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Abstract

This paper addresses a new design method of recursive least-squares (RLS) and finite

impulse response (FIR) filter, using covariance information, in linear continuous-time

stochastic systems. The signal process is observed with additive white noise. It is assumed

that the white observation noise is independent of the signal process. The auto-covariance

function of the signal is expressed in the semi-degenerate kernel form. The RLS-FIR filter

uses the following information:

1. The auto-covariance function of the signal expressed in the semi-degenerate kernel

form.

2. The variance of the white observation noise process.

3. The observed values.

Keywords: Continuous-time stochastic system; FIR filter; RLS filter; Signal estimation; Filtering

algorithm
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1 Introduction

In the filtering problem, the Kalman filter is recursively calculated based on the state-

space model of the signal process, starting with initial values at time t = 0. Hence, the

filtering estimate at time t > 0 uses the observed values y(s), 0 6 s 6 t . In [1], the

finite impulse response (FIR) filter and smootherare shown for continuous time-invariant

state-space models. The FIR estimators are calculated by solving a Riccati-type differential

equations on a finite interval. Compared with growing-memory filtering, the FIR filter is

useful for improving filter divergence due to modeling errors and for detecting signals in

systems under sudden changes [2], [3]. Jazwinski [1] and Schweppe [4] introduce the FIR

filter for discrete-time state-space models with no driving noises. Bruckstein and Kailath [5]

derive recursive FIR filter for the case of general state-space models with driving noise based

on the scattering description for both continuous-time and discrete-time stochastic systems.

In [6], [7], [8], receding horizon Kalman FIR filter is shown for continuous-time and discrete-

time stochastic systems. The horizon FIR filter is derived based on the information form

of the Kalman filter and the horizon initial state is assumed to be unknown. Also, the H2

smoother [9] and the H∞ smoother [10], with the FIR structure, for discrete-time state-space

signal models, are proposed.

As alternatives to the Kalman estimators based on the state-space models, the filter, the

fixed-point smoother [11] and the fixed-lag smoother [12], using the covariance information

of the signal and the observation noise, are devised. In [13], the extended recursive Wiener

fixed-point smoother and filter are presented in discrete-time wide-sense stationary stochastic

systems. It is assumed that the signal is observed with the nonlinear mechanism of the signal

and with additional white observation noise. The extended recursive Wiener estimators are

superior in estimation accuracy to the extended Kalman estimators based on the state-space

models. In comparison with the FIR filter based on the state-space models, the estimators in

[11]-[13] do not use the information of the input matrix and the variance of the input noise,

etc. Hence, they can estimate the signal with less information.

This paper, based on the researches described above, newly designs the recursive

least-squares (RLS) FIR filter, using the covariance information, in linear continuous-time

stochastic systems. The following stochastic properties are assumed for the processes of the

signal and the observation noise. (1) The signal is observed with additional white noise. (2)

The white observation noise is independent of the signal process. (3) The auto-covariance
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function of the signal is expressed in the semi-degenerate kernel form. The RLS-FIR filter

uses the following information:

1. The auto-covariance function of the signal expressed in the semi-degenerate kernel form.

2. The variance of the white observation noise process.

3. The observed values.

It is a characteristic that the proposed RLS-FIR filter uses the covariance information of

the signal and do not require the state-space models for the signal.

The filtering error variance function, in section 4, of the proposed filter shows that, as the

finite observation interval T becomes large, the estimation accuracy of the filter is improved.

This is also assured by a numerical simulation example in section 5.

2 Least-squares FIR filtering problem

Let an m-dimensional observation equation be given by

y(t) = z(t) + v(t) (1)

in linear continuous-time stochastic systems. Here, z(t) is an n−dimensional signal with a

mean of zero and v(t) is zero-mean white observation noise. It is assumed that the signal

process and the sequence of the observation noise are mutually independent. Let the auto-

covariance function of v(t) be given by

E[v(t)vT (s)] = Rδ(t − s), R > 0, (2)

Here, δ(·) denotes the Dirac δ function.

Let K(t, s) = K(t − s) represent the auto-covariance function of the signal in wide-sense

stationary stochastic systems [14], and let K(t, s) be expressed in the semi-degenerate kernel

form of

K(t, s) =







A(t)BT (s), 0 6 s 6 t,

B(s)AT (t), 0 6 t 6 s.
(3)

Let an FIR filtering estimate ẑ(t, t + T ) of z(t + T ) be expressed by

ẑ(t, t + T ) =

t+T
∫

t

h(t + T, s)y(s)ds, (4)
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as a linear transformation of the observed value y(s), t 6 s 6 t + T . In (4), h(t + T, s) is a

time-varying impulse response function.

Let us consider the estimation problem, which minimizes the mean-square value (MSV)

J = E[||z(t + T ) − ẑ(t, t + T )||2] (5)

of the FIR filtering error z(t + T ) − ẑ(t, t + T ). From an orthogonal projection lemma [14],

z(t + T ) −

t+T
∫

t

h(t + T, τ)y(τ)dτ⊥y(s), t 6 s 6 t + T, (6)

the impulse response function satisfies the Wiener-Hopf integral equation

E[z(t + T )yT (s)] =

t+T
∫

t

h(t + T, τ)Ky(τ, s)dτ . (7)

Here ‘⊥’ denotes the notation of the orthogonality and Ky(τ, s) represents the auto-

covariance function of the observed value.

Substituting (1) and (2) into (7), we obtain

h(t + T, s)R = K(t + T, s) −

t+T
∫

t

h(t + T, τ)K(τ, s)dτ . (8)

3 RLS-FIR algorithm for filtering estimate

Under the linear least-squares estimation problem of the signal z(k) in section 2, [Theorem 1]

shows the RLS-FIR filtering algorithm, which uses the covariance information of the signal

and the observation noise.

[Theorem 1]

Let the auto-covariance function K(t, s) of z(t) be expressed by (3), and let the variance

of the white observation noise be R. Then, the RLS-FIR algorithm for the filtering estimate

consists of (9)-(19) in linear continuous-time stochastic systems.

RLS-FIR filtering estimate: ẑ(t, t + T )

ẑ(t, t + T ) = A(t + T )e(t, t + T ) (9)

J(t + T, t + T ) = (BT (t + T ) − r(t, t + T )AT (t + T ))R−1 (10)
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J(t + T, t) = (BT (t) − Γ(t, t + T )BT (t))R−1 (11)

L(t + T, t + T ) = (AT (t + T ) − q(t, t + T )AT (t + T ))R−1 (12)

L(t + T, t) = (AT (t) − p(t, t + T )BT (t))R−1 (13)

de(t, t + T )

dt
= J(t + T, t + T )(y(t + T ) − ẑ(t, t + T ))

− J(t + T, t)(y(t) − B(t)e(t, t + T )) (14)

Initial condition of e(t, t + T ) at t = 0: e(0, T )

df(t, t + T )

dt
= L(t + T, t + T )(y(t + T ) − ẑ(t, t + T )) −

L(t + T, t)(y(t) − B(t)f(t, t + T )) (15)

Initial condition of f(t, t + T ) at t = 0: f(0, T )

dr(t, t + T )

dt
= J(t + T, t + T )(B(t + T ) − A(t + T )r(t, t + T )) −

J(t + T, t)(B(t) − B(t)q(t, t + T )) (16)

Initial condition of r(t, t + T ) at t = 0: r(0, T )

dΓ(t, t + T )

dt
= J(t + T, t + T )(A(t + T ) − A(t + T )Γ(t, t + T ))

− J(t + T, t)(A(t) − B(t)p(t, t + T )) (17)

Initial condition of Γ(t, t + T ) at t = 0: Γ(0, T )

dq(t, t + T )

dt
= L(t + T, t + T )(B(t + T ) − A(t + T )r(t, t + T ))

− L(t + T, t)(B(t) − B(t)q(t, t + T )) (18)

Initial condition of q(t, t + T ) at t = 0: q(0, T )

dp(t, t + T )

dt
= L(t + T, t + T )(A(t + T ) − A(t + T )Γ(t, t + T ))

− L(t + T, t)(A(t) − B(t)p(t, t + T )) (19)

Initial condition of p(t, t + T ) at t = 0: p(0, T )
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The initial conditions on the differential equations (14)-(19) are calculated by (20)-(27)

recursively.

J(T, T ) = (BT (T ) − r(0, T )AT (T ))R−1 (20)

L(T, T ) = (AT (T ) − q(0, T )AT (T ))R−1 (21)

de(0, T )

dT
= J(T, T )(y(T ) − A(T )e(0, T )) (22)

Initial condition of e(0, T ) at T = 0: e(0,0) = 0

df(0, T )

dT
= L(T, T )(y(T ) − A(T )e(0, T )) (23)

Initial condition of f(0, T ) at T = 0: f(0, 0) = 0

dr(0, T )

dT
= J(T, T )(B(T ) − A(T )r(0, T )) (24)

Initial condition of r(0, T ) at T = 0: r(0, 0) = 0

dΓ(0, T )

dT
= J(T, T )(A(T ) − A(T )Γ(0, T )) (25)

Initial condition of Γ(0, T ) at T = 0: Γ(0, 0) = 0

dq(0, T )

dT
= L(T, T )(B(T ) − A(T )r(0, T )) (26)

Initial condition of q(0, T ) at T = 0: q(0, 0) = 0

dp(0, T )

dT
= L(T, T (A(T ) − A(T )Γ(0, T )) (27)

Initial condition of p(0, T ) at T = 0: p(0, 0) = 0

Proof.

From (3) and (8), we have

h(t + T, s)R = A(t + T )BT (s) −

t+T
∫

t

h(t + T, τ)K(τ, s)dτ . (28)

Introducing an auxiliary function J(t + T, s), which satisfies

J(t + T, s)R = BT (s) −

t+T
∫

t

J(t + T, τ)K(τ, s)dτ , t 6 s 6 t + T, (29)
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we obtain

h(t + T, s) = A(t + T )J(t + T, s). (30)

Let us introduce an auxiliary function L(t + T, s), which satisfies

L(t + T, s)R = AT (s) −

t+T
∫

t

L(t + T, τ)K(τ, s)dτ , t 6 s 6 t + T. (31)

Differentiating (29) with respect to t, we have

∂J(t + T, s)

∂t
R = −J(t + T, t + T )K(t + T, s) + J(t + T, t)K(t, s)

−

t+T
∫

t

∂J(t + T, τ)

∂t
K(τ, s)dτ . (32)

From (3), (29) and (31), we obtain

∂J(t + T, s)

∂t
= −J(t + T, t + T )A(t + T )J(t + T, s)

+ J(t + T, t)B(t)L(t + T, s). (33)

The function J(t + T, t + T ) satisfies, by putting s = t + T in (29),

J(t + T, t + T )R = BT (t + T ) −

t+T
∫

t

J(t + T, τ)B(τ)dτAT (t + T ). (34)

Introducing

r(t, t + T ) =

t+T
∫

t

J(t + T, τ)B(τ)dτ , (35)

we obtain

J(t + T, t + T ) = (BT (t + T ) − r(t, t + T )AT (t + T ))R−1. (36)

Similarly, by putting s = t in (29), the function J(t + T, t) satisfies

J(t + T, t)R = BT (t) −

t+T
∫

t

J(t + T, τ)A(τ)dτBT (t). (37)

Introducing

Γ(t, t + T ) =

t+T
∫

t

J(t + T, τ)A(τ)dτ , (38)
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we obtain

J(t + T, t) = (BT (t + T ) − Γ(t, t + T )BT (t))R−1. (39)

Differentiating (35) with respect to t, we have

dr(t, t + T )

dt
= J(t + T, t + T )B(t + T ) − J(t + T, t)B(t)

+

t+T
∫

t

∂J(t + T, τ)

∂t
B(τ)dτ . (40)

Substituting (33) into (40) and introducing

q(t, t + T ) =

t+T
∫

t

L(t + T, τ)B(τ)dτ , (41)

we have

dr(t, t + T )

dt
= J(t + T, t + T )B(t + T ) − J(t + T, t)B(t)

− J(t + T, t + T )A(t + T )

t+T
∫

t

J(t + T, τ)B(τ)dτ

+ J(t + T, t)B(t)

t+T
∫

t

L(t + T, τ)B(τ)dτ

= J(t + T, t + T )(B(t + T ) − A(t + T )r(t, t + T ))

− J(t + T, t)(B(t) − B(t)q(t, t + T )). (42)

Differentiating (38) with respect to t, we have

dΓ(t, t + T )

dt
= J(t + T, t + T )A(t + T ) − J(t + T, t)A(t)

+

t+T
∫

t

∂J(t + T, τ)

∂t
A(τ)dτ . (43)

Substituting (33) into (43) and introducing

p(t, t + T ) =

t+T
∫

t

L(t + T, τ)A(τ)dτ , (44)
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we have

dΓ(t, t + T )

dt
= J(t + T, t + T )A(t + T ) − J(t + T, t)A(t)

− J(t + T, t + T )A(t + T )

t+T
∫

t

J(t + T, τ)A(τ)dτ

+ J(t + T, t)B(t)

t+T
∫

t

L(t + T, τ)A(τ)dτ

= J(t + T, t + T )(A(t + T ) − A(t + T )Γ(t, t + T ))

− J(t + T, t)(A(t) − B(t)p(t, t + T )). (45)

Differentiating (31) with respect to t, we have

∂L(t + T, s)

∂t
R = −L(t + T, t + T )K(t + T, s) + L(t + T, t)K(t, s)

−

t+T
∫

t

∂L(t + T, τ)

∂t
K(τ, s)dτ. (46)

From (3), (29) and (31), we obtain

∂L(t + T, s)

∂t
= −L(t + T, t + T )A(t + T )J(t + T, s)

+ L(t + T, t)B(t)L(t + T, s). (47)

The function L(t + T, t + T ) satisfies, by putting s = t + T in (31),

L(t + T, t + T )R = AT (t + T ) −

t+T
∫

t

L(t + T, τ)B(τ)dτAT (t + T ). (48)

From (41), we obtain

L(t + T, t + T ) = (AT (t + T ) − q(t, t + T )AT (t + T ))R−1. (49)

Similarly, by putting s = t in (31), the function L(t + T, t) satisfies,

L(t + T, t)R = AT (t) −

t+T
∫

t

L(t + T, τ)A(τ)dτBT (t). (50)

From (44), we obtain

L(t + T, t) = (AT (t) − p(t, t + T )BT (t))R−1. (51)

9



Differentiating (41) with respect to t, we have

dq(t, t + T )

dt
= L(t + T, t + T )B(t + T ) − L(t + T, t)B(t)

+

t+T
∫

t

∂L(t + T, τ)

∂t
B(τ)dτ . (52)

Substituting (47) into (52) and using (35), we obtain

dq(t, t + T )

dt
= L(t + T, t + T )B(t + T ) − L(t + T, t)B(t)

− L(t + T, t + T )A(t + T )

t+T
∫

t

J(t + T, τ)B(τ)dτ

+ L(t + T, t)B(t)

t+T
∫

t

L(t + T, τ)B(τ)dτ

= L(t + T, t + T )(B(t + T ) − A(t + T )r(t, t + T ))

− L(t + T, t)(B(t) − B(t)q(t, t + T )). (53)

Differentiating (44) with respect to t, we have

dp(t, t + T )

dt
= L(t + T, t + T )A(t + T ) − L(t + T, t)A(t) +

t+T
∫

t

∂L(t + T, τ)

∂t
A(τ)dτ . (54)

Substituting (47) into (54) and using (38), we obtain

dp(t, t + T )

dt
= L(t + T, t + T )A(t + T ) − L(t + T, t)A(t)

− L(t + T, t + T )A(t + T )

t+T
∫

t

J(t + T, τ)A(τ)dτ

+ L(t + T, t)B(t)

t+T
∫

t

L(t + T, τ)A(τ)dτ

= L(t + T, t + T )(A(t + T ) − A(t + T )Γ(t, t + T ))

− L(t + T, t)(A(t) − B(t)p(t, t + T )). (55)

Substituting (30) into (4), we have

ẑ(t, t + T ) = A(t + T )

t+T
∫

t

J(t + T, s)y(s)ds. (56)
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Introducing the function

e(t, t + T ) =

t+T
∫

t

J(t + T, s)y(s)ds, (57)

we obtain

ẑ(t, t + T ) = A(t + T )e(t, t + T ). (58)

Differentiating (57) with respect to t, using (33) and introducing

f(t, t + T ) =

t+T
∫

t

L(t + T, s)y(s)ds, (59)

we obtain

de(t, t + T )

dt
= J(t + T, t + T )y(t + T ) − J(t + T, t)y(t)

+

t+T
∫

t

∂J(t + T, s)

∂t
y(s)ds

= J(t + T, t + T )y(t + T ) − J(t + T, t)y(t)

− J(t + T, t + T )A(t + T )

t+T
∫

t

J(t + T, s)y(s)ds

+J(t + T, t)B(t)

t+T
∫

t

L(t + T, s)y(s)ds

= J(t + T, t + T )(y(t + T ) − A(t + T )e(t, t + T ))

− J(t + T, t)(y(t) − B(t)f(t, t + T )). (60)
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Differentiating (59) with respect to t and using (47) and (57), we obtain

df(t, t + T )

dt
= L(t + T, t + T )y(t + T ) − L(t + T, t)y(t)

+

t+T
∫

t

∂L(t + T, s)

∂t
y(s)ds

= L(t + T, t + T )y(t + T ) − L(t + T, t)y(t)

− L(t + T, t + T )A(t + T )

t+T
∫

t

J(t + T, s)y(s)ds

+L(t + T, t)B(t)

t+T
∫

t

L(t + T, s)y(s)ds

= L(t + T, t + T )(y(t + T ) − A(t + T )e(t, t + T ))

− L(t + T, t)(y(t) − B(t)f(t, t + T )). (61)

The initial condition on the differential equation (42) for r(t, t + T ), at t = 0, is r(0, T ),

which is expressed, from (35), by

r(0, T ) =

T
∫

0

J(T, τ)B(τ)dτ . (62)

From (29), J(T, s) satisfies

J(T, s)R = BT (s) −

T
∫

0

J(T, τ)K(τ, s)dτ . (63)

Differentiating (63) with respect to T , we have

∂J(T, s)

∂T
R = −J(T, T )K(T, s) −

T
∫

0

∂J(T, τ)

∂T
K(τ, s)dτ . (64)

From (3) and (63), we obtain

∂J(T, s)

∂T
= −J(T, T )A(T )J(T, s). (65)

Differentiating (62) with respect to T and using (65), we obtain

dr(0, T )

dT
= J(T, T )B(T ) +

T
∫

0

∂J(T, τ)

∂T
B(τ)dτ

= J(T, T )B(T ) − J(T, T )A(T )

T
∫

0

J(T, τ)B(τ)dτ

= J(T, T )(B(T ) − A(T )r(0, T )). (66)
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The initial condition on the differential equation (66) at T = 0 is r(0, 0) = 0 from (62).

The initial condition on the differential equation (45) for Γ(t, t + T ), at t = 0, is Γ(0, T ),

which is expressed, from (38), by

Γ(0, T ) =

T
∫

0

J(T, τ)A(τ)dτ . (67)

Differentiating (67) with respect to T and using (65), we obtain

dΓ(0, T )

dT
= J(T, T )A(T ) +

T
∫

0

∂J(T, τ)

∂T
A(τ)dτ

= J(T, T )A(T ) − J(T, T )A(T )

T
∫

0

J(T, τ)A(τ)dτ

= J(T, T )(A(T ) − A(T )Γ(0, T )). (68)

The initial condition on the differential equation (68) at T = 0 is Γ(0, 0) = 0 from (67).

The initial condition on the differential equation (53) for q(t, t + T ), at t = 0, is q(0, T ),

which is expressed, from (41), by

q(0, T ) =

T
∫

0

L(T, τ)B(τ)dτ . (69)

From (31), L(T, s) satisfies

L(T, s)R = AT (s) −

T
∫

0

L(T, τ)K(τ, s)dτ . (70)

Differentiating (70) with respect to T , we have

∂L(T, s)

∂T
R = −L(T, T )K(T, s) −

T
∫

0

∂L(T, τ)

∂T
K(τ, s)dτ . (71)

From (3) and (63), we obtain

∂L(T, s)

∂T
= −L(T, T )A(T )J(T, s). (72)
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Differentiating (69) with respect to T and using (62) and (72), we obtain

dq(0, T )

dT
= L(T, T )B(T ) +

T
∫

0

∂L(T, τ)

∂T
B(τ)dτ

= L(T, T )B(T ) − L(T, T )A(T )

T
∫

0

J(T, τ)A(τ)dτ

= L(T, T )(B(T ) − A(T )r(0, T )). (73)

The initial condition on the differential equation (73) at T = 0 is q(0, 0) = 0 from (69).

The initial condition on the differential equation (55) for p(t, t + T ), at t = 0, is p(0, T ),

which is expressed, from (44), by

p(0, T ) =

T
∫

0

L(T, τ)A(τ)dτ . (74)

Differentiating (74) with respect to T and using (67) and (72), we obtain

dp(0, T )

dT
= L(T, T )A(T ) +

T
∫

0

∂L(T, τ)

∂T
A(τ)dτ

= L(T, T )A(T ) − L(T, T )A(T )

T
∫

0

J(T, τ)A(τ)dτ

= L(T, T )(A(T ) − A(T )Γ(0, T )). (75)

The initial condition on the differential equation (75) at T = 0 is p(0, 0) = 0 from (74).

The initial condition on the differential equation (60) for e(t, t + T ), at t = 0, is e(0, T ),

which is expressed, from (57), by

e(0, T ) =

T
∫

0

J(T, τ)y(τ)dτ . (76)

Differentiating (76) with respect to T and using (65), we obtain

de(0, T )

dT
= J(T, T )y(T ) +

T
∫

0

∂J(T, τ)

∂T
y(τ)dτ

= J(T, T )y(T ) − J(T, T )A(T )

T
∫

0

J(T, τ)y(τ)dτ

= J(T, T )(y(T ) − A(T )e(0, T )). (77)
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The initial condition on the differential equation (77) at T = 0 is e(0,0) = 0 from (76).

The initial condition on the differential equation (61) for f(t, t + T ), at t = 0, is f(0, T ),

which is expressed, from (59), by

f(0, T ) =

T
∫

0

L(T, τ)y(τ)dτ . (78)

Differentiating (78) with respect to T and using (72) and (76), we obtain

df(0, T )

dT
= L(T, T )y(T ) +

T
∫

0

∂L(T, τ)

∂T
y(τ)dτ

= L(T, T )y(T ) − L(T, T )A(T )

T
∫

0

J(T, τ)y(τ)dτ

= L(T, T )(y(T ) − A(T )e(0, T )). (79)

The initial condition on the differential equation (79) at T = 0 is f(0, 0) = 0 from (78).

The function J(T, T ) satisfies, by putting s = T in (63) and using (3),

J(T, T )R = BT (T ) −

T
∫

0

J(T, τ)B(τ)dτAT (T ).

By using (62), J(T, T ) is expressed as

J(T, T ) = (BT (T ) − r(0, T )AT (T ))R−1. (80)

The function L(T, T ) satisfies, by putting s = T in (70) and using (3),

L(T, T )R = AT (T ) −

T
∫

0

L(T, τ)B(τ)dτAT (T ).

By using (69), L(T, T ) is expressed as

L(T, T ) = (AT (T ) − q(0, T )AT (T ))R−1. (81)

(Q.E.D.)

Let ẑ(0, t) = A(t)e(0, t) represent the filtering estimate of z(t) and let ẑ(0, t) be calculated

recursively by using (20), (22) and (24). The algorithm for the filtering estimate ẑ(0, t) uses

the observed values y(τ), 0 6 τ 6 t . It is noted that the filtering algorithm is same as

that in [11].
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4 RLS-FIR filtering error variance function

The RLS-FIR filtering error variance function is expressed by

E[z̃(t + T )z̃T (t + T )] = K(t + T, t + T ) − Pẑ(t, t + T ),

z̃(t + T ) = z(t + T ) − ẑ(t, t + T ). (82)

Here, Pẑ(t, t + T ) represents the auto-variance function of the RLS-FIR filtering estimate

ẑ(t, t + T ) as Pẑ(t, t + T ) = E[ẑ(t, t + T )ẑT (t, t + T )]. From (8), it is seen that the RLS-FIR

filtering error variance function is given by

h(t + T, t + T )R = K(t + T, t + T ) −

t+T
∫

t

h(t + T, τ)K(τ, t + T )dτ . (83)

Substituting (30) into (83) and using (35), we obtain

h(t + T, t + T )R = K(t + T, t + T )

− A(t + T )

t+T
∫

t

J(t + T, τ)B(τ)dτAT (t + T )

= K(t + T, t + T ) − A(t + T )r(t, t + T )AT (t + T ) > 0,

K(t + T, t + T ) = E[z(t + T )zT (t + T )] = K(0). (84)

The RLS-FIR filtering error variance function h(t + T, t + T )R, the variance function

K(t + T, t + T ) of the signal z(t + T ) and the filtering variance function Pẑ(t, t + T ) =

A(t + T )r(t, t + T )AT (t + T ) are the positive semi-definite symmetric matrices. Hence, it is

seen that, as the integral interval T becomes large, in (84), the estimation accuracy of the

RLS-FIR filter is improved.

5 A numerical simulation example

Let a scalar observation equation be given by

y(t) = z(t) + v(t). (85)

Let the observation noise v(t) be a zero-mean white Gaussian process with the variance R,

N(0,R). Let the auto-covariance function of the signal z(t) be given by

K(t, s) =
3

16
e−|t−s| +

5

48
e−3|t−s|. (86)
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From (86), the functions A(t) and B(s) in (3) are expressed as follows:

A(t) = [ 3

16
e−t 5

48
e−3t ], B(s) = [ es e3s ]. (87)

If we substitute (87) into the RLS-FIR filtering algorithm of [Theorem 1], we can calculate

the RLS-FIR filtering estimate recursively. Fig.1 illustrates the signal z(t) and the RLS

filtering estimate ẑ(0, t) = A(t)e(0, t), 0 6 t 6 2.5, for the white Gaussian observation noise

N(0, 0.12), by the filter in [11]. Fig.2 illustrates the signal z(t) and the filtering estimate

ẑ(t − T, t), 0.5 6 t 6 2.5, T = 500 · ∆ = 0.5, ∆ = 0.001, for the white Gaussian observation

noise N(0, 0.12), by the RLS-FIR filtering algorithm in [Theorem1]. Here, ∆ represents the

step size of the numerical integration in terms of the fourth-order Runge-Kutta-Gill method.

As time t advances, the RLS-FIR filtering estimate converges to the signal.

Table 1 compares the mean-square values (MSVs) of the filtering errors by the proposed

RLS-FIR filter for T = 500 ·∆ with the RLS filter in [11] for the white Gaussian observation

noises N(0, 0.12), N(0, 0.32), N(0, 0.52) and N(0, 0.72). As the variance of the observation

noise becomes large, the MSV becomes large for the both filters. The MSV for the Case

2-1 is larger than those of the Case 1 and the Case 2-2 for each observation noise. This

is based on the fact that the filtering estimate for the Case 2-1 starts with the filtering

estimate ẑ(0, t)|t=0 = 0 and the absolute value of the filtering error z(t) − ẑ(0, t) is relatively

large around t = 0. In Case 1, the filtering estimate, by the RLS-FIR filter in [Theorem 1],

is calculated recursively based on the 500 observed values at each time. The MSV of the

proposed RLS-FIR filter is relatively larger than that for the Case 2-2. This might be based

on the fact that the RLS filter for the Case 2-2 uses more observed values as time t advances

for 0.5 < t 6 2.5 in comparison with the constant number of the 500 observed values used

for the Case 1.

Table 2 compares the MSVs of the filtering errors by the proposed RLS-FIR filter for

T = 1000 ·∆ with the RLS filter in [11] for the white Gaussian observation noises N(0, 0.12),

N(0, 0.32), N(0, 0.52) and N(0, 0.72). In the Case 1, the filtering estimate is calculated

recursively based on 1,000 observed values at each time. As the variance of the observation

noise becomes large, the MSV becomes large for the both filters. The MSV for the Case 1

is smaller than that of the Case 2-1 and slightly smaller than that of the Case 2-2 for each

observation noise.

Here, the MSVs of the RLS-FIR filtering errors for the Case 1 are evaluated
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Table 1: Comparison of the MSVs of the proposed RLS-FIR filter with the RLS filter in [11],

using covariance information, for T = 500 · ∆

White

Gaussian

observation

noise

Proposed RLS-FIR filter

Case 1:

MSV of filtering errors

for

0.5 < t 6 2.5.

RLS filter in [11]

Case 2-1:

MSV of filtering errors

for

0 < t 6 2.5.

RLS filter in [11]

Case 2-2:

MSV of filtering errors

for

0.5 < t 6 2.5.

N(0, 0.12) 0.00424440904600 0.06380784056532 0.00359374059285

N(0, 0.32) 0.09770149325886 0.38374146305639 0.06583993506543

N(0, 0.52) 0.26227092046015 0.65616674303527 0.18864273401713

N(0, 0.72) 0.37579151353174 0.82624196537842 0.29854112344278

Table 2: Comparison of the MSVs of the proposed RLS-FIR filter with the RLS filter in [11],

using covariance information, for T = 1000 · ∆.

White

Gaussian

observation

noise

Proposed RLS-FIR filter

Case 1:

MSV of filtering errors

for

1 < t 6 2.5.

RLS filter in [11]

Case 2-1:

MSV of filtering errors

for

0 < t 6 2.5.

RLS filter in [11]

Case 2-2:

MSV of filtering errors

for

1 6 t 6 2.5.

N(0, 0.12) 6.196625300693155e-004 0.05644795547704 6.954391413372565e-004

N(0, 0.32) 0.01645365817254 0.35940956729006 0.01664718252321

N(0, 0.52) 0.06373211503018 0.64216747801833 0.06546634938394

N(0, 0.72) 0.11196511664697 0.82632200623893 0.12245408078970
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by
2000
∑

i=1

(z(500 · ∆ + i · ∆)−ẑ(i · ∆, 500 · ∆ + i · ∆))2/2000, ∆ = 0.001, in Table 1 and

1500
∑

i=1

(z(1000 · ∆ + ∆i)−ẑ(i · ∆, 1000 · ∆ + i · ∆))2/1500 in Table 2.

For references, the state-space model, which generates the signal process, is given by

z(t) = x1(t),

dx1(t)

dt
= x2(t) + u(t),

dx2(t)

dt
= −3x1(t) − 4x2(t) − 2u(t), E[u(t)u(s)] = δ(t − s). (88)

6 Conclusions

In this paper, the new RLS-FIR filtering algorithm, using the information of the covariance

function of the signal, in the semi-degenerate kernel form, and the variance of the white

observation noise, has been devised in linear continous-time stochastic systems. From the

simulation result in section 5, the proposed RLS-FIR filtering algorithm is feasible. As

the observation interval T increases, the MSV of the filtering errors becomes small and the

estimation accuracy of the RLS-FIR filter is improved.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time t

S
i
g
n
a
l
 
a
n
d
 
f
i
l
t
e
r
i
n
g
 
e
s
t
i
m
a
t
e

Signal

Filtering estimate

Figure 1: Signal z(t) and filtering estimate ẑ(0, t) = A(t)e(0, t), 0 6 t 6 2.5, for the white

Gaussian observation noise N(0, 0.12), by the RLS filter in [11].
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Figure 2: Signal z(t) and filtering estimate ẑ(t−T, t), 0.5 6 t 6 2.5, T = 500 ·∆ = 0.5, ∆ =

0.001, for the white Gaussian observation noise N(0, 0.12), by the RLS-FIR filtering algorithm

in [Theorem1].
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8 Captions of figures and tables

Fig.1 Signal z(t) and filtering estimate ẑ(0, t) = A(t)e(0, t), 0 6 t 6 2.5, for the white

Gaussian observation noise N(0, 0.12), by the RLS filter in [11].

Fig.2 Signal z(t) and filtering estimate ẑ(t−T, t), 0.5 6 t 6 2.5, T = 500 ·∆ = 0.5, ∆ =

0.001, for the white Gaussian observation noise N(0, 0.12), by the RLS-FIR filtering algorithm

in [Theorem1].

Table 1 Comparison of the MSVs of the proposed RLS-FIR filter with the RLS filter in

[11], using covariance information, for T = 500 · ∆

Table 2 Comparison of the MSVs of the proposed RLS-FIR filter with the RLS filter in

[11], using covariance information, for T = 1000 · ∆.
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