{"created":"2023-07-25T08:06:00.708336+00:00","id":4638,"links":{},"metadata":{"_buckets":{"deposit":"cb84112c-ab07-4ee3-9447-db1d066f0c6f"},"_deposit":{"created_by":18,"id":"4638","owners":[18],"pid":{"revision_id":0,"type":"depid","value":"4638"},"status":"published"},"_oai":{"id":"oai:ir.kagoshima-u.ac.jp:00004638","sets":["54:79"]},"author_link":["22650"],"item_8_date_6":{"attribute_name":"作成日","attribute_value_mlt":[{"subitem_date_issued_datetime":"2011-05-30","subitem_date_issued_type":"Collected"}]},"item_8_description_4":{"attribute_name":"要約(Abstract)","attribute_value_mlt":[{"subitem_description":"2008-2010年度科学研究費補助金(基盤研究(C))研究成果報告書 課題番号:20540151 研究代表者:千原浩之 (鹿児島大学大学院理工学研究科(理学系)教授)","subitem_description_language":"ja","subitem_description_type":"Other"},{"subitem_description":"本研究では,曲がった空間上の解析学の手法を構築することを目的とする.主な成果を2つ述べる. 1つは,ある種の複素相関数をもつフーリエ積分作用素の像として特徴付けられる関数空間上の Berezin-Toeplitz作用素の既知の事実を大幅に改善したことである.もう1つは,リーマン多様体から概エルミート多様体へのシュレーディンガー写像流の初期値問題を研究して従来の像空間のケーラー性の仮定の意味を解明し,誘導束の断面に作用する擬微分作用素論を構築して,この仮定がなくても初期値問題を解く方法を構築したことである.","subitem_description_language":"ja","subitem_description_type":"Other"},{"subitem_description":"The purpose of this project is to present sophisticated methods of analysis on curved spaces. Two of our main results are the following. First, we significantly improved the known facts on Berezin-Toeplitz operators acting on the image of a certain Fourier integral operators with a complex phase. Secondly, we studied the initial value problem for the Schrödinger map flow of a Riemannian manifold to an almost Kähler manifold. We clarified the meaning of the assumption of the Kähler property of the target space in all the preceding results, and succeeded in dropping this assumption by introducing pseudodifferential calculus on induced bundle associated with a map between Riemannian manifolds.","subitem_description_language":"en","subitem_description_type":"Other"}]},"item_8_publisher_23":{"attribute_name":"公開者・出版者","attribute_value_mlt":[{"subitem_publisher":"鹿児島大学","subitem_publisher_language":"ja"},{"subitem_publisher":"Kagoshima University","subitem_publisher_language":"en"}]},"item_8_subject_15":{"attribute_name":"NDC","attribute_value_mlt":[{"subitem_subject":"413","subitem_subject_scheme":"NDC"}]},"item_8_text_41":{"attribute_name":"科研費番号 ","attribute_value_mlt":[{"subitem_text_value":"20540151"}]},"item_8_version_type_14":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"千原, 浩之","creatorNameLang":"ja"},{"creatorName":"CHIHARA, Hiroyuki","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"22650","nameIdentifierScheme":"WEKO"},{"nameIdentifier":"1000070273068","nameIdentifierScheme":"NRID","nameIdentifierURI":" "}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2016-10-27"}],"displaytype":"detail","filename":"20540151seika.pdf","filesize":[{"value":"203.7 kB"}],"format":"application/pdf","mimetype":"application/pdf","url":{"label":"20540151seika.pdf","objectType":"fulltext","url":"https://ir.kagoshima-u.ac.jp/record/4638/files/20540151seika.pdf"},"version_id":"37bb2c7b-1507-4717-941c-79e5ca42163f"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"擬微分作用素","subitem_subject_language":"ja","subitem_subject_scheme":"Other"},{"subitem_subject":"Bargmann変換","subitem_subject_language":"ja","subitem_subject_scheme":"Other"},{"subitem_subject":"Berezin-Toeplitz作用素","subitem_subject_language":"ja","subitem_subject_scheme":"Other"},{"subitem_subject":"Schrödinger写像","subitem_subject_language":"ja","subitem_subject_scheme":"Other"},{"subitem_subject":"分散型偏微分方程式","subitem_subject_language":"ja","subitem_subject_scheme":"Other"},{"subitem_subject":"初期値問題","subitem_subject_language":"ja","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"research report","resourceuri":"http://purl.org/coar/resource_type/c_18ws"}]},"item_title":"擬微分作用素と幾何解析","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"擬微分作用素と幾何解析","subitem_title_language":"ja"},{"subitem_title":"Pseudodifferential Operators and Geometric Analysis","subitem_title_language":"en"}]},"item_type_id":"8","owner":"18","path":["79"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2015-01-06"},"publish_date":"2015-01-06","publish_status":"0","recid":"4638","relation_version_is_last":true,"title":["擬微分作用素と幾何解析"],"weko_creator_id":"18","weko_shared_id":-1},"updated":"2024-05-23T02:18:03.734011+00:00"}