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Abstract

A one-dimensional random sequential packing problem is studied under the assumption that packed
intervals may have arbitrarily small lengths. After generating lengths of intervals according to a prob-
ability distribution G and packing these intervals into an interval [0, z), we denote by F(z,b) the mean
number of packed intervals whose lengths are larger than b. Then, under a general assumption on G, we
obtain an explicit expression for F((z,b) using G. Furthermore, when G satisfies a power law, we show
that F(z,b) satisfies another power law which is closely connected with that for G.

1. Introduction

The problem of one-dimensional random sequential packing has been studied by many authors such as
Réyni (1958), Ney (1962), Dvoretzky and Robbins (1964), Itoh (1980), Itoh and Komaki (1992), Kimber
(1994), and so on. These authors assumed that lengths of packed intervals are either equal to or larger
than a positive constant. The present author deals with the problem assuming that packed intervals may
have arbitrarily small lengths.

We will give an exact formulation to our problem. Consider an interval [0,z), where z < 1. Let
G be a probability distribution function with G(1) = 1 and g be its density. We begin our random
packing by putting a random subinterval [zo,zo + lp) into [0, z), where its length lo is generated ac-
cording to the conditional distribution g(-)/G(z) and its left endpoint zo is generated according to the
uniform distribution on [0,z — lg). After the first step of packing process the remained space will be
composed of two intervals [0,zo) and [zo + lo,z). At the second step we put two random subintervals
[z1,z1+11), [z2, z2+12), where their lengths 1,13 are generated according to the conditional distributions
9(-)/G(z0), 9(-)/G(z — o — lo) respectively and there left endpoints z1,z3 are generated according to the
uniform distributions on [0, zo — 1), {zo + lo, £ — 11} respectively. After the second step of packing process
the remained space will be composed of four intervals. At the third step we put four random subintervals
each into the four intervals of the remained space, and this process of packing random subintervals will
be continued indefinitely.

After infinite repetitions of the above packing process we finally arrive at the state that the original
interval [0,z) is completely covered by random subintervals {[zi,z; + &) : i« = 0,1,2,...}. Then we
consider the random variable N(z,b) that is defined as the number of subintervals [z;,z; 4 ;) such that
l; > b, where b is a positive constant. In this paper we investigate the expectation of N{(z,b), which will
be denoted by F(z,b). Our main interest lies in the asymptotic behaviour of F(z,b) as b tends to zero.

In Section 2 we first derive an integral equation of Volterra’ type that connects G and F(z,b). Then,
solving it in the standard manner, we obtain an explicit expression for F(z,b) using G. In Section 3,
under the assumption that G satisfies a power law, we investigate the asymptotic behaviour of F(z,b)
as b tends to zero. We show that F(z,b) satisfies another power law, which is related to that for G by
way of the beta function.
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2. An explicit expression for F(z,b)

At the first step of random packing process, the following two cases occur; one is that the length of
the packed subinterval is longer than or equal to b, and the other is that the length is shorter than b.
Considering these cases separately, we have

(1) Flz,b) = /b g((”))d / T (P + Plo—u

+/ é((u) "l“"/~ {F(v,) + F(z - u

From (1) it immediately follows that

_ 9(u) i
F(z,b)=1- G(a:) / du/ F(v,b)dv .
Hence, noting that F(z,b) = 0 for all z < b, we obtain an integral equation
(2) F(z,b) = a(z,b) + / K(z,y)F(y,b)dy ,
b
where we put ( |
G(b

3 z,b)=1-

®) ofa,t) =1~ G5
and v

_ 2 [ g(w)
(4) K(z,y) = ) /0 o udu .

Note that the integral equation (2) is of Volterra’s type. Moreover, setting K(z,y) = 0 for z < y, we
can see that K is continuous in the domain D = {(z,y) : 8 £ y < z < 1}. Thus, the theory of integral
equations assures that, if we put K*(z,y) = K(z,y) and define

X
%) K™ (z,g) = / KDz, 2) K(z,5) de
b .
for n > 2 recursively, then
o0
(6) S(zy) =Y K™(z,y)
n=]1

is uniformly convergent in D and the solution of the integral equation (2) is given by

4] F(z,b) = a(z,b) +f S(z,y)a(y,b)dy .
b
Thus we obtain the following theorem.

Theorem 1.  Assume that G has o density and G(1) = 1. Then the mean number F(z,b) of packed
intervals whose length are longer than b is given by (7).

From Theorem 1 we can derive the following corollary, although it is intuitively obvious.

Corollary 1.  Under the assumption of Theorem 1,
&E% F(z,b) =0
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Proof.  Since a(z,b) increases to 1 as b decreases to zero, applying the monotone convergence theorem
to (7), we have

(8) ll’il%F(m,b) =1 +/: S(z,y)dy .
Now it can be easily seen that .
/ K(z,y)dy=2.
Then an easy induction shows that :
/ K™ (z,y)dy = 2" .
Hence ’ -
©) | sena=c.

Therefore (8) and (9) immediately leads to the desired conclusion.
3. A power law for F(z,b)

In this section we investigate the asymptotic behaviour of F(z,b) as b tends to zero under the as- .
sumption that the probability distribution G satisfies a power law. Before beginning the investigation
we prepare several lemmas. Let us consider the equation of an unknown complex variable z,

z -
T 2(1-2x)

where 0 < A < 1 and B(:,-) denotes the beta function.

(10) B(z,1- ) 0,

Lemma 1.  The equation (10) has only one root h(\) of order one in the right half-plane {z : Re(z) >

0}.
Proof.  In the integral which defines B(z,1 — ), we consider the expansion
[+ <]
(11) -9 =3 eVt",
n=0
where 5 )
nf =X AA+DA+2)---(A+n-1
(12) ea(h) = (1) ( - ): L) Ul /R .

Then, since cn,(A) > 0, Lebesgue’s dominated convergence theorem implies that

B(z,1-)) = folt“l {mlgnwzm:%(x)tﬂ} dt

n=0

m 1 1 m Cn(A)
— % z—14n s -
- ,,!‘_’,Eozn_()/ot dt_mh—ﬂo{z_}_nz::lz-}-n} !

from which we obtain

(13) B(:;,1-A)=§+EZ"T(’\73.

Since, by the Stirling formula, cn(A) = O (1 /nl"’\), the formula (13) gives the analytic continuation of
B(z,1 — ) in the entire plane except at z = -n (n =0,1,2,...).
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In (10), setting z = z + +/—1y and taking the imaginary part of (13), we have

-y .\ -y __y
(14 e EE AP PL N e E ey

However the equation (14) can be satisfied only when y = 0.
Thus it suffices to consider the equation

(15) B@J—Aﬁzzfés.

However it is obvious that B(z,1 — \) is strictly decreasing with respect to z, B(1,1 — X) = 1/(1 — }A),
and limz,eo B(z,1 — A) = 0. Therefore the equation (15) has only one real root which is larger than
one, which completes the proof of Lemma 1.

Now we show certain properties of the function k().

Lemma 2.  The function h(]\) is o real-valued strictly increasing function of A with h(4+0) = v/2 and
h(1-0)=2.
Proof.  Since, by integration by parts,

z—1

1-2A

B(z,1- ) = B(z—1,2-)),

the equation (15) is equivalent to the equation
x —
z

the the left hand side of which we will denote by w(z, A).
Then we have

(16)

“Bz-1,2-3 -3 =0,

—a%logw(a:,/\) = %{—'logz+logr(m)—log1‘(m+1—A)+logF(2—A)}
1 1, ~— 1
= —-z--i-{—’)'"“;-{-zz;—-————n(m_l_n)}
n=

1 - 1
_{—’Y‘x-y-l—)\"‘mzln(z-}-l—)\%—n)}

z+2(1 = )) = 1
Tz(z+1- _(I_A),;(x-l—n)(m-i-l—)\-[-n)

< 0.

Thus the function w(z, ) is strictly decreasing with respect to z. On the other hand, it is obvious
that the function w(z, ) is strictly increasing with respect to A. Now suppose that 0 < A1 < A2 < 1.
Then, since w(h(A1), A2) > w(h(A1), A1) = 0 and w(h(A2), A2) = 0, we can deduce that k(A1) < h(A2).
Consequently we see that h is a strictly increasing function of A.

From the monotonicity of the function h()), both h(40) and h(1 — 0) exist. Then, letting A — 0 in
(15), we get h(4+0) = V2. Furthermore, letting A — 1 — 0 in (16), we get h(1 — 0) = 2. Thus the proof
of the lemma, is completed.

Then we study the equation (10) in the entire plane.
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Lemma & In the entire plane, the equation (10) has roots {hn(}) : m = 0,1,2,...}, each of which is
of order one and —n — 1 < hna(X) < —n.

Proof. Even if z is negative, the argument in the proof of Lemma 1 shows again that the equation
(14) can be satisfied only when y = 0.
Thus, taking the real part of (13) and setting ¥ = 0, we have

Hence, for each =,
lim B(z,1-2A)=+oc0, lim 0B(:r,l —A) = —00

and B(z,1— A) is strictly decreasing in (—n — 1, —n). Therefore we obtain the desired conclusion.

In the proof of our main theorem below, the following function plays a key role.

_ B(z,1—})
B(Z, 1- )\) — ﬂlz—_z\s
For the function o(z) we need to evaluate an integral

(17) o(z) =

1 zo+ice _
(18) I=5- - o(2)t *dz ,

where 0 < ¢ <1 and zo is a sufficiently large positive constant.
To state a result of the evaluation, we use a quantity

h2)

: .
142(1-X) / =1 (1 - )= (~logt) dt
0

(19) m(A) =

Lemma {4  The integral (18) is equal to m(A)t~%,

Proof. Let R be a sufficiently large positive constant such that R > zo, m be the largest positive
integer such that m < R, and 6 be a positive number such that cos@p = zo/R. Furthermore, let € be
a sufficiently small positive constant. Now, taking account of Lemma 1 and Lemma 3, we consider a
contour, displayed in the Figure 1, that is composed of the straight line Lo, parts of large semi-circles
CE and Cp, parts of small semi-circles C','f; . and C,,, for 0 < n < m, and collections of line segments L4
and L_ ;

Lo = {2 : Re(z) = z0, |2| < R},
Ch={z=Re’:0,<0<7},Cr={z=Re: -7 <0< -6},
Clo={z=ha(N) +e€’:0<0 <7},
Cre=1{2=ha()) +ee’: - <0 <0},

Lt = {z: =R < Re(z) < z0,Im(z) = +0} U

m—1
U {2 ¢ Bnsa(D) + € < Re(2) < ha(X) — &, Im(z) = +0}
n=0

L™ ={z: -R < Re(z) < zo,Im(z) = -0} U

| {2 : hat1(A) + € < Re(2) < hn(X) — €, Im(2) = —0} .

n=0
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Figure 1.

Then it is obvious that

(20) ﬁ ( fc Lt /c ;,) o(2)t *dz =0

n,e

for each n and

(21) 5% (/L+ +/L_) o(z)t™*dz=0.

On the other hand, by the Stirling formula, as z — co, we have B(z,1 — A) ~ I'(1 — A)/2z!~*, which
implies that o(z) ~ 2I'(2 — X)/222.
Hence

(22) %1- (/C+ +/C_) o(2)t*dz =0 (};%f) .
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Accordingly, combining (20), (21) and (22), we see that, when R tends to the infinity, all the contributions
except by Lo become negligible. Therefore the integral (18) can be evaluated to be the residue of o(z)t™*
at z = h(A). Thus

(23) r=- P phoy gy R
2(1 — A) z—h(A\) B(Z, 1- A) - m
Using L’Hospital’s rule, we can see
B(z,1 - }) — g5y L 1
. _ (A)=17q _ =2 -
A TRy S /0 T =) (gt dt — 5y

Hence
(24) I=m(\) t™*)

Thus the proof of Lemma, 4 is completed.
Now we state the main theorem.

Theorem 2. Assume that

1

(25) 9@ =01-Y- =,
where 0 < A < 1. Then .
(26) F(z,b) = a(z,b) + m()\) / t7N o(zt,b) dt .

b

Proof. Introduce a function
1
1 du

(27) k(t)—‘/t -(—1-_—-1—‘—)-:.;

Then we can write 1
K(z,y) =21-3)- 7 -k(4) .

x
Hence, by induction, we have

K™ (@,y) = 20- 01257 (1)

where functions k(™) (t) are defined recursively by

(28) K™ = / 1 K (u) k (5) %‘ .
Consequently we obtain

(29) S(Z,y) = %3 (%) ’

where -

(30) | st) =Y {201 - N} k™ (g) .

Let us consider the Mellin transforms of functions k(t) and s(t),

K(z) = fo 1 k(@) t*"ldt , o(z) = /o 1 s(t)t*"dt .

Then we can see that

/ ' K™ () 57 dt = (k(2))™ .

0
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Hence, in a formal sense, we have

< N ¢ P 11 6))
(31) o(z) = 2{2(1 RUB GO e\
Returning to (27) we can easily get
(32) K(z) = % B(z1-2)).

Substitution of (32) into (31) gives the expression (17). Moreover, recalling the asymptotic behaviour of
B(z,1— )), we can see that there is a positive constant zo such that the series (31) converges uniformly
for Re(z) 2> zo.

Now we apply Mellin’s inversion formula to o(z),

1 zo+ioo ’
s(t) = 57 f o(2)t"*dz .

0—i00

Then Lemma. 4 shows that
(33) s(t) = m(x) t 72

Finally Theorem 1, combined with (29), implies that

F(z,b)

a(z,b) + ei-lms (%) a(y,b)dy

a(z,b) + /1 s(t)a(zt,b)dt .

E3
Therefore, using (33), we obtain (26). Thus the proof of Theorem 2 is completed.
Using Theorem 2, as the asymptotic behaviour of F{(z,b), we can obtain a power law.

Corollary 2.  As b tends to zero,

F(z,b) =m() (h(A)l =37 h(,\)1 —A) (%) R o) -

Proof.  From (26) it follows that

1- (g)l_A + m(A) ﬂl =2 gt — m(A)- (%)bl\ [’1 ¢~ (RN+1=2) g
_ 1_(2)1—A+$ {(i)h()\)-—l—l}

-1 1-A
e (007}

Hence we obtain the desired conclusion.

F(z,b)

I
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