D5 and f: X — S are given by v — (u,0) = (u,v),
u — u? =z and (u,v) — (u?,v,uv), respectively. Since

tvx (a(u, >§—) =wrx(f) and
tg(Gue(w?) o) = wyl),
we have N N . 8
wrx(0) —wg(n) = {a(u,0) — Fu c(u )}%

Hence if (0,7n) € Ker(wvx — &g), then
1 2
a(u,0) = U c(u®).

Therefore, since a(u,v) = a(u,0) + v - a1 (u,v), where ai(u,v) € Ox f-1(p), 0 is
of the from

1 9 L0 0
0 = {Euc(u )+v-a1(u,v)}5£+b-b(mt)av.

Hence

tf(0) = {u c(u?) + 2v(u - ay(u,v))} f* ( 0 )+ v-blu,v)f* ( 0 )
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0

1
+Hzu-c(u?) +v-ay(u,v) +u- blu,v) o f (=),
2 0z
By Lemma 3.21 there exist A(x,y, z), B(z,y,2),C(z,y, 2) € O¢s , such that

Au® v, uv) = u? - e(u?) 4+ 2u(u - ar(u,v))
(3.46) B(u*,v,uv) = v - b(u, v)
; 1
C(u?,v,uv) = {-2—u c(u?) + v - ag(u,v) + u - blu,v) v
Hence if we define

: 0 0 0
O := A(lyvz)a + B(JI:,Z/,Z)@ + C<Zyz)£»

then we have
tf(0) = wf(O).
By (3.46) we can check that f*(©(zy? — 2?)) = 0; that is, © € O5,,. Further

0 .0
wrg(©) = A(z, 0, O)Vg(b—l) =z C(I)Vg(*é;) = tvg(n).

Hence (c:*}@ﬁy\g)(@) = (6,7), which means that Im(L}@uTu\q) D Ker(wvx—wg)
as required.

Q.E.D.

3.25 Corollary. 9(b,) ~ Og.
Proof. By the definition of ©(ae) and by Theorem 3.19,

©(bs)
= @(b.)m{@s@f*@x (—~10ng)@7/5*@])§(—ECE—Ztg)@V*@D} (*Zf})}

>~ @S'
Q.E.D.

Summarizing the results so far obtained, we have the following theorem
which clarifies the relation betwen the characteristic map

po : Toj\{[ — Hl(S‘, @(b.))
of the family X, 2% & = M and the characteristic map
oo: ToM — HY(S,05)

of the family 7 : & — M.
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3.26 Theorem.

(i) We have the following commutative diagram:

HY(S,0(a,.))

(ii) If the map

H°(X,0x(~logDx)) & H*(D%,Op: (—Sc — 5t5)) — HY (D, Ops (—%ty))

is surjective, then we have

H'(S,0(bs)) ~ H'(S,05)

~ Ker{H*(X,0x(~logDx)) ® H' (D%, Ops (—Xc§ — Xt5))
ZH(Dy, O (-S50)))-

Proof. The fact that H'(S,0(b,)) ~ H! (S, Og) follows from Corollary 3.25, and
the commutativity of the diagram in (i) from the definitions of the characteristic
maps p and o. The assertion (ii) follows from Theorem 3.19.

Q.E.D.

3.27 Remark. The meaning of Theorem 3.26 is as follows:
HY(X,0x(—log Dx)) is the infinitesimal deformation space of a pair (X, Dx),
which is isomorphic to the infinitesimal defromation space

Exte((Qpr . Qx), (Ops,, Ox))
X X

of a holomorphic map vx : D% — X (cf. [23]), since vy is “locally stable” (cf.
9], [22]). Note that Dx := vx(D%) is a curve with ordinary duoble points).
Deformation of a holomorphic map vx : D% — X is equivalent to deformation
of a cubic diagram

St —— D%

(3.47) l JVX

Sty — X
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Therefore H'(X,©x (—log Dx)) can be interpreted as the infinitesimal defroma-
tion space of the cubic diagram above. On the other hand, H* (D%, ©p: (=X¢%))
is nothing but the infinitesimal deformation space of a pair (D%, Xc¢), which is
isomorphic to the infinitesimal deformation space

Exte (21, bz ), (Opy ,Ops))

of a holomorphic map g : D%} — D%, since g is "locally stable”. (Note that g
is a ramified cover of degree 2). Therefore H'(D§, ©p: (—Xc§ — Xt%)) can be
interpreted as the infinitesimal deformation space of a cubic diagram

Xty —— D%

(3.48) | |4

Sty ——— DX

Theorem 3.26 tells that, under the assumption (ii) of the theorem, the infin-
itesimal deformation space H'(S,Og) (or the infinitesimal deformation space
H'(S.0(a.)) of a cubic object X. — §) is isomorphic to the fiber product of
the infinitesimal deformationspace of a cubic diagram (3.47) and that of a cubic
diagram (3.48) over the infinitesimal deformation space H'(D%,© Dy (=Xt%))
of a holomorphic map ¥t% — D% (cf. the diagram in (1.4)). ‘

to be continued.
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