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Abstract #$!

 #%!

This study examined the hypothesis that a novel prolactin-like protein gene (PRL-L) is "&!

involved in cold-induced growth of skeletal muscle in chicks. Six-day-old chicks "#!

(Gallus gallus domesticus) were exposed to cold at 4 C or kept warm at 30 C for 24 ""!

hours. Cold exposure induced significant increases in PRL-L expression that coincided "'!

with increases in the weight of the sartorius muscle, which comprises both fast- and "(!

slow-twitch fibers. Meanwhile, no induction of PRL-L mRNA was observed in the heart, ")!

liver, kidney, brain, or fat. Myoblast cells that expressed PRL-L mRNA grew faster than "*!

untransduced cells in media containing 2% serum. These results suggested that PRL-L "+!

might be involved in in controlling cold-induced muscle growth of chicks.  "$!

 "%!

Keywords: cold adaptation, cold tolerance, muscle growth, prolactin-like protein, '&!

thermogenesis '#!

 '"!

Abbreviations: PRL-L, prolactin-like protein; NT, no treatment; GAPDH, ''!
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 ')!

1. Introduction '*!

Newborn chicks cannot maintain their body temperature in a cold environment because '+!

of their immature thermogenic ability [12,16], but they acquire the capacity for '$!

thermogenesis as they post natally develop skeletal muscle. Most chicks (Gallus gallus '%!

domesticus) older than 6 days tolerate 24 h of cold exposure (4°C) and maintain their (&!

body temperature over this time, accompanied by both increasing mass in their leg (#!
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muscles (sartorius and quadriceps muscle) and a transformation of muscle fibers from #$!

fast- to slow-twitch [5,8]. From the quadriceps of the cold-exposed chicks, 16 #"!

independent cold-induced genes were obtained by subtraction and differential display ##!

analysis [5]. One of them was in agreement with a novel prolactin like protein (PRL-L) #%!

gene [20]. Wang et al. [20] reported that PRL-L was widely expressed at sites outside #&!

the pituitary gland of adult chickens. The predicted PRL-like protein precursor is 225 #'!

amino acids in length; however, the role of the PRL-L has not yet been reported. #(!

The objective of this study was to examine the role of PRL-L in the skeletal #)!

muscle of neonatal chicks. We previously reported that the leg muscle mass of neonatal %*!

chicks was increased in response to 24 h of cold exposure, whereas the pectoral muscle %+!

mass was not changed [8]. The leg muscles of chicks (i.e., sartorius muscle and %$!

gastrocnemius muscle) are composed of both fast- and slow-twitch fibers [11,14], while %"!

the pectoralis muscle is composed of only fast-twitch fibers [13]. In this study, the %#!

sartorius muscles and gastrocnemius muscles were defined as mixed muscle, and the %%!

pectoral muscle was defined as white muscle. Therefore, in the current study, we %&!

examined whether PRL-L is involved in cold-induced growth of mixed muscles using %'!

this animal model. We herein show that cold exposure induced a marked increase in the %(!

expression of PRL-L mRNA in mixed muscle of chicks. Although this gene was %)!

increased in white muscle in response to cold exposure, the degree of increase was 50 &*!

times higher in mixed muscle compared to that in white muscle. We also observed that &+!

myoblast cells transduced with the PRL-L gene showed high proliferation rates under &$!

low serum conditions. Finally, our additional study on the localization of PRL-L protein &"!

provides evidence that this protein exists in the extracellular matrix in the mixed muscle &#!

of chicks. &%!
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 ##!

2. Materials and methods #$!

 #%!

2.1. Animals and treatment.  #&!

Chicks hatched from genetically identical Rhode Island Red (Gallus gallus $'!

domesticus) eggs were bred at the Agricultural and Forestry Research Center, University $(!

of Tsukuba, in accordance with institutional guidelines. All chicks were kept at a $)!

thermoneutral temperature (30 °C and 60% relative humidity) until they were exposed $*!

to cold temperature (4 °C and 60% relative humidity). All chicks had free access to food $"!

and water under constant 24 h lighting. To examine the effects of cold exposure on $+!

PRL-L mRNA expression in chicks, two separate experiments were performed. (i) $#!

Twelve 6-day-old chicks were randomly divided into two groups (cold exposure and no $$!

treatment [NT]). The cold exposure group was exposed to cold temperature for 24 h, $%!

and the NT group was kept at a thermoneutral temperature for 24 h as a control. After $&!

measurement of body temperature, chicks were killed by cervical dislocation under %'!

ether anesthesia after each treatment. Sartorius muscle, pectoral muscle, heart, liver, %(!

kidney, brain, and fat were collected and immediately frozen in liquid nitrogen and %)!

stored at -80 °C until use. (ii) Thirty-six 6-day-old chicks were randomly divided into %*!

five groups. Four of the five groups were exposed to cold temperature for 0.5, 1, 3, and %"!

6 h, respectively, and the remaining group served as controls (0 h). All chicks were %+!

killed by cervical dislocation under ether anesthesia after each treatment. Sartorius %#!

muscles collected from both legs were weighed, immediately frozen in liquid nitrogen, %$!

and stored at -80 °C until use for mRNA expression and protein expression. The %%!

gastrocnemius muscle was collected from the NT groups and embedded for %&!
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immunofluorescence in OCT compound (Sakura Finetechnical Co., Ltd., Tokyo, Japan) #$!

and rapidly frozen in isopentane chilled in liquid nitrogen. The experimental protocols #%!

and procedures were reviewed and approved by the Animal Care and Use Committee of #&!

the University of Tsukuba, Japan. #'!

To examine the effects of cold exposure on PRL-L mRNA expression in #(!

pituitary gland of chicks, 12 male broiler chicks (Chunky strain ROS308, provided by #"!

Kajiki Kumiai Hina Center, Kagoshima, Japan) were divided into two groups and #)!

exposed to cold temperature or thermoneutral temperature for 24 hours. All chicks were #*!

killed by cervical dislocation under ether anesthesia after treatment. Pituitary gland was #+!

collected, immediately frozen in liquid nitrogen, and stored at -80 °C until use for ##!

mRNA expression. The experimental protocols and procedures were reviewed and %$$!

approved by the Animal Care and Use Committee of the Kagoshima University, Japan. %$%!

 %$&!

2.2. RNA extraction and northern blotting.  %$'!

Total RNA was purified using TRIzol reagent (Invitrogen, Tokyo, Japan) %$(!

formed as %$"!

described previously [7]. Image analysis was performed using a Macintosh computer %$)!

and the public domain NIH Image program. Grey scale thresholding was used to %$*!

separate positive staining from background, and no visible band was observed in the %$+!

negative control lane (background).  %$#!

 %%$!

2.3. Quantitative real-time PCR.  %%%!

Real-time PCR was performed as described previously [9]. In brief, cDNA was %%&!

%%'!
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Kit (Takara, Shiga, Japan), which was set at reverse transcription 37 °C for 15 min, ##$!

inactivation of reverse transcriptase 85 °C for 5 s, and refrigeration 4 °C for 5 min using ##%!

PC-320 (ASTEC, Fukuoka, Japan). The primers used in this study are listed in Table 1. ##"!

Gene expression was measured by real-time PCR using the 7300 Real-Time PCR ##&!

system (Applied Biosystems, Foster City, CA) with SYBR Premix Ex Taq (Takara, ##'!

Shiga, Japan). The thermal cycle was as follows: 1 cycle at 95 °C for 10 s, and 60 cycles ##(!

at 95 °C for 5 s, 60 °C for 30 s, and 80 °C for 31 s. Expression of GAPDH mRNA was #)*!

used as an internal standard and was not significantly different between the cold and #)#!

control groups. Gene expression results are shown as a percentage of the control value. #))!

 #)+!

2.4. Western blot analysis. #)$!

Skeletal muscles from the chicks were homogenized in 2 ml lysis buffer #)%!

comprising 20 mM Tris-HCl, 100 mM NaCl, 1 mM ethylenediaminetetraacetic acid, pH #)"!

8.0, and 0.5% Igepal nonionic detergent. The lysate was centrifuged at 14,000g for 30 #)&!

min at 4 °C, and the supernatant was collected. Total protein concentration was #)'!

estimated by a protein-dye binding assay [2] using a commercial kit (500-0116; #)(!

Bio-Rad, Hercules, CA) with mouse IgG as the standard. Aliquots of skeletal muscle #+*!

were stored at -80 °C until analyzed by western blotting. Western blot analysis was #+#!

performed as described previously [7].  #+)!

 #++!

2.5. Retrovirus preparation.  #+$!

The GP2-293 packaging cells (purchased from Clontech, Mountain View, CA) #+%!

#+"!

of 6 ! 105 cells were placed in a six-well plate and cultured for 24 h. Six micrograms of #+&!
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retroviral vector pVSVG, pMX GFP, or pMX CTIF-GFP was transfected into the cells #$%!

by Lipofectamine 2000 (Invitrogen, Tokyo, Japan). After 8 h of incubation under 5% #$&!

CO2 at 37 °C#'(!

(DMEM; Invitrogen, Tokyo, Japan) and cultured for another 48 h. The supernatant of #'#!

the culture medium was taken and filtrated through a filter with a 0.45-#')!

(Toyo Roshi Kaisha Ltd., Tokyo, Japan).  #'$!

 #''!

2.6. Cell culture #'*!

C2C12 cells were bought from Riken Bioresource Center. One day prior to #'+!

transfection, C2C12 cells were subcultured at 2 ! 10 cells/well under 5% CO2 at 37 °C #'"!

in DMEM supplemented with 10% fetal bovine serum (FBS) and 1% #'%!

penicillin/streptomycin. The medium was exchanged with DMEM supplemented with #'&!

#*(!

cultured for another 24 h. The medium was exchanged every 3 days. #*#!

 #*)!

2.7. Cell proliferation assay.  #*$!

Cell number was assessed using the reagent WST-1 (Roche) according to the #*'!

2 cells into 96-well #**!

plates with DMEM supplemented with 10% FBS (proliferation media) or 2% horse #*+!

serum (HS) (differentiation media). After 24, 48, and 72 h of incubation, WST-1 reagent #*"!

was added and incubated for 4 h, then measured at a wavelength of 450 nm using a #*%!

microplate reader (Model 680; Bio-Rad, Hercules, CA).  #*&!

 #+(!

2.8. Immunofluorescence.  #+#!
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To examine the localization the localization of PRL-L protein in skeletal #$%!

muscle, the gastrocnemius muscles of the NT group chicks were used in this experiment. #$&!

Serial cross-#$'!

Microsystems, Wetzlar, Germany) at -28 °C and collected onto slides. The sections were #$(!

incubated in PBS containing 0.3% (v/v) Triton X-100 (PBS-TX) for 10 min, and then #$$!

incubated again in PBS-TX for 5 min. They were subsequently rinsed twice in PBS for #$)!

5 min and incubated in 100 ml of methanol for 7.5 min, then incubated in PBS #$"!

containing 0.3% (v/v) H2O2 followed by rinsing with PBS. After rinsing three times #$*!

with PBS-TX for 5 min, the sections were incubated with primary antibody against #)+!

PRL-L, which was outsourced to Trans Genic Inc. (Kumamoto, Japan), for 12 h at #)#!

10 °C. The sections were then rinsed nine times with PBS-TX for 5 min. The sections #)%!

were subsequently incubated with secondary antibody (Sc-2004; Santa Cruz #)&!

Biotechnology, Inc.) for 12 h at 10 °C and were then rinsed nine times in PBS-TX. After #)'!

rinsing with water three times, the sections were mounted with a mounting medium #)(!

(TA-030-FM; Thermo Fisher Scientific, Waltham, MA). The sections were observed #)$!

with a fluorescence microscope (BX-51; Olympus, Tokyo, Japan). #))!

 #)"!

2.9. Statistical analysis.  #)*!

#"+!

for categorical variables, and parametric [if normally distributed, analysis of variance #"#!

 -test] #"%!

or non-parametric (if not normally distributed, Welch's t-test) for continuous variables. P #"&!

values under 5% were considered to indicate statistical significance. All analyses were #"'!

performed with a general linear model using SPSS Statistics 17.0 (Statistical Packages #"(!



! "!

for the Social Sciences, released 23 August 2008). #$%!

 #$&!

3. Results #$$!

3.1. Effects of cold exposure on PRL-L expression in several tissues of chicks.  #$"!

Body temperature of chicks exposed to cold for 24 h was not different with that #"'!

of chicks kept at ambient temperature (control, 41.6 ± 0.1 °C; cold, 41.8 ± 0.1 °C). Fig. #"#!

1A shows the expression levels of PRL-L in a representative northern blot of RNA from #"(!

several tissues of chicks. A stronger PRL-L mRNA signal was detected in sartorius and #")!

pectoral muscle of chicks exposed to cold for 24 h compared to that of the control #"*!

chicks. The PRL-L mRNA expression in sartorius muscle of cold-exposed chicks was #"+!

markedly increased (240-fold) compared with that of the control chicks (Fig. 1B), and #"%!

the increased expression of PRL-L protein was observed in sartorius muscle of #"&!

cold-exposed chicks compared with control chicks (Fig. 1C). In the pectoral muscle, #"$!

mRNA expression of PRL-L gene was increased in response to 24 h of cold exposure #""!

(Fig. 1D). The basal expression of PRL-L mRNA was higher (38-fold) in sartorius (''!

muscle than in pectoral muscle of control chicks at 7 days of age (Fig. 1E). On the other ('#!

hand, no response of PRL-L mRNA to cold exposure was observed in any other tissues, ('(!

including brain. Although PRL-L mRNA expression was predominantly expressed in (')!

the pituitary gland [20], the PRL-L mRNA expression in the pituitary gland was not ('*!

changed in response to 24 h of cold exposure (Fig. 1F).  ('+!

Increased PRL-L mRNA expression was observed in sartorius muscle after ('%!

exposure of chicks to cold for 3 h (Fig. 2A, B). The PRL-L mRNA expression was ('&!

further increased at 6 of cold exposure. The overall body weight of chicks was not ('$!

affected by cold exposure (data not shown), in agreement with our previous studies [7]. ('"!
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The ratio of sartorius muscle to body weight, which is calculated as a ratio between the $"#!

sartorius muscle weight (mg) and the body weight (g) and expressed in mg/g body $""!

weight, was significantly increased in chicks exposed to cold for 6 h (Fig. 2C). On the $"$!

other hand, the ratio of pectoral muscle to body weight was not different among $"%!

treatments (Fig .2D). In addition, Fig 3 shows that time course of Caspase-3 gene $"&!

expression in sartorius muscle of cold-exposed chicks. The Caspase-3 mRNA $"'!

expression was tended to increase after 1h of cold exposure and then be decreasing, $"(!

while there was no statistical difference among treatments. $")!

 The 5'-flanking region of the PRL-L gene includes the putative binding sites $"*!

for nuclear factor of activated T cells (NFAT) and cAMP response element-binding $"+!

protein 1 (CREB) [20]. And either NFAT or CREB interacts with peroxisome $$#!

proliferator-activated receptor-gamma coactivator-1 (PGC- 4,12], whose expression $$"!

was acutely increased in the sartorius muscle of cold-exposed chicks [8]. Therefore, $$$!

mRNA expression of these genes was examined in the sartorius muscle of chicks $$%!

exposed to cold for 1 h (Fig. 4). PGC- NFATc1 mRNA expression in sartorius $$&!

muscle were elevated at 1 h of cold exposure. On the other hand, NFATc3 and CREB1 $$'!

mRNA expression were not changed in sartorius muscle of chicks in response to 1 h of $$(!

cold exposure.  $$)!

 $$*!

3.2. Exogenous expression of PRL-L gene in C2C12 cells.  $$+!

PRL-L was introduced into the cell line C2C12 by retroviral gene transfer (Fig. $%#!

5). Stable PRL-L mRNA expression was confirmed. Cell proliferation rates did not $%"!

differ among three cell lines when cultured in DMEM with 10% FBS. On the other $%$!

hand, when cultured in DMEM with 2% HS, C2C12-PRL-L-GFP cells showed higher $%%!
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proliferation rates than those of untransduced C2C12 cells. There was no difference #$%!

between C2C12-GFP cells and untransduced C2C12 cells. Caspase-3 mRNA expression #$&!

was lower in C2C12-PRL-L-GFP cells than in C2C12-GFP cells at both time points (0 #$'!

and 24 h) in DMEM with 2% HS.  #$(!

 #$)!

3.3. In vivo localization of PRL-L protein.  #$*!

In vivo localization of PRL-L protein in cross-sections of gastrocnemius #%+!

muscle of chicks was detected by fluorescence microscopy (Fig. 6). PRL-L was #%"!

observed to present in the extracellular matrix of skeletal muscle, while this protein was #%#!

not observed in myofibers.  #%$!

 #%%!

4. Discussion  #%&!

PRL-L has been cloned from chicken brain and is widely expressed in chicken #%'!

tissue including the brain, heart, kidney, lung, skeletal muscle, ovary, testis, and spinal #%(!

cord [20]. In this study, weak expression of PRL-L mRNA was confirmed by northern #%)!

blotting in all tissues examined in this study in chicks kept at a thermoneutral #%*!

temperature. Exposure of chicks to cold for 24 h markedly induced expression of PRL-L #&+!

mRNA both in the sartorius muscle and the pectoral muscle. PRL-L mRNA expression #&"!

in other tissues examined in this study, including pituitary gland, was not elevated in #&#!

response to 24 h of cold exposure. Therefore, PRL-L might have a role not so much in #&$!

pituitary gland but in the skeletal muscle of cold-exposed neonatal chicks. #&%!

Although PRL-L mRNA expression was increased in both the mixed sartorius #&&!

muscle and the white pectoral muscle, the degree of increase was higher in the mixed #&'!

sartorius muscle than that of the white pectoral muscle. In addition, the degree of #&(!
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increase was 50 times higher in sartorius muscle compared to pectoral muscle. Because #$%!

little information is available for differences in intracellular signaling pathways between #$&!

slow- and fast-twitch fibers of skeletal muscle in birds, the reason for the higher #'(!

responsiveness of PRL-L gene expression to cold exposure in the mixed sartorius #'"!

muscle compared with the white pectoral muscle remains unclear. In humans, treadmill #'#!

running induces different intracellular signaling responses in slow- and fast-twitch #')!

fibers of skeletal muscle [19]. Therefore, disparity in the responsiveness of this gene #'*!

between the mixed and white muscles may be caused by the differences in the #'$!

intracellular signaling pathways between slow- and fast-twitch fibers. The basal #''!

expression level of PRL-L mRNA in the mixed sartorius muscle was higher than that in #'+!

the white pectoral muscle. These results indicate that the change in PRL-L expression #'%!

induced by cold exposure might occur predominantly in slow-twitch fibers in mixed #'&!

muscle. Moreover, PRL-L mRNA expression was increased preceding the increase in #+(!

sartorius muscle weight. This is in agreement with our previous study that revealed that #+"!

neonatal chicks exposed to cold show increased sartorius muscle weight in association #+#!

with decreased myostatin mRNA expression [7,8]. These findings suggest that changes #+)!

in the gene expression of PRL-L that occur early in cold exposure might be related to #+*!

the increase in the mixed sartorius muscle weight of cold-exposed neonatal chicks.  #+$!

PGC-#+'!

fiber types; i.e., PGC- -fiber-enriched soleus muscle is #++!

higher than that in fast-fiber-enriched muscles [10]. Similarly, in neonatal chicks, #+%!

PGC-#+&!

muscle [7,8]. PGC-#%(!

[4,12]. The 5'-flanking region of the PRL-L gene includes the putative binding sites for #%"!
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some transcriptional factors, including NFAT and CREB [20]. In this study, both $%$!

PGC-$%#!

increased preceding the cold-induced increase in PRL-L mRNA expression. Therefore, $%&!

PGC- c1 may be involved in the transcriptional regulation of the PRL-L $%'!

gene in mixed muscles of cold-exposed chicks. However, because little information is $%(!

available for the interaction between PGC-$%)!

needed to gain more information about the interactive role of these proteins in enhanced $%%!

growth of mixed muscles of cold-exposed chicks. $%*!

Although there was no effect of exogenous expression of PRL-L in C2C12 $*+!

cells incubated in proliferation conditions, a proliferative effect of PRL-L was observed $*"!

in differentiation conditions. Meanwhile, exogenous expression of PRL-L affected $*$!

neither slow- nor fast-type skeletal muscle troponin I expression in differentiated $*#!

C2C12 cells (supplemental Figure 1). In this study, C2C12-PRL-L-GFP cells showed $*&!

lower expression of caspase-3 mRNA under the differentiation conditions, suggesting $*'!

that PRL-L might affect caspase-3 gene expression. Fernando et al. [3] reported that $*(!

inhibition of caspase-3 activity leads to dramatic reduction in both myotube formation $*)!

and expression of muscle-specific proteins; hence, it was suggested that caspase-3 $*%!

activity is required for progression of skeletal muscle differentiation [3,6]. While the $**!

degree of decrease was weak, caspase-3 mRNA expression in the sartorius muscle of #++!

chicks was observed to be decreased after 6 h of cold exposure. Although it is unclear #+"!

whether caspase-3 activity is influenced by exogenous PRL-L expression, it is possible #+$!

that the enhanced growth observed in C2C12-PRL-GFP cells under differentiation #+#!

conditions occurred because of the lower expression of the capase-3 gene affected by #+&!

exogenous expression of the PRL-L gene.  #+'!
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Because PRL-L was predicted to contain signal peptides [20], this protein $%&!

might be secreted outside the cells. We observed that PRL-L tended to be present in the $%'!

extracellular matrix of the mixed gastrocnemius muscle in vivo. In bovines, PRL-related $%(!

protein is located in and anchored to the extracellular matrix through interactions with $%)!

type IV collagen [18]. In humans, PRL is an autocrine or paracrine growth factor for $"%!

both myometrial and leiomyoma cells [15]. These reports and our findings showing $""!

localization of the PRL-L protein allow to us to postulate that PRL-L acts as autocrine $"*!

and/or paracrine factor in mixed muscle growth of cold-exposed chicks. Furthermore, $"$!

we confirmed that molecular weight of the recombinant PRL-L protein (25 kDa) was $"#!

similar to the predicted molecular weight of PRL-L protein [20], while PRL-L antibody $"+!

recognized 36 kDa of protein in the sartorius muscle (supplemental Figure 2). Although $"&!

the reason for the discordance of the molecular weight remains unclear, N-linked $"'!

glycosylation is well known to occur on either secreted protein or membrane bound $"(!

protein [1]. This result may support the hypothesis that PRL-L might act as secreted $")!

protein and raise the possibility that the PRL-L protein might be regulated by $*%!

post-translational modification such as N-glycosylation.  $*"!

In conclusion, PRL-L is specifically induced in mixed muscle of cold-exposed $**!

chicks, suggesting that PRL-L could play a role in mixed muscle growth of chicks $*$!

induced by cold exposure as a secreted protein.   $*#!

 $*+!
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Figure legends $$$!

Fig. 1. Effects of cold exposure on PRL-L expression in chicks. (A) Representative $$'!

northern blot data of PRL-L mRNA in various tissues of chicks. (B) Quantitative $$#!

real-time PCR analysis of PRL-L gene expression in sartorius muscle. (C) $$(!

Representative western blot results for PRL- -tubulin protein in sartorius muscle $$)!

(upper, PRL- -tubulin). (D) Quantitative real-time PCR analysis of PRL-L $$*!

gene expression in pectoral muscle. (E) Comparison of PRL-L gene expression level $$+!

between sartorius and pectoral muscles of NT chicks. (F) Quantitative real-time PCR $'%!

analysis of PRL-L gene expression in pituitary gland. Results are normalized by $'"!

GAPDH mRNA and expressed as % of respective control value. Values are expressed as $'&!

means ± SE (n = 6). NT, nontreatment. *P < 0.05 (vs. control).  $'$!

 $''!

Fig. 2. Time course of PRL-L gene expression in sartorius muscle of cold-exposed $'#!

chicks. (A) Representative northern blot data of PRL-L mRNA in sartorius muscle of $'(!

chicks. (B) Expression of PRL-L mRNA in sartorius muscle of chicks. Results are $')!

-actin mRNA and expressed as % of respective control value. (C) Ratio $'*!

of sartorius muscle to body weight of chicks. (D) Ratio of pectoral muscle to body $'+!

weight of chicks. Values are expressed as means ± SE (n = 6). *P < 0.05 (vs. control).  $#%!

 $#"!

Fig. 3. Time course of Caspase-3 gene expression in sartorius muscle of cold-exposed $#&!

chicks. Results are normalized by GAPDH mRNA and expressed as % of respective $#$!
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control value. Values are expressed as means ± SE (n = 6).  $%&!

 $%%!

Fig. 4. Quantitative real-time PCR analysis of gene expression in sartorius muscle of $%#!

chicks exposed to cold for 1 h. (A) Expression of PGC-$%'!

of chicks. (B) Expression of NFATc1 mRNA in sartorius muscle of chicks. (C) $%(!

Expression of NFATc3 mRNA in sartorius muscle of chicks. (D) Expression of CREB1 $%)!

mRNA in sartorius muscle of chicks. Results are expressed as % of respective control $#*!

value, and values are expressed as means ± SE (n = 6). *P < 0.05 (vs. control).  $#"!

 $#+!

Fig. 5. Effect of exogenous expression of PRL-L gene in C2C12 cells by retrovirus gene $#$!

transfer. (A) PRL-L mRNA was expressed only in C2C12-PRL-L-GFP cells. Cells were $#&!

plated in (B) DMEM with 10% FBS or (C) DMEM with 2% HS. Cell proliferation was $#%!

determined by the absorbance of the WST-1 reagent and measured at the indicated time $##!

periods. Results are expressed as % of respective control value (0 h), and values are $#'!

expressed as means ± SE (n = 12). *P < 0.05 (vs. control). (D) Effect of exogenous $#(!

expression of PRL-L gene on caspase-3 mRNA expression in C2C12 cells. Cells were $#)!

grown for the indicated time periods in differentiation medium. Results are normalized $'*!

by GAPDH mRNA and expressed as % of respective control value (0 h of C2C12-GFP $'"!

cells). Values are expressed as means ± SE (n = 3). $'+!

 $'$!

Fig. 6. Immunofluorescence staining of PRL-L in cross-sections of gastrocnemius $'&!

muscle of 7-day-old chicks. (A) Bright-field micrograph of cross-section of $'%!

gastrocnemius muscle of chicks. (B) PRL-L immunofluorescence in the same $'#!

microscopic field of A. (C) Merging of the images shown in A and B. Note the presence $''!



! "#!

of PRL-L, the location of which corresponds to spaces between myofibers (arrowheads). $#%!

 $#&!
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