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k Abstract

This paper proposes an estimation technique in terms of the recursive least-squares
(RLS) Wiener filter by applying the wavelet transformation to the state vector
generating a signal in linear discrete-time stochastic systems. The RLS Wiener filter
uses the factorized covariance information of the signal and the variance of observation
noise. Here, it is assumed that the observed value vector consists of subsequent
scalar observed values on the tlme axis. This paper also examines an estimation
techmque in terms of the RLS Wiener filter by operatmg an identity matrix trans-
formation to the state vector. It is advantageous that the estimation accuracy by the
proposed estimation method is superior to the standard RLS Wiener filter and the

estimation procedure with the identity transformation matrix.

Keywords: Wiener-Hopf equation, linear discrete-time systems, recursive estimation,
covariance information, wavelet transformation, autoregressive model,

filtering, stochastic signal, estimation

1. Introduction

In [1], an estimation technique for a scalar signal is explored as a combination
of the standard Kalman filter and the wavelet transformatlon in hnear discrete-time
stochastic systems. This filter is called the wavelet Kalman filter [1] In this approach

the wavelet transformation is applied to the state variables in the state equations
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generating the stochastic signal. The filter bank is composed of decomposition and
composition in the octave division, where the number of the sub-band decomposition
is chosen for a data block with length n=2°=4. In the wavelet Kalman filter, the
scaling coefficients and the wavelet coefficients, which are given as the outputs
in the sub-band decomposition, are estimated by thé Kalman filter. The filtering
estimate of the signal is obtained by composing the scaling and wavelet coefficients.
In the simulation example of [1], a scalar first-order stochastic signal process known
as the Brownian random walk is estimated. The estimation accuracy by the estimation
method in [1] is superior to the standard Kalman filter. However, even for the first-
order model, the derivation of the variance of the input vector in a dynamical
system in a data-block form 1is not straightforward. For the autoregressive (AR)
model with the order n=2, it is seen that its derivation might be difficult. From
this viewpoint, the wavelet Kalman filter might not be suitable for being applied
to the estimation of the stochastic signal modeled by the AR model with the order
higher than one.

In [2], [3], the estimation algorithms using the covariance information of the signal
and observation noise are studied in linear stochastic systems. This kind of recursive
filter is called the recursive Wiener filter. In [3], the continuous-time RLS Wiener
filter is shown. This paper proposes an estimation technique in terms of the recursive
least-squares (RLS) Wiener filter by operating the wavelet transformation to the
state vector generating a signal in linear discrete-time stochastic systems. The RLS
Wiener filter uses the factorized covariance information of the signal and the variance
of observation noise. Here, it is assumed that the observed value vector consists
of subsequent scalar observed values on the time axis. This paper also examines
an estimation technique in terms of the RLS Wiener filter by operating an n-by-n
identity matrix transformation to the state vector. In the simulation example, a speech
signal is estimated. It is advantageous that the estimation accuracy by the proposed
estimation method is superior to the standard RLS Wiener filter and the estimation

procedure with the identity transformation matrix.

2. Wavelet Wiener filtering problem

Let a scalar observation equation be given by

y(k) = z(k) + v(k), z(k)= Hx(k) (D
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in linear discrete-time stochastic systems, where z(k) is a signal, x(k) is an n-dimensional
state vector and v(k) is white observation noise. It is assumed that the signal and
the observation noise are zero-mean and are mutually independent. Let the variance

of v(k) be R.
E[v(k)v(s)] = RS, (k - 5) )

Here, 0,(-) denotes the Kronecker & function.

Let a filtering estimate Z(k,k) of z(k) be given by

k
kK= Y hk D) 3

i=1
as a linear transformation of the set of the observed value {y(i), 1<i<k}. The
impulse response function A(k,s), which minimizes the mean-square value of the

filtering error z(k)-—z(k.k) ,

7 = B2t - 26k 0| 4)
satisfies

k
hk, )R =K, (k)= Y h(k,)HK ,(i,s). (5)

Let K_(k,s) represent the autocovariance function of the signal z(k). K.(k,s) .

is expressed as

K.(k,s)= HO' K, (s,9)l(k — )+ KL (k, k)@Y H' I(s = k), K, (s,5)= K (s,5)H] (6)

where K (s,s) represents an autovariance function of the state vector x(s), K, (k,k)
represents a crossvariance function of x(k) with y(k) and 1(k-s) denotes. the unit
step function.

2. RLS filtering equation

The filtering equations using the covariance information are shown in Theorem 1.

THEOREM 1. [2] Let the observation equation be given by (1). Let the autocovariance

function K_(k,s) of the signal z(k) be expressed by (6) in the factorized functional form.
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Then the RLS filtering equations consist of (7)-(9) in linear discrete-time stochastic
systems.

Filtering estimate of x(k): Z(k.k)

Xk, k) = Dx(k — 1Lk —=1)+ G(k)(y(k)— HDR(k — 1,k —1)), x(0,0)=0 @)

Filter gain: G(k)
G(k) = (K (k. k) = DS(k ~1)®"H" )R+ HK . (k.k)— HOS(k - 1)@ H™ )" (8)

S(k) = DSk - 1)D" + G(k)K ] (k,k) - HOS(k —1)®"), S(0)=0 )

3. Discrete wavelet transformation, filter banks and estimation technique

Let us apply the filtering algorithm in Theorem 1 to the estimation of the signal
in relation with the wavelet transformation.

Let us introduce a signal vector Z(k) consisting of components,
7 (k), zy(k), -+, z,(k), as

z,(k)
z,(k)
Zky= ", | z(k)=z2(k), z,(k)=z(k+1), z3(k)=z,(k+1), ", z,(k)y=1z (k+1).
z,(k)
(10)
Let Z(k)=x(k) be valid and the state vector x(k) be given by
x, (k)
X, (k)
x(k)y={ " | nk)=x(k+D), xy(k)=x,(k+1), ", x,(k)=x,_ (k+1).
x, (k)
(1D
Also,let the signal z(k)= Hx,(k) be observed by
x, (k)
x, (k)
yk)=H| 7 [+, H=[10"0] ‘ (12)
x, (k)

Let the signal process z(k) be generated by the AR model of order n.
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z2(k) = —a;z(k —1)— ayz(k = 2) —+--—a,z(k = n) + e(k), e(k)=u(k—n). (13)
In this case, the state variables xi(k), i=1, 2, -~ , n, are. generated by the stochastic

system of order n,

(x,(k+D)] [0 1 - 0 0 x k)] [0]
x,(k+1) 0 0 -1 0 [[x,(k) 0
xk+)=|" 2 = b o 0 ] e,
Xak+D| [0 0 0 1 fram] |o
_xn (k + 1)_‘ __——an _an-l'“—a2 - ald _xn (k)_ _'1_
E[u(ku(s)] = 0>, (k - 5). | | (14)
Let K.(i), i=l, 2, -=- , n, represent the autocovariance ‘fu_nctio‘n of z(k). Then the

autovariance function of the state vector x(k) is calculated as

K, (k,k) = E[x(k)x" (k)]

—

K.(0) K.() - K(n-1]
K.(1) K.(0) - K.(n-2)
= : : : : (15)
K.(n-2) e K (1)

K.(n-1) K.(n-2) - K.(0) |

In (13), the AR parameters ai, i =1, 2,'--, n, are calculated by the Yule-Walker equations
(2]

Iliz(?) Iliz((l)) °ee ﬁz(n_;) al —Kz(l)
z(. ) | z.( ) . z(n._ ) a2 —-KZ(2) .
: : : : = . : (16)
K(n=2) = e K e
K. (n-1) K,(n-2) - K0 | " ’

Therefore, the system matrix @ in (14) is obtained by the autocovariance data
K.(i), i= 0, 1, -, n. .
Let us introduce an observed value vector Y(k) consisting of observed values

as a sum of state vector and observation noise vector as follows
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¥, (k) x, (k) v(k)

(k)| | x, (k) vk +1)
Y= 1=| . |* : , »(k)y=yk), yy(k)=y,(k+1), y,(k)=y,(k+1),.--,

y, (k) x, (k) vik+n-=1)
Vo (k)y=y,,(k+D. (17)
For the wavelet transformation of a two-channel filter bank, the value of n is
4. The discrete wavelet transformation can be implemented by an octave-band filter
bank as shown in Fig.1. The input to the filter bank is x(k)=[x,(k) x,(k) x,(k) x4(k)]T.
Here, the scaling coefficient s:(k) and the wavelet coefficients wa(k), w;,2(k) and

wio(k) at time k are obtained as the outputs in Fig.l.

x(k)

G, v2f—p w,M

Hy v2

S1(k)

H, Y2F— 5,0

¥ 2 :down sampling by 2

Fig.1 A two-channel filter bank.

In the Haar transformation for n=2, G, is a high pass filter [4]- [7] represented by
o [05 -05 0 0 s
Lo 0 05-05] (18)
which plays a role of down sampling simultaneously. Output of G, is the wavelet

coefficient w,(k)z[wl‘l(k) w,.z(k)]T. Here, w, (k) and w, (k) are introduced as vector

components of wy(k). H,is a low pass filter denoted by

L _[0505 0 0 ,
"o 0 0505/ (19)

which also plays a role of down sampling at the same time. Output of H, is the

scaling coefficient s/(k). Output of a high pass filter G:. = [0.5 -0.5] is a wavelet
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coefficient wa(k). Output of a low pass filter Ha = [0.5 0.5] is a scaling coefficient
s2k).

As a result, the wavelet transformation is reduced to
W(k)=Tx(k),

5, (k) 025 025 025 025 x, (k)
w, (k) 025 025 —025 —0.25 x, (k
whky=| . |, T= . x(k) = (b)) (20)
w,, (k) 05 -05 0 0 x; (k)
w,, (k) 0 0 05 -05 x, (k)

In the wavelet filtering technique, the transformed process W(k) of the state vector
is estimated by (21)-(23) which are obtained as an extention of Theorem 1 to the

vector observation equation (17).
Filtering estimate of W(k): W(k,k)

Wk, k) = @W(k — 1,k — D)+ G, (k)(Y (k) — DW(k — 1, K — 1)), W(0,0)=0 (1)

Filter gain:G.(k)

G, (k) = (TK (kJOT" = @Stk - D®" YR+ TK, (k, )T - DSk - DP")™" (22)

S(k) = DSk —1)@" + G, (k)X(TK (k,K)T" — PS(k — HP’), S0)=0 ' (23)
The filtering estimate of the state vector
x(k) = [x,(k) x,(k) xy(k) x4(k)]T =[z(k) z(k+1) z(k+2) z(k+ 3)]T

is composed by F(k,k)=T"'W(k, k)

For the wavelet transformation of the four-channel filter bank of Fig.2,

G1 *2 > W1(k)
x(k)
G, V2 —p ¥ 2
Hi V2]
o1 (K) G; v2p wyk
Hy W2
Sz(k) H3 *2 T Sg(k)

v 2 :down sampling by 2
Fig.2 A four-channel filter bank
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the value of n is 8. The input to the filter bank is x(k)z[xl(k) x, (k) --- xg(k)]r'

Here, the scaling coefficient s;(k) and the wavelet coefficients

w, (k), Wg(k)={wu(k) Wg(z(k)] and w(k) at time k are obtained as the outputs of the

four-channel filter bank. In the Haar transformation for n=4, G, is a high pass filter

denoted by

05-05 0 0 0 0 0 0
- 0 0 05-05 0 0O O O oy
1o 0 0o 0 05-05 0 o0/ ; 29

06 0 0 O 0 0 05-05

which plays a role of down sampling simultaneously. Output of G, is the wavelet

coefficient Wl(k):[wi.l (k) wi, (k) w5 (k) W1,4(k)]7' Here, w,,(k), w,.(k), w, (k) and w, (k)

are introduced as vector components of wi(k). H,is a low pass filter denoted by

05050 0 0 0 0 O
005050 0 0 O
0 0 00505 0 0]
0 0 0 0 0 0505

H = (25)

o o O

which also plays a role of down sampling at the same time. Output of H, is the

scaling coefficient s,(k). Output of a high pass filter

G_o.s-o.s 0 0 )
10 0 05-05 (26)

is a wavelet coefficient wa(k) = [w2s(k) w22(k)]". Output of a low pass filter

_liO.S 05 0 OJ

10 0 0505 (27)

2

is a scaling coefficient s:(k). Outputs of a high pass filter G;=[0.5 -0.5] and a low
pass filter H;=[0.5 0.5] are wi(k) and ss(k).
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As a result, the wavelet transformation is reduced to W(k)=Tx(k),

(50 ] r0125 0025 0125 0125 0125 0.125 0.125 0.125 ]
wy (k) 0.125 0.125 0.125 0.125 —0.125 —0.125 —0.125 —0.125
wy, (k) 025 025 -025 -025 0 0 0 0
w,, (k) 0 0 0 0 025 025 -025 -0.25
Vo=, o 771 os -0s5 o 0o 0 0 0 o |[®®
w,, (k) 0 0 05 -05 o0 0 0 0
w3 (k) 0 0 0o 0 05 -05 0 0
Wy o (k). 0 0 0 0 0 0 05 -05

4. A Numerical Simulation Example

Let us consider estimating a vowel signal pronounced by the author. Its phonetic
symbol is written as " /a:/" . The sampling frequency f; for the continuous voice
signal is 11.025 [kHz]. For the sampling frequency, the sampling period is T.= 1/ fi(sec).
The sampled discrete-time signal sequence of the vowel sound is modeled in terms
of the AR process of order n. Based on the technique in section 3, K.(kk) and
the AR parameters, a;, i =1, 2,~, n, are estimated by the autocovariéncé ‘data K(i),
i=0, 1, -~ , n, By substituting the transformation matrix 7, the system matrix @ ,
the autovariance function of x(k), K.(k,k), and the variance of white observation
noise, R, into the filtering equations, the filtering estimate of W(k), W(k,k), is calculated.
The filtering estimate of x(k) is obtained by x(k,k) =T 'W(k,k) . The filtering estimate
of z(k), z(k,k), is obtained by z(k,k)=x,(k,k) , which represents the first component
of x(k,k) .
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Fig.3 illustrates the signal z(k) and its filtering estimate Z(k,k) vs. k for signal-

to-noise ratio (SNR) 5 [dB] in the two-channel filter bank.

z T T

T
g estimeta for SNR 5 {481

, ;\
11

i
v

Signal and its filtering estimate

L L 1 L i L 1 s L
0 50 100 150 200 250 300 350 400 450 500
tme k

Fig.3 Signal z(k) and its filtering estimate Z(k,k) vs. k for signal-to-noise ratio
(SNR) 5 [dB].

T —+ Proposed estimation method
; - Method based on block observed data vector
ko 4 Plgia RLS Wiener filter
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30}
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= 40
45
-50
-55
80 H
0 2 8 10

SNR [dB]

Fig.4 Mean-square values of filtering errors of the signal z(k), s:(k), wa(k), wii(k)
and w2(k) vs. SNR.

Table 1 shows the mean-square values (MSVs) of the filtering errors of the
signal z(k), the scaling coefficient s:(k), and the wavelet coefficients wa(k), wii(k)
and w;ofk) for SNRs 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Fig.4 illustrates the MSVs
of the filtering errors of z(k), s2(k), wa(k), wii(k) and w,(k) vs. SNR. To the estimation

of z(k), the proposed filtering method, the estimation method in the case of using
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the transformation matrix 7=/ (4-by-4 identity matrix) instead of T in (20) and the
standard RLS Wiener filter [2] for n=4 are applied. Here, the MSV is calculated

1000

1000
by ‘Ologm(Z(:(k)—r‘-(k,k))l/;f“‘)) [dB]. The estimation accuacy is good in the order of

k=1

wia(k), wia(k), wak), s2(k) and z(k). In the estimation of the signal z(k), the proposed
estimation method is more accurate than that with the identity transformation matrx
and the standard RLS Wierner filter. It is also noted that the filtering method with
the identity transformation matrix is more accurate than the standard RLS Wiener

filter. As the SNR becomes large, the MSV tends to be small as expected.

Table 1 Mean-square values of filtering errors of the signal z(k), sxAk), wa(k), wii(k) and
wio(k) for SNRs 0, 1, 2, 3,4, 5,6, 7, 8, 9, 10 in the two-channel filter bank.

Signal to MSV of MSVof MSVof MSV of MSVof MSV of
noise ratio filtering filtering filtering | filtering filtering filtering
{dBl error of error of error of error of error of error of
signal by signal by scaling wavelet wavelet wavelet
the proposed plain coefficient coefficient coefficient coefficient
techuique recursive s,(k) [dB] | wy(k) [dB] | wy,(®) [dBl | w0 21131
{aBl Wiener filter
(MSV by G1:]]
identity
transform
matrix
technique
dBD
0 -16.07567 -13.2669 -17.1937 -31.2159 -44.7064 -42,1033
(-14.7103)
1 -17.8466 13.3331 -18.8333 -32.7586 -46.5160 -43.2266
(-17.0137
2 -18.5973 -15.3390 -19.0610 -32.8197 -46.4828 -43.4044
| (-17.5585)
3 -20.2552 -16.4202 -21.7322 -34.0114 -47.9267 -43.9046
(19.5147)
4 -22.4130 -18.4256 -23.9533 -36.1330 -49.6340 -45.6333
(-21.5560)
5 -24.2970 -18.6970 -25.4254 -35.9822 -49.7951 -45.3541
(-23.4130)
6 -25.2072 -19.7758 -29.4833 -38.6663 -52.2210 -47.0788
(-27.0868)
7 -28.6391 -22.2103 -30.9150 -40.0916 -52.7767 -48.3206
(-27.4660)
8 -30.9997 -24.2465 -33.7727 -41.8467 +55.0604 -49.2193
(-29.3006)
9 -32.6600 -27.7665 -36.1103 +42.7008 -55.1917 -49.5570
(-31.1365) :
10 -34.4120 -29.3315 -38.0872 -44.8374 -56.8464 -60.7763
(-32.6696)

Table 2 shows the MSVs of filtering errors of the signal z(k), ss(k), wa(k), waa(k),
“wii(k) wia(k) wis(k) and wia(k) for SNRs 0, 1, 2, 3, 4, 5,6, 7, 8, 9, 10 in the
four-channel filter bank. From Table 1 and Table 2, it is seen that the estimation

accuracy of z(k) in the wavelet RLS Wiener filter for four-channel filter bank is
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Table 2 Mean-square values of filtering errors of the signal z(k), ss(k)wailk), waa(k), wii(k),

wiz2(k), wis(k), and wra(k) for SNRs 0,

channel filter bank.

1, 2, 3, 4,5,6, 7,8, 9, 10in the four-

Signal to MSV of MSV of MSV of MSV of MSVof MSV of
noise ratio filtering filtering filtering filtering filtering filtering
fant error of error of error of error of error of error of
signal by signal by scaling wavelet wavelet. wavelef
the proposed plain coefficient, coefficient coefficient: coefficient
technique recursive s3(k) Wy (k) wy (k) w3 (k)
Bl | Wiener filter | Gey(6)) BT | Gwyp)) Goa (k) Gona ()
(MSV hy Bl [dB] {aBl [an]
identity
transform
matrix
technique
[aBh
0 -15.2509 108011 21,7993 -35.1828 -46.4430 -43.9198
(-15.0813) (-25.2401) (-29.4981) (-46.3823) (-:39.5464)
1 -17.0109 -12.9089 22,5226 -37.5282 -48.3307 -45.5565
(-16.4668) (-27.0582) (-30.8945) (-48.3705) (-40.6934)
2 -20.2374 -13.2187 -26.5697 -39.4125 -49.7219 -47.4813
(-19.0216) (-29.2899) | (-32.8832) | (50.0144) | (-42.4270)
3 -22.0092 -14.4161 -29.0793 -40.3256 -50.3176 -48.0393
(-21.4879) (30.8108) | (-33.3689) | (50.5479) | (-42.3432
4 -23.9084 -16.5499 -30.8757 -42.5213 -62.0092 -49.9950
(-22.3715) (-33.2594) (-35.0412) (-52.2596) (-43.2255)
5 -25.3750 -18.3945 -33.4695 -42.6665 -52.0683 -50.6659
(-24.1764) (-34.0813) | (-:35.6916) | (-52.4569) | (-43.7125)
6 277476 -20.3667 -34.9570 -45.3790 -53.8656 52,5806
(-26.3495) (-37.3161) (-37.9998) (-54.1947) (-45.2230)
7 -29.5266 -22.6263 -37.3536 +46.5526 -64.1442 -53.6858
(-28.3843) (-39.5856) (-39.3967) (-54.6688) (-46.0086)
8 -31.6181 -24.8163 -40.6265 -48.0828 -54.2908 -55.0136
(-30.7002) (42.0660) | (41.9643) | (-56.2624) | (-48.0454)
9 -33.6890 -25.4656 -42.0206 50,2056 -66.0750 -66.9999
(-32.1464) (-44.6165) (-43.6141) (-56.0454) (-48.7258)
10 -34.4689 -28.0822 44,4124 -49.8928 -54.6439 -65.4907
(-33.7089) (-44.6986) (-43.4534) (-55.4985) (-48.3950)

superior to that for the two-channel filter bank when the

Also, as a whole, the estimation accuracy of z(k) by

SNR is larger than 1.

the estimation method

with the identity transformation matrix for four-channel filter bank is superior to

that for the two-channel filter bank when the SNR is larger than 1.

5. Conclusions

In this paper, in the relation with the wavelet transformation, the RLS filtering

technique using the covariance information is introduced. The estimation accuracy

of the proposed filter is better than the filtering method with the identity transformation

matrix and also the standard RLS Wiener filter. It might be interesting that the filtering

method with the identity transformation matrix is better in estimation accuracy than

the standard RLS Wiener filter. The estimation accuracy of z(k) in the wavelet RLS

Wiener fiiter for four-channel filter bank is superior to that for the two-channel

filter bank when the SNR is larger than I.
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